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Abstract

Migration places extreme demands on birds as they travel long distances.
Factors influencing when and where migrating birds stop to feed are not well

understood, and may include internal conditions such as amount of body fat and
external conditions such as local weather. By collecting data on individual behav-
ior in response to internal and external conditions researchers will be able to build
models of bird behavior and identify critical habitats along migration routes. The
following thesis presents the design and simulation of a system of stereo cameras
and processors, to enable the distributed, autonomous tracking of migratory rap-
tors in order to facilitate the study of their flight patterns. The motivation behind
this study is to map the migratory routes of raptors and other endangered species
of birds. The knowledge of migratory routes will aid biological research, conserva-
tion efforts and shed light on whether man-made structures like windmills along
these routes pose a threat to migrating birds or if raptors are able to alter their
flight patterns to avoid collision. A cost effective method that can continuously
monitor the flight path of birds around the observation site with minimal or no hu-
man input, can provide valuable information about the migratory patterns of the
birds without incurring the cost of employing more people or buying specialized
equipment. The proposed system, consisting of a set of off-the-shelf cameras and
processors, would not require a great deal of fiscal or labor input while providing
an accurate estimate of bird migration patterns.

Observation points may be set up along the ridge to obtain bearings to birds
that come into view in order to compute their position and velocity at every time
interval, using Kalman Filter based tracking algorithms. The accuracy of the es-
timates is lowered due to the Dilution of Precision, dop introduced into the mea-
surements because of the large distances between the birds and the camera systems.
The tracking system proposed in this thesis consists of a number of stations each
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composed of a camera pair and a processor, set up in a user specified geometry,
along the ridge under observation. The estimation process is further complicated
by the fact that the relations between the bird position and the bearings to it,
utilize trigonometric properties, making the measurement model non-linear. A
non-linear estimation method is therefore required.

Each station computes an initial estimate of the position and velocity of the
birds viewed by its cameras using a Particle Filter and further tracking is carried
out by the Unscented Kalman Filter. Data association between measurements
is performed from camera to camera in each stereo set and from frame to frame
between one time step and the next. The estimates from each station are trans-
mitted to a master computer that computes the association of local estimates to
each other before fusing all the independent estimates to any particular bird and
transmitting the resulting final estimate back to all the stations. Results of Monte
Carlo simulations show the convergence of the estimated error to the true error
for estimates from one or more stations. The tracking system provides fairly ac-
curate estimates under realistic constraints and may be implemented with readily
available hardware.
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Chapter 1
Introduction

The following thesis presents the design and simulation of a system of stereo

cameras and processors, to enable the distributed, autonomous tracking of mi-

gratory raptors in order to facilitate the study of their flight patterns. The mo-

tivation behind this study is to map the migratory routes of raptors and other

endangered species of birds. The knowledge of migratory routes will aid biological

research, conservation efforts and shed light on whether man-made structures like

wind turbines along these routes pose a threat to migrating birds or if raptors are

able to alter their flight patterns to avoid collision.

Observation points may be set up along the ridge to obtain bearings to birds

that come into view in order to compute their position and velocity at every time

interval, using Kalman Filter based tracking algorithms. The accuracy of the

estimates is lowered due to the Dilution of Precision, dop introduced into the

measurements because of the large distances between the birds and the camera

systems. Having a well distributed set of sensors can lower the dop but installing

sensors far away from the central processor can prove to be difficult, having multiple

processors in a Distributed Estimation setup will solve this problem. The estima-

tion process is further complicated by the fact that the relations between the bird

position and the bearings to it, utilize trigonometric properties, making the mea-

surement model non-linear. A non-linear estimation method is therefore required.

The Kalman Filter is the optimal linear filter but variations of the Kalman Filter,

that have previously been used successfully in non-linear estimation problems, are

described and implemented.
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The tracking system proposed in this thesis consists of a number of stations

each composed of a camera pair and a processor, set up in a user specified geometry,

along the ridge under observation. Each station computes an initial estimate of the

position and velocity of the birds viewed by its cameras using an Particle Filter and

further tracking is carried out by the Unscented Kalman Filter. The estimates from

each station are transmitted to a master computer that fuses all the independent

estimates and transmits the resulting estimate back to all the stations. Results of

Monte Carlo simulations show the convergence of the estimated error to the true

error for estimates from one or more stations. This thesis aims to accomplish the

following tasks:

• Prepare a mathematical framework that describes the environment and fa-

cilitates the study of flight patterns. This involves selecting the states to

be estimated, modeling bird dynamics and creating a model for obtaining

bearing measurements from a set of cameras.

• Discuss methods that can be used to carry out the tracking, given the non-

linear and distributed nature of the system.

• Describe the implementation of the proposed tracking system and providing

justification for the methods selected.

• Present the results depicting the performance of the system under a Monte-

Carlo test consisting of simulations of several varying flight paths. The tested

aspects are the track initiation, accuracy of estimates, correlation between

true and predicted error and the data association
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Figure 1.1. A satellite image of the Appalachian Mountains in Pennsylvania.

1.1 Motivation

Migration places extreme demands on birds as they travel long distances [1]. The

ability to conserve energy through the use of atmospheric lift is crucial for suc-

cessful migration. The long ridges of the Appalachian Mountains in Pennsylvania

are a critical migration corridor for North American raptors and songbirds. Over

150 species use this migration corridor [2], and some ridges are renowned for lo-

cal concentrations of hawks and eagles. An estimated 800 Golden Eagles migrate

through Pennsylvania each year, with many of them passing by Tussey Mountain

(approximately 10km east of Penn State’s University Park campus). Factors influ-

encing when and where they stop to feed are not well understood, and may include

internal conditions such as amount of body fat and external conditions such as lo-

cal weather. By collecting data on individual behavior in response to internal and

external conditions researchers will be able to build models of bird behavior and

identify critical habitats along migration routes.

Wind power development and associated wind turbines are increasing through-

out the U.S., and there is great interest in establishing the infrastructure to use

wind as a renewable energy source in Pennsylvania. Wind turbines are often

established along mountain ridges: in Pennsylvania these ridges are also prime

migration routes. Biologists have expressed concerns that wind turbines can result

in direct mortality and avoidance behavior along migration routes [3, 4]. Using

the annual avian collision mortality estimate of 200-500 million, it is estimated

that wind turbines constitute 0.01 percent to 0.02 percent of the avian collision
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fatalities[5] but these numbers could rise due the increasing construction of wind

farms. While collisions are a direct cause of bird mortality caused by wind farms,

the indirect mortality of birds due to an alteration in their flight patterns has yet

to be investigated.

Current methods used for tracking bird migration involve either teams of human

observers stationed at observation points along the predicted migration route[6] or

tagging individual birds with a gps receiver and data transmitter[7, 6]. The human

observers are able to provide a count of bird species, thus giving a big-picture view

of migration, and gps data gives a detailed view of the migration of a single bird.

Cine-theodolites are telescopic surveying cameras that have been used to enable

measurements of bird track and speed, but these are expensive and cumbersome[8].

Vision has been applied successfully to many short-distance tracking problems.

The application of computer vision for observing flight behavior at large distances

is, however, a relatively unexplored concept.

An autonomous system to actively monitor the flight paths of raptors can add

more insight to the available information without incurring the cost associated with

having human observers and expensive equipment. This thesis describes a vision-

based system for autonomously tracking birds as they fly past several observation

points along the migratory route. The goal is to obtain enough information in

the form of positions and velocities of individual raptors to facilitate a study of

migratory routes of various raptor species. In addition to migration studies, such

a system can be used to examine changes in flight patterns caused by obstructions

such as wind turbines.

Observing birds from long distances calls for a set of sensors that is spatially

distributed in a symmetric configuration to minimize the Dilution of Precision

in any one direction. The implementation of a system that can incorporate a

widespread distribution of sensors can be made more feasible by using more than

one processor. A system with more than one processor would also be computation-

ally efficient and better suited for real-time applications. Maintaining track at only

one processor can lead to complete failure in tracking should a fault in the system

occur. Loss of communication or processor failure would be less detrimental to

the study should track be maintained by more than one processor. A Distributed

Estimation system is therefore proposed for the bird tracking problem to meet the
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requirements stated above.

1.2 Overview of the Bird Tracking System

Tracking from long distances using low-resolution and noisy measurement is a dif-

ficult problem prone to significant uncertainty and Dilution of Precision(dop).

The measurement model, which involves computing bearings using trigonometry,

makes the estimation problem a non-linear one. The problem of non-linear estima-

tion can be tackled by using one or more of the textbook non-linear Kalman filters.

dop may be lowered by using a set of sensors that are spatially spread out and

arranged symmetrically, so that ambiguities in various directions may cancel each

other out. The limitations provided by the terrain of the geographic site and the

physical constraints of the hardware can be faced by implementing a Distributed

System. The Distributed System consists of independent tracking stations each

computing independent estimates. Local estimates can be fused to provide the

resulting higher priority state estimate which would be the best estimate at that

time interval. The fusion algorithm must account for the shared process noise

among all local stations in order to avoid overconfidence in the state estimate.

Track needs to be initiated when a bird is seen at any of the local stations for the

first time. Since no prior information is available to the tracking system regarding

the state of the bird, the Particle Filter may be used to compute an initial estimate

and covariance of the bird, that are Gaussian enough to be used as initial estimates

for Kalman Filter based tracking. A distribution of particles that represent all

possible states of the bird form the basis of the particle filter. The measurements

from the cameras that view the bird are then used to provide a weight for each

particle based on how closely the proposed measurement for that particle matches

the true measurement to the bird in view. The weighted mean and covariance of

these particles may be used as the initial estimate and associated covariance for the

state of the newly seen bird. Once track is initiated at a particular station, track

is maintained by performing motion and measurement updates using the Sigma

Point Kalman Filter (sp-kf) to compute independent estimates at each time step.

Should a previously seen bird come into view at another station, track would be

initiated with the best available estimate. Consequent estimates may be obtained
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by fusing all the available local estimates of the bird.

The assumption of data association is inherent in the Kalman filter although

the sensors do not perform data association, they only provide a set of measure-

ments, the association of the measurement set to the birds being tracked has to

be computed explicitly. The data association has to be performed between pairs

of cameras to ensure that the pair of bearing measurements from the stereo pair

at each station correspond to the same bird. Data association also has to be

performed from frame to frame so that a correspondence is maintained between

bearing measurements obtained from one frame to the next. The camera-to-camera

correspondence of measurements can be computed by checking the epipolar con-

straint between the stereo pair. If the epipolar constraint is satisfied, the measure-

ment from both cameras belongs to the same bird. The measurements obtained

from one camera can therefore be reordered to correspond with the measurements

to birds seen by its stereo pair. Similarly, the gated Mahalanobis distance be-

tween the estimated state vector in the present and previous frame, can be used

to perform frame to frame data association. The combination with the minimum

distance provides the correspondence from one frame to the next. It is important

to ensure that each set of bearings obtained in the current frame corresponds to

only one other set in order to avoid the double copy of one bird and the loss of

another from the track.

1.3 Previous Related Work

1.3.1 Bird Observation Methods

The most popular method for studying hawk migration has been counting of birds

by human observers, followed by trapping and banding [8]. Counting migrating

birds is the most fundamental study method and has been successfully employed

as a bird observation method. Counting relies heavily on volunteers who have to

invest long hours to be able to spot some of the rarer species. Data obtained from

manual counts is susceptible to bias based on the geographic location of the obser-

vation site and error due to the limitations of the visual capacity of human beings.

Also, counting only provides information about the species population from which
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flight patterns can only be vaguely inferred. Tagging gives additional information

about geographic origins and approximate flight paths but it comes with its own

set of biases based on the age and sex of birds that are captured more easily than

others. The small sample size from tagging makes the data less conclusive and

the low recapture rates of banded birds makes it impossible to reliably answer

important questions. Using markers that can be detected from a distance instead

of tags will allow monitoring without recapturing and increase the amount of data

collected. Radiotelemetry is a method that involves attaching a powered radio

transmitter to individual birds in a species and following the course of the birds

flight by keeping track of the signal transmitted. Tracking birds using radar had

been a popular and effective way to study bird migration. Radiotelemetry and

radar have provided the best data for the study of flight patterns but they can be

prohibitively expensive[8].

In recent times, vision techniques have been proposed by Andrea Cavagna for

modeling the flight and flocking patterns of starlings [9] and by Tomassi Crudeli to

detect and vectorially track the movement of birds flying around airports [10]. Cav-

agna and his team have used the epipolar constraints of a flock of starlings viewed

by a pair of stereo cameras to reconstruct the 3d positions of individual starlings

by employing existing image processing and pattern recognition techniques. The

computation of position is performed independently in every time interval and

there is no association in the position of the bird computed from one frame to

the next. This is a static procedure and it does not maintain the successive track

of individual birds over a course of time. The vectorial tracking method is pro-

posed by Crudeli for tracking birds on airports, that may be a potential threat

to aircraft. Crudeli’s method also involves using epipolar constraints to determine

a 3d position for an individual bird. The position data is further post processed

to trace a flight path for the bird. This method is used to detect birds at a close

range by geometrically computing the position of the bird anew in each frame.

The accuracy of the method and it’s performance in tracking multiple birds has

not been documented.

In the case of observing the effect of wind farms on the mortality of migrating

hawks, periodic mortality surveys are carried out by teams of observers at the site

specified. The mortality rate is observed by counting carcasses of birds at periodic
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intervals. The effect of scavenging by other predators also has to be accounted for

in order to avoid the underestimation of mortality rates. The effects of location,

weather and flight behavior on collision possibilities have previously been analyzed

using generalized linear modelling[4].

1.3.2 Vision Based Tracking

Cameras are inexpensive sensors that impart a wealth of information pertaining

to color, prominent features, position and motion of filmed objects. Stereo camera

systems also allow triangulation to add depth information and provide measure-

ments from various viewing angles to significantly lower uncertainty about the

state of the subject under observation. Stereo cameras have been used by Cavgna

and Crudeli for position estimation of birds using epipolar geometry. Vision data

from a stereo camera system, has been used by Muñoz-Salinas and Auirre in a

Kalman Filter based application to track moving people[11]. Color is an invalu-

able tool for the identification of subjects in an image and color histograms are

unique markers for objects to be tracked. The color information associated with

each subject being tracked has been used by Salinas and Auirre, as well as Ba-

hadori and Iocchi, to perform data association and maintain the identities of people

being tracked[11, 12]. Color histogram based tracking has been made popular by

Zivkovic and Krose [13], but it is computationally expensive to extract color in-

formation in every frame. Using a Kalman filter for frame to frame tracking and

color information over longer time intervals, to maintain data association, is more

viable for real-time applications. It should be noted that human tracking is carried

out at far closer distances than bird tracking and the vision information available

in the former case is therefore more enriched and accurate.

1.3.3 Non-linear Estimation

The Kalman Filter is the optimal filter for linear estimation. Since the mea-

surement model for the proposed system is non-linear, the assumption that the

estimates remain Gaussian does not hold, causing the Kalman Filter to fail. The

problem of non-linear estimation is not a recent one, since most physical systems

have non-linear properties. The Kalman Filter itself can be modified to accom-
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modate non-linear system equations. By linearizing the system equations, the

non-linear system can be converted into a linear system on which the Kalman Fil-

ter would be able to operate. The Extended Kalman Filter (ekf) works on this

principle. The system equations are linearized about an initial estimate using a

first order Taylor series expansion. The removal of higher order terms and use

of an approximate initial estimate have a negative effect on the optimality of the

linearized Kalman Filter or the ekf . The ekf is also computationally difficult to

implement and can diverge if the initial estimate or the linearized system equations

are inaccurate. Despite its drawbacks, the ekf has been the tracking system of

choice in several navigation systems and gps [14].

The Sigma Point Kalman Filter (sp-kf), also known as the Unscented Kalman

Filter (ukf), uses a set of deterministic points with a Gaussian distribution about

the current best estimate, to model the estimate and its statistics [15]. This set

of points, called Sigma Points, can be propagated through the non-linear system

equations instead of a single value. After propagation through the non-linear

equations, the mean estimate and the covariance associated with it are computed

from the distribution of these points. The square-root implementation of the sp-

kf allows faster computation and ensures that the covariance is always positive

definite [16]. The ukf has been used for pose estimation in the Model-based 3d

tracking of an articulated hand [17].

The non-linear estimators introduced so far all assume that the estimate and its

covariance follow a Gaussian trend. This assumption is not always true, especially

if no prior information is available. The Particle Filter is another Bayesian Filter

that can operate without making any assumptions about the probability distribu-

tion function of the model under observation [18]. The Particle Filter computes

the estimate and its covariance by carrying out a weighted resampling of a set of

points that simulate all possible values of the state. The weights are allotted pro-

portional to the resemblance of the point, or particle, to the true state, as inferred

from the measurements available. The particle filter has performed successfully

in several positioning, navigation and tracking applications [19]. The accuracy of

the Particle Filter is dependent on how closely the particle selected matches the

true state. A large set of particles therefore required to amply cover the space of

possible states. This makes the particle filter computationally unwieldy and limits
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its operational capability, especially in real-time applications.

1.3.4 Distributed Systems

Distributed systems have received increasing attention due to the several advan-

tages that they offer over centralized systems. Having multiple processors lowers

the computational load and the dependence on any one node. A variety of mea-

surements can be incorporated into the tracking process since each processor has

the provision of having its own measurement model. A distributed system can also

cover a larger area compared to centralized system since each sensor need not be

connected to the central processor. The fusion of data in distributed systems has

been an active area of research. The process noise in a distributed system is shared

and fusion algorithms have been developed that account for this while computing

a fused estimate. Distributed systems may be implemented in various structures

or hierarchies based on the application. The textbook by Bar-Shalom and Li pro-

vides a detailed documentation of of theory and implementation of a variety of

Distributed Sensor Networks (dsn) for tracking multiple targets using multiple

sensors[20]. Tracking of human subjects and mobile robots in an indoor smart en-

vironment using has been achieved by Karuppiah and Zhu through a distributed

vision system with heterogenous sensors of various processing rates, synchronized

and fused to achieve real-time tracking [21].

1.4 Contributions

The following project has built upon previous tracking methods to simulate the

outdoor, long-distance tracking of raptors using stereo camera systems and dis-

tributed processors, implemented using various forms of the Kalman Filter. The

main contributions of this thesis are described in the following section.

1.4.1 A novel bird observation technique

A continuous and autonomous method has been proposed that can keep track of the

position and velocity of the birds in view. The system, consisting of a set of off-the-

shelf cameras and processors, does not require a great deal of fiscal or labor input.
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Stereo-cameras can provide depth information based on epipolar constraints, and

allow 3d estimation from 2d image information. The distribution of cameras can

be specified based on the geography of the observation site. Bird dynamics and

the measurement model are simulated based on expected behavior and physical

constraints. The results of the proposed system, on simulation, show that a fairly

accurate track of individual birds is maintained even from large distances.

1.4.2 Application based estimator designs

Once the bird dynamics and measurement models are constructed mathematically

and simulated, the estimation process can begin, which involves computing an

estimate of the dynamic state using the available measurements. The choice of

states is a trade-off between the complexity of the estimation process and the in-

formation required to form a complete picture of the migratory route. The state

vector chosen consists of the 3d position and velocity components. Fundamental

vision techniques and trigonometry can be used to obtain the bearing to any object

in view of a camera. The measurements used in the bird tracking problem are,

therefore, bearings to the bird from each of the cameras in the system. Since the

measurement model used to compute these bearings contains trigonometric func-

tions, the estimation process becomes non-linear. The variations of the Kalman

Filter for non-linear estimation were all considered and the Square Root form of

the Unscented Kalman Filter was chosen. The Square-Root ukf was chosen due

to its ability to generate consistent estimates without divergence and its compu-

tational efficiency. The prediction and correction equations were derived based

on the bird dynamics and measurement model, respectively. The ukf requires an

initial estimate and covariance, having a Gaussian distribution, in order to carry

out the subsequent estimation procedure. The only information available when

the bird first comes into view is a set of bearings from all the cameras that view it.

Several geometric triangulation approaches were tested before the Particle Filter

was employed. A specific initialization process was designed to compute an initial

estimate that led to satisfactory results once fed to the ukf . A set of parti-

cles, having a Gaussian distribution, are created in a solid angle about a bearing

and weighted proportional to the similarity between the expected bearing mea-



12

surements to it and the available bearings to the true position of the bird. The

weighted mean and covariance are computed to obtain an initial estimate for the

3d position of the bird and its covariance. It is found that using arbitrary velocity

components based on the expected velocity of the bird is sufficient for initialization

purposes, since the deviation of velocity from its expected values is much lesser

than that of position. The Particle filter based initialization process, although

heuristically designed, gave better initial estimates than plain trigonometry. The

results obtained from this process, are stable and Gaussian in nature and allow

the ukf to compute fairly accurate estimates, without causing divergence. The

performance of estimators designed is tested for multiple different tracking runs

and satisfactory results are obtained.

1.4.3 Distributed implementation

A Distributed Hierarchical system is designed such that each camera in the system

sends its measurements to a local processor that computes an independent local

estimate. All local estimates are communicated to a central processor via wireless

communication and fused to compute a higher priority global estimate. The fusion

computation accounts for the shared process noise by subtracting the information

that has been added multiple times from the covariance to ensure that the accuracy

of the estimate remains bounded by the noise present in the system. Once a fused

estimate is computed, it is regarded as the current best estimate and is transmitted

back to all the local processors. This step is important since it puts all the local

estimators on the same level of certainty at each time step and averts the possibility

of a drift of local estimates from each other. The system designed as described is

tested against the conventional centralized implementation and results are found

to be identical, as expected, since the information available to both systems is

the same. The distributed implementation of the system, however, has the added

advantages of being easier to implement physically, more computationally efficient,

robust and versatile to a variety of measurements.
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1.4.4 Performance Verification: Simulation

A Monte-Carlo simulation consisting of a number of varying flight paths is run

to test various aspects of the estimation process. The error in position between

the true and initial estimates of position are compared to the condition number of

the initial covariance matrix. It is found that even for initial covariances with a

relatively high Dilution of Precision, the error in the estimate remains reasonable

and bounded. The mean squared error in the estimate for all estimates, is compared

to the square root of the trace of the covariance of the estimate as computed by

the ukf and they are found to correspond with each other. Hence proving that

the estimated error is found to match the true error. The performance of the

distributed implementation is compared to that of the centralized version and both

results obtained are identical as expected. This indicates that the fusion technique

employed is representative of the interaction between estimators and accounts for

the process noise shared among them. The advantage of a distributed system over

a centralized one can therefore be exploited at no loss to the quality of the tracking

system’s performance.

1.5 Reader’s Guide

The chapters that follow can be summarized as follows:

• Chapter 2: The Bird Tracking Problem describes the tracking prob-

lem mathematically and proposes the components of states to be estimated.

Mathematical models are derived to describe the dynamics of the birds and

the procurement of bearing measurements from the view of the bird in the

camera. Aspects of non-linear estimation and distributed systems are intro-

duced.

• Chapter 3: Tracking System Design defines the tasks to be accomplished

by the estimator, namely, track initiation, estimation and data association. It

goes on the present the mathematical implementation of the aforementioned

based on the structure of the system, the quantities to be estimates, the type

of estimator and the hierarchy of the processors. The flow of data within the
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system is summarized to give a quick description of the implementation of

the tracker.

• Chapter 4: Bird Tracking Simulation Results begins with a description

of the simulation setup designed to test the performance limits of the system.

The various parts of the estimation process, i.e, track initiation, tracking

performance and data association are tested and Monte-Carlo results are

presented with corresponding inferences.

• Chapter 5: Conclusion discusses the scope of the research presented and

explores areas of future work



Chapter 2
The Bird Tracking Problem

The following chapter defines the bird tracking problem.

The major topics discussed are:

1. Problem Statement : The setup of the tracking problem is described and ap-

propriate states are chosen for the state space model. A spatially distributed

geometry is proposed for sensor locations in order to lower Dilution of Pre-

cision.

2. Sensor and System Model : A mathematical model is proposed to simulate the

bird kinematics, the parameters of which form the system under observation.

A sensor model is proposed to emulate the working of the sensors, a set of

stereo cameras. The measurement of bearings to birds in flight is simulated

by this model

3. Non-linear and Distributed Estimation: Popular methods in non-linear es-

timation are discussed, to address the non-linearities in the measurement

model. Distributed Estimation is introduced along with the advantages it

has over conventional estimation, given the nature of the bird tracking prob-

lem.

The choice of states for estimation is the first step in formulating a mathemat-

ical tracking procedure. The states chosen should be able to depict all important

factors in the system and track them with reasonable computational complexity.

For an observation problem like this one, knowing the position and velocity of the
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bird in one fixed coordinate system is sufficient for tracing out its migration route.

The bird kinematics proposed are linear and without acceleration, to depict the

flight of a raptor across the horizon with reasonable accuracy. Computing position

from bearing measurements employs trigonometric functions, which leads to a non-

linear estimation problem. Fortunately, there are several methods that have been

successfully implemented for non-linear estimation, some of which are discussed in

Section 2.4. Observing small objects from great distances causes uncertainty in the

estimates due to Dilution of Precision. Having well spread out sensors can counter

dop but connecting faraway sensors to one processor can be difficult to construct

physically. This is the motivation behind using a Distributed Estimation system

as proposed in Section 2.4.3.

2.1 Problem Statement

The problem considered here is the observation of migrating raptors in order to

determine their flight path as they pass the observation stations. The sensors

available are sets of cameras placed along a ridge on the migratory route. Bearings

are obtained from all cameras at which a bird is in view. For a single bird the

vector of states to be estimated includes components of position xo, yo and zo and

velocity ẋo, ẏo and żo expressed in the North East Down (ned) frame:

xob,i =
[
xob,i yob,i zob,i ẋob,i ẏob,i żob,i

]T
(2.1)

The schematic of the estimation problem is shown in Figure 2.1.

The flight path of a bird, b, is shown. At any instant of time, i, the state of

the bird, xob,i, is determined. The coordinates (xoyozo) represent position in global

ned coordinate system. The system is scalable at two levels. At the station level,

a set of two or more cameras can be used to compute a local estimates. Further,

at the global level, local estimates from any number of distributed stations can be

used to compute fused global estimates of birds in view at these stations. Every

camera in the system is considered to have its own local coordinate system, with

the x axis pointing outwards from the lens along the optical axis of the camera

and the y and z determined by the pan or tilt of the camera about its origin. Each
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Figure 2.1. Schematic of the bird tracking problem.

camera has its own origin and rotation angles. The coordinates (xcyczc) represent

the position of the bird as seen in the local coordinates of the camera in which it is

viewed. Available measurements are bearings obtained from the array of cameras

placed at known positions and orientation.

Computing position estimates from bearing measurements involves trigonomet-

ric functions. The tracking problem is therefore a non-linear one. The Kalman

Filter, which is the optimal linear filter, is not applicable to this problem. A track-

ing method that can produce fairly accurate estimates despite the non-linearity of

the system equations must be employed to achieve the results required. In addition

to the non-linear nature of the system, a challenge is posed by the high degree of

uncertainty inherent in tracking small objects from large distances, which leads

to Dilution of Precision. Having symmetrically spread out sensors over large dis-

tances can counter this problem since the ambiguity in opposite directions cancel

out. Implementation details, however, limit the the distance between cameras at

a station, or the baseline, since it is difficult to transmit data to a central station

over a large baseline due to wiring constraints.
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Figure 2.2. Schematic of the distributed implementation of the bird tracking problem.

2.2 A System for Tracking Migrating Raptors

In order to overcome the problem of Dilution Of Precision (dop) due to short base-

lines between cameras, several independent stereo camera systems can be planted

along the ridge at longer distances in a geometry that reduces dop . The require-

ment for a spatially spread out and robust system has been met by designing a

Distributed System which has several processors independently tracking the birds

and a central processing unit that fuses all available estimates to compute a more

accurate global estimate of the states. Assimilating measurements from various

sensors, requires a tracking system where the number of available measurements

can vary. Using multiple processors will not only allow a spatially distributed ge-

ometry to counter dop but also make the system more robust to sensor or commu-

nication drop outs, since track would be maintained at each processor. Estimates

may be computed independently at each node to be fused into one global estimate

that can be used as the best estimate for a particular time interval, as shown in

Figure 2.2. The fusing algorithm must account for the process noise due to the

shared kinematic model at the processors in order to avoid overconfidence in the

estimated state.

In order to compute estimates in a system consisting of non-linear equations,
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a tracking system that can counter non-linearity needs to be used. Variations

of the Kalman filter, like the Extended Kalman Filter (ekf) and the Unscented

Kalman Filter (ukf) have been used successfully in non-linear tracking problems

in the past. Appropriate filters need to be employed at various stages of the

tracking problem depending on the nature of the information available. The Un-

scented Kalman Filter (ukf) works on the principle of propagating a set of particles

through a non-linear system of equations instead of a single random variable, to get

good estimates despite non-linear nature of the system. The particles used by the

ukf are obtained deterministically and have a Gaussian distribution. The ukf is

therefore a Gaussian filter, based on the assumption that the particles distributed

through it maintain an approximately Gaussian distribution even through non-

linear transformations. Hence, in order to use the ukf for tracking, a Gaussian

initial estimate is required. The Particle filter, a Bayesian filter that makes no

assumption about the distribution of the state, may be used to compute an initial

estimate of the bird state and the covariance associated with it. The estimate

computed by the Particle filter may be used to initialize ukf tracking.

The assumption of data association is inherent in the aforementioned tracking

systems. However, the measurements obtained from camera-to-camera do not

necessarily correspond to the same bird, should more than one bird be in view.

Similarly, measurements obtained from one frame to the next need not correspond

each other. In order to ensure the smooth functioning of the tracking systems it

is important to know which measurement corresponds to which bird and use them

in tracking accordingly. A data association procedure is required to reorder the

bearing measurements from camera-to-camera and frame-to-frame to ensure that a

correspondence is maintained between each bird and the measurement associated

with it.

2.3 Mathematical Model Formulation

2.3.1 Bird Kinematics

Although the flight speed of a raptor is accelerated noticeably during circling flight

or a dive, it remains fairly constant along a migratory route [8].A constant velocity
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model is therefore used to model bird flight, assuming a random walk behavior of

minor acceleration, which is approximated in the process noise.

The choice of states results in a linear model for bird kinematics:

ẋob,i = Axob,i + Bv (2.2)

where

A =

[
0 I

0 0

]
(2.3)

B =

[
0

I

]
(2.4)

and I is the 3× 3 identity matrix and v is zero-mean Gaussian random noise.

2.3.2 Measurement Model

Rather than using direct stereo vision techniques for computing range to a target

(i.e. computing range based on disparity between the left and right cameras), the

bearing from each camera to every bird is computed and treated as an independent

measurement. The bearings obtained by the cameras at a station are fused using

a Sigma Point Kalman filter. This method has the advantage of being easily

scalable to adding more measurements and adaptable to the number of cameras

at the station in which a bird is in view.

A pinhole camera model defines the projection of a vector onto the image plane

as

γ =
f

xc

[
yc

zc

]
(2.5)

where f is the focal length and xc =
[
xc yc zc

]T
is the vector expressed in the

camera frame. The focal length f can be normalized without loss of generality.

The orientation of the camera frame for camera m, Cm ,with respect to the

inertial frame O is assumed to be known. Each camera has a known pan, ψ,

and tilt, θ. Rolling the camera about its axis does not add any more information

to the scene in view. It is therefore assumed that there is no roll in any of the
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cameras. The matrix,T, that transforms the universal coordinate frame to camera

coordinates is given by as:

T = TθTψ (2.6)

where Tθ and Tψ are rotation matrices

Tθ =


cosθ 0 -sinθ

0 1 0

sinθ 0 cosθ

 (2.7)

Tψ =


cosψ sinψ 0

-sinψ cosψ 0

0 0 1

 (2.8)

and

T =


cosθcosψ cosθsinψ -sinθ

-sinψ cosψ 0

sinθcosψ sinθsinψ cosθ

 (2.9)

Depending on its orientation, each camera has a rotation matrix, Tm, computed

as shown in Equation 2.9. Each camera is assumed to have its optical axis aligned

with the camera frame’s x̂c axis and is offset from the origin of the camera in

the station frame by a distance vector ∆xcm =
[

∆xcm ∆ycm ∆zcm

]T
. A bearing

measurement to the ith bird at camera m is therefore

γm,i =
1

xcm,i

[
ycm,i

zcm,i

]
(2.10)

where 
xcm,i

ycm,i

zcm,i

 = Tm


xoi − xo
yoi − yo
zoi − zo

+


∆xcm

∆ycm

∆zcm

 (2.11)

The measurement vector z is formed by concatenating bearings from each of
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the M cameras in the array:

z =
[

γ1 γ2 . . . γM

]T
(2.12)

2.4 Non-linear and Distributed Systems

The mathematical model described in the previous section shows that acquiring

state estimates from the measurements is a non-linear problem due to the trigono-

metric functions involved. State estimation in linear systems is considered to be

a solved problem since the invention of the Kalman Filter by Rudolph E. Kalman

in 1960 [22]. The Kalman Filter is the optimal estimator for a linear system. The

assumption of Gaussian-ness has to be upheld through all functions in the system

in order to maintain the optimality of the Kalman filter. For linear systems, this

holds true, but non-linear systems do not remain Gaussian at all points. Using a

linear filter for non-linear systems can lead to highly erroneous estimates or never

reach convergence. It is possible to linearize the system equations before propa-

gating them through the filter. This is the rationale behind the Extended Kalman

Filter (ekf), which approximates the system model with a first order Taylor Series

approximation about the current best estimate. Using a linear model for a highly

non-linear system can lead to severe biases and linearizing about an inaccurate

estimate will result in equations that do not represent the system well. Moreover,

the ekf is mathematically intensive and difficult to implement. The Sigma Point

Kalman Filter (sp-kf), more affectionately known as the Unscented Kalman Filter

(ukf), does away with the linearization procedure by computing an estimate for a

set of points that mimic the probability distribution of the states to be estimated

[15]. The Particle Filter also uses the principle of estimating states for several

points, or particles, but these particles do not necessarily satisfy the Probability

Distribution Function (pdf) of the state to be estimated. Both the ukf and the

Particle Filter have been applied to the bird tracking problem, depending on the

information available.
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2.4.1 Particle Filter

The Particle Filter models all possible states of a system by a set of particles.

The number of possible states increase with the number of particles, therefore the

accuracy of the state estimate increases with the number of particles used. The

Particle Filter does not make any assumptions about the probability distribution

of the state. It yields good results for a non linear system where the probability

distribution of the states can not be predicted. Initializing the particle distribu-

tion based on the first measurement greatly reduces the number of particles and

prevents outlier estimates. Like the conventional Kalman Filter, the Particle Filter

also has a prediction and a correction step. The prediction consists of propagating

all the particles through the motion model to predict the state of each particle

at the next time step. The correction step involves the resampling of predicted

particles states based on measurements of the true state at that time step. The

key ingredients for the successful operation of the Particle Filter is the resampling

steps. The measurements available from the sensors, for the true position, are

compared to those obtained by the measurement model, for each particle. The

particles are weighted in proportion to how close the measurements for the par-

ticle are to the the true measurements available for the states. High weights are

allotted to particles that match measurements closely and low weights to those

that do not. Using an exponential weighting function will create more disparity

in weighting than a linear function. Resampling involves recreating the existing

set of particles by drawing particles from the set multiple times, giving priority to

particles with high weight. This results in a new set of particles that has multiple

copies of highly weighted particles and fewer versions of lower weighted particles.

The probability distribution of the resampled set should represent that of the true

set more closely. However, this is not always the case. If a sufficient number of

particles is not used, the particle with the highest weight could be far from the true

state but still be resampled several times, leading to a bad estimate. This is known

as the particle deprivation problem. The random nature of resampling can lead

to far-away particles being sampled several times and frequent resampling leads

to a low variance estimate which is far from the true state. Resampling methods

like low variance sampling, ensure that diversity is maintained in the particles and

the possibility of discarding a more accurate estimate is lowered. Mathematical
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derivations of the Particle Filter, its sources of error and means to improve its

performance are listed in several textbooks [23, 24].

2.4.2 Unscented Kalman Filter

The Unscented Kalman Filter (ukf), like the Particle Filter, employs the prop-

agation of particles through the system in order to deal with its non-linearities.

However, unlike the Particle Filter, the particles used by the ukf are obtained de-

terministically and not randomly because the ukf is based on the assumption that

the particles distributed through it have a Gaussian distribution. For an n state

estimation, 2n+1 particles, or Sigma Points, are sampled symmetrically about the

mean. These Sigma Points have a normal distribution with mean, x̄, and covari-

ance, P, which are the best available estimate and the covariance associated with

it respectively. The set of sigma points is given by:

X =
[

x̄ x̄ + η
√

P x̄− η
√

P
]

(2.13)

where η is a scale factor that determines the spread of the Sigma Points about

the mean.

Although the system is non linear and Gaussian-ness may not be maintained,

the assumption of the Sigma points having a Gaussian distribution is made and

their mean and covariance is computed to represent the state estimate. The Sigma

Points are propagated through the prediction and correction steps of the Kalman

Filter and the mean and covariance of these points give the state estimate, x̂, and

the associated covariance, P.

2.4.3 Distributed Estimation

A set of cooperative stations that take independent measurements and compute

separate estimates form the Distributed Estimation network. In a non-hierarchical

system, the estimates computed by each station are treated equally and indepen-

dently, leading to several estimates of the same state. Fusing these local estimates

to form one, global, higher priority estimate of the state is the principle of the

Distributed Hierarchical Estimation (dhe) system. Fusing algorithms must ac-
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count for the process noise being shared by all the stations which results in a

correlated estimate error. The compilation by Bar-Shalom [20] describes several

Distributed Estimation implementations and algorithms for optimal fusion of mul-

tiple estimates. Distributed systems have received increasing attention due to the

several advantages that they offer over centralized systems. Tracking the target

simultaneously at several locations lowers the computational dependence at any

one node. This makes the system more robust and the complete loss of track due

to the failure of the central processor is prevented. The accuracy in tracking the

states only deteriorates should any of the several processors fail. Track is also

maintained at each of the independent stations in the event of the failure of the

central fusing unit. The computational load is shared by several processors, which

cuts computation time and makes the system better suited for real-time applica-

tions. Distributed systems are scalable to the number of measurements available

and since independent estimates are computed, the option of using different types

of sensors and measurements also exists. For a geographically spread out tracking

problem like the one in question, the sensors need to be well distributed in space.

Using a distributed implementation increases flexibility in sensor geometry and the

communication system between sensors can used to transmit estimates instead of

measurements for a robust distributed estimation system.

2.5 Summary: The Bird Tracking Problem

The bird tracking problem is defined mathematically in Section 2.1. Estimating

the position and velocity of each bird, enables the documentation of migratory

routes, and the states for the estimation problem are chosen accordingly. Observing

birds from a long distance increases Dilution of Precision. A spatially spread out

system would be able to overcome this problem but it would be difficult to connect

faraway sensors to the same hub. The number of measurements available depends

on the number of cameras in which the bird is viewed, and this will easily vary

as the sensors increase in number and get further away from each other. The

system proposed should be able to utilize any number of available measurements.

The seasonal nature of the bird tracking problem makes it imperative to keep

continuous track. Loss of track will affect the reliability of the study and can be
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difficult to recover from. The need for a system that is adaptable to changing

levels of information, while being robust and computationally efficient, motivates

the implementation of multiple, distributed processors.

Since this is a theoretical project, the dynamics of birds and the measurements

obtained need to be modeled mathematically. Mathematical models are defined

in Section 2.3. The dynamics of birds as defined are linear and acceleration is

modeled as random process noise. The measurement model computes bearings to

the bird position as viewed in the coordinate system of the camera. The trigono-

metric identities present in the measurement model introduce non-linearity into

this tracking problem.

The problem of non-linear estimation has been address by several variations

of the optimal linear Kalman Filter. The Particle Filter and Unscented Kalman

Filter are described in Sections 2.4.1 and 2.4.2. The Particle Filter can be used to

compute an estimate when there is no prior knowledge. Multiple versions of the

state estimate are weighted and resampled with every available set of measurements

to compute an estimate that is most closely matches the values inferred by the

measurement. The ukf is a deterministic approach that models a symmetric

distribution about the current best estimate. The estimated state and covariance

are functions this distribution, which is able to maintain its configuration through

non-linear transforms. Both the particle filter and the ukf are applied to various

aspects of the bird tracking problem. The implementation of both is described in

Chapter 3 and the results obtained are documented in Chapter 4.

Distributed Hierarchical Estimation is introduced in Section 2.4.3 to address

the implementation details that a centralized system would not be able to satisfy.

A distributed system, tracks with the same degree of accuracy as the tried and

tested centralized system, but it is more robust, computationally efficient and

geometrically flexible compared to it. It is important to keep in mind that nodal

estimates are not completely independent of each other due to the common process

noise and to account for this while fusing the estimates. The results obtained by

Distributed Estimation are shown in Chapter 4 and compared to those obtained

by Centralized Estimation.



Chapter 3
Tracking System Design

The techniques to achieve the task defined in the previous chapter are pro-

posed in this chapter. The tracking problem can be divided loosely into three

sub-tasks, listed as follows:

1. Track Initiation

2. Data Association

3. Estimation

The particle filter, introduced in Section 2.4.1, can be applied to the track initi-

ation problem, which requires the computation of an initial estimate given no prior

information. The specific implementation of the particle filter to achieve an initial

estimate for the bird tracking problem is described in Section 3.1. Once an initial

estimate and the covariance associated with it are obtained, the estimation process

can be carried out by the deterministic and computationally cheaper Unscented

Kalman Filter, which was introduced in Section 2.4.2. The ukf operates on the

statistics of a set of deterministic state points that maintain a fairly Gaussian con-

figuration even through non-linear transformations. The computational benefits

of the ukf make it suitable for real time estimation. The need for a geometrically

flexible and robust tracking system is met by the Distributed Hierarchical imple-

mentation of the the tracking system. As discussed in Section 2.4.3, Distributed

Hierarchical Estimation involves the fusion of several local estimates to compute

one higher priority global estimate. The ukf is employed for the computation of
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local estimates, the implementation of which is described in Section 3.3.1. The

fusion of local estimates is not a simple averaging procedure, and should address

the shared process noise among local estimators. The fusion procedure and the

relation between local and global estimates is described in Section 3.3.2. The re-

sults for the implementation of the tracking system as described in this chapter

are listed in Chapter 4.

3.1 Track Initiation

Track initiation can be a thorny problem, especially when range data is uncer-

tain (which is the case for short-baseline multiple camera systems). A closely

related problem, feature initialization in Simultaneous Localization and Mapping

(slam), has the same difficulties. Feature initialization in bearings-only slam is

especially difficult, and has been the subject of a large amount of research. “De-

layed approaches” collect several bearings over time and fuse them to compute an

initial estimate of landmark position[25, 26, 27]. “Undelayed approaches” repre-

sent the conical probability distribution associated with a bearing measurement

as a series of Gaussians which are then pruned as more measurements become

available[28, 29, 30]. These are essentially multiple hypothesis filters. The main

issue which these methods attempt to address is ensuring that the initial landmark

position is “Gaussian” enough be incorporated into a Kalman filter (e.g. ekf or

ukf) without causing stability problems.

Here we have used an undelayed approach based on the Particle Filter [18].

Since an undelayed approach is adopted, only one set of measurements is used and

there is no time update. Initializing the state of the bird based on the triangulation

of available bearings is a nonlinear problem and may not result in a sufficiently

Gaussian estimate. A set of N particles, representing possible target locations, can

be processed by the Particle Filter to compute a Gaussian estimate of the initial

position of the bird. The initial set of particles are simulated along the entire

range, Rmin to Rmax, the first available azimuth, ξ , and elevation, θ to a bird

entering the field of view. The 3d position, xp ,of any one particle in this normal

distribution is given as:
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xp =


rpcos(θp)cos(ξp)

rpcos(θp)sin(ξp)

rpsin(θp)

 (3.1)

where

rp = U(Rmin, Rmax) (3.2)

θp = N(θ, v2
m) (3.3)

and

ξp = N(ξ, v2
m) (3.4)

vm being the measurement noise of the camera from which the bearing is ob-

tained.

The set of particles thus generated have a Gaussian distribution across the

conic section of the solid angle formed by the deviations about the true bearing to

the bird, on account of the measurement noise vm. This is shown schematically in

Figure 3.1.

For each of the N particles, the predicted measurement from the remaining,

M − 1 , cameras is computed. The bearings used to form the initial probability

distribution are not included to avoid the bias from counting it twice. zp is given

as follows:

zp =
[

γ1 γ2 . . . γM−1

]T
(3.5)

A weighting of the distribution can now be carried out based on how closely the

measurement vector, zp, to each particle matches the actual measurement vector,

z, for the M−1 cameras. The weight of each particle, wp, is inversely proportional

to its exponential distance from the mean in the multivariate normal distribution

of mean z and covariance Σm. wp is computed using the following equation:

wp = exp[−0.5∆T
z Σ−1

m ∆z] (3.6)
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Figure 3.1. Track initiation. Bearings to a bird are treated as rays originating from
camera frame origin to the bird. The uncertainty in the bearing measurement is treated
as a zero-mean Gaussian, creating a probability cone. Each particle in the distribution
has a weight associated with it, which is inversely proportional to the deviation of the
bearing to that particle from the measured bearing to the bird. The bird’s initial state
is computed as the weighted mean of particles.

where

∆z = z− zp (3.7)

and

Σm = v2
mI (3.8)

I being an M − 1×M − 1 identity matrix.

Having computed weights, wp, to each particle, an estimate for the initial posi-

tion, x̂p0 and the covariance, Pp0 associated with this estimate, may be computed.

For this application, the weighted mean and weighted covariance of the particle

distribution, as shown in Equations 3.9 and 3.10, are used for x̂p0 and Pp0 respec-



31

tively.

x̂p0 =
∑

wnxp (3.9)

Pp0 = ∆xpdiag(wn)∆xTp (3.10)

where

∆xp = xp − x̂p01 (3.11)

and wn is the normalized form of the weights vector wp.

In order to form a complete estimate of the initial state, x̂0, and its covariance,

P0, ned components of the bird’s velocity also need to be estimated. Having

adopted an undelayed approach for initialization, it is not possible to observe the

dynamics of the bird. However, since the range of the velocity of the bird is a

lot more limited than that of position, flight speeds are picked for the velocity

components of the state vector based on documentation provided by Kerlinger[8],

and the assumption that the bird is flying parallel to the ridge. The flight speeds

of some species of raptors is presented in Table 3.1, based on the data published.

Note that best glide is defined by the maximum lift to drag ratio achieved by the

bird [8]. A reasonable covariance is also selected based on the expected variation

in velocity components along the ned coordinate system. The estimated velocity

vector and covariance matrix are concatenated with x̂p0 and Pp0 to obtain x̂0 and

P0.

Note that the track initialization as described above is only carried out when

a bird is first viewed by any one of the cameras in the distributed system. If a

bird is initialized on being viewed by one set of stations, consequent stations can

initialize their track, once the same bird comes into view, with the fused global

estimate transmitted to them.

3.2 Data Association

Data association can be a difficult issue in many tracking problems, especially when

attempting to fuse bearing only data. Although the frequency of bird passage is
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Table 3.1. Summary of Aerodynamic Performance of Raptors
Species Air Speed at Sink Rate at Cruising Speed

Best Glide Best Glide
(ms−1) (ms−1) (ms−1)

Sharp-shinned Hawk 10.5 1.2 22.5
Broad-winged Hawk 11.6 1.1 24.2

Lanner Falcon 10-14 1.0 -
Red-Tailed Hawk 14.5 1.6 23.9

Osprey 11 0.9 24.9
Black Vulture 13.9 1.2 16.8

White-backed Vulture 13.5 1.1 16-20+
Andean Condor NA NA 15.0

low enough that in general we can expect only one bird to be in the field of view,

we will address the problem of data association. In addition to allowing operation

when multiple birds are in the field of view, it will also increased robustness to

clutter.

The data association is preformed at both camera-to-camera and frame-to-

frame levels. Data is associated between stereo pairs at each station by checking

epipolar constraints between images seen in both cameras. If the epipolar con-

straint, given by Equation 3.12, is satisfied, the camera coordinates xcR and xcL

correspond to the same bird.

[TLdc + TLTRxcR − dc]
′ .dc × xcL = 0 (3.12)

TL and TR are the rotation matrices for the left and right cameras respec-

tively and dc is the 3d displacement between the stereo pair. For data association

from frame to frame, bearings obtained at each station after camera-to-camera

association, are compared to the bearings obtained in the previous frame and re-

ordered at every time step so that the same order is maintained throughout the

sequence. Association of corresponding camera coordinates between the actual

and predicted measurements is based on the Mahalanobis distance between any

two sets of bearings, zi and zj, and is as follows.

dij = (zi − zj)
T P−1

jj (zi − zj) (3.13)
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The matrix Pjj is an arbitrary covariance associated with the measurement

noise.

The number of birds seen at any time and the order in which they are seen

varies from station to station. This leads to a variation in the order in which

local estimates are computed at each station. Further data association needs to

be carried out before fusing the local state estimates that are transmitted to the

fusion center to compute the global estimate. The local estimates obtained at each

station are compared to existing fused global estimates. Estimates at the global

level that do not match those at the local level are birds that haven’t been seen at

that station yet and are removed from the association procedure before associating

birds that are common to both levels. Fusing estimates belonging to different birds

can lead to significant divergence of the global estimate from the local estimates

and the true state, leading to erroneous results. The data association at this stage

should therefore be made with a high degree of certainty. In order to ensure correct

data association, the Joint Compatibility Test is used [31]. The Joint Compati-

bility Test computes the Mahalanobis distances for all possible associations. The

configuration that leads to the minimum total distance between states is picked as

the best data association. Since this is a computationally expensive procedure, es-

pecially with a higher number of birds, local and global states that match strongly

are associated before carrying out the Joint Compatibility Test, and only weak

associations between states are resolved using this procedure.

It is also possible that significant information to assist in data association will

be available from the image itself (e.g. from an intensity histogram of the pixels

identified as belonging to a bird). However, that has not been considered here.

3.3 Estimation

A set of stations, each consisting of a camera pair, a processor and a two-way

communication link form the components of the distributed system to be employed

for estimating the position and velocity of the birds in view. As described in Section

2.3.1, the parameters to be estimated are given by the following state vector:

xob,i =
[
xob,i yob,i zob,i ẋob,i ẏob,i żob,i

]T
(3.14)
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It is necessary to spread the cameras out along the ridge at multiple viewing

angles in order to lower Dilution of Precision. A Sigma Point Kalman Filter may

be used to easily fuse the available measurements at a central processor to com-

pute one estimate. However, this approach makes the operation of one processor

critical to the performance of the entire system. Also, a failure in communication

system leads to the complete loss of track. Alternatively, a hierarchical approach

is proposed for this project, wherein bearings from pairs of cameras are fused using

an Unscented Kalman Filter (ukf)[32, 16] to compute independent estimates at

numerous stations.

3.3.1 Computing Local Estimates

Each set of stereo cameras is equipped with a processor, transmitter and receiver.

The bearing measurements are obtained using Equations 2.12 and 2.10. Track to

a bird is initialized using the Particle Filter when it first enters the fov of any

of the cameras, as presented in Section 3.1. Once an initial estimate, x̂0, and its

covariance, P0, are obtained, the tracking is carried out by the Unscented Kalman

Filter (ukf).Since the state estimates for different birds are uncorrelated a separate

ukf is initiated for each bird as it enters the field of view. The prediction step

is driven by the bird kinematics described in Section 2.3.1. The flight dynamics

are continuous but the measurements are available at a discrete rate of 30 Hz, for

a camera that grabs 30 frames per second. The equations are therefore modified

from continuous time to discrete time. Ad and Bd are the discretized versions of

the continuous system state space model, A and B, which are defined in the flight

dynamics model given by Equations 2.1 through 2.4. Ad and Bd can be computed

as follows:

Ad = eA∆t (3.15)

Bd = Ad

[
I− e−A∆t

]
A−1B (3.16)

Since the motion of the bird is linear, the prediction step can be simplified to

those given by the Kalman Filter. The a priori state, xk|k−1, and the associated

covariance, Pk|k−1, of bird b at the current, kth time step, given its position at the



35

previous, k-1th time step, are predicted by the following equations:

x̂k|k−1 = Adx̂k−1|k−1 + Bduk−1 (3.17)

and

Pk|k−1 = AdPk−1|k−1A
T
d + Q (3.18)

where u is the input to the system, which in this case is zero since there is no

external input and Q represents the additional process noise in the system which

accounts for uncertainty due to unmodeled system dynamics like bird acceleration.

The measurement model is non-linear due to the trigonometric functions used to

compute the bearings to the bird. The Unscented Kalman Filter (ukf) introduced

in Section 2.4.2 overcomes non-linearities by propagating a set of particles with

a pre-determined distribution through the system and estimating the state of the

system and the associated covariance by computing the statistics of these particles.

The correction step of the ukf is implemented for the measurement update step in

the bird tracking problem so that a reliable estimate may be computed despite the

non-linear equations in the measurement model. The correction for the predicted

state, x̂k|k−1, and covariance, Pk|k−1 to compute the a posteriori estimates , x̂k|k and

Pk|k, is computed using the following equations of the ukf measurement update

[16]:

Xk|k−1 =
[

x̂k|k−1 x̂k|k−1 + η
√

Pk|k−1 x̂k|k−1 − η
√

Pk|k−1

]
(3.19)

where Xk|k−1 is set of 2n+1 states that encompass the predicted state x̂k|k−1

symmetrically along each of the dimensions of its state at a distances determined by

the square root of the predicted covariance Pk|k−1 and a scale factor η. The square

root is computed using Cholesky decomposition which factors the matrix to a

positive semi-definite matrix and its transpose. Once the sigma-points, Xk|k−1, are

computed, the bearings to each of these 2n+1 points is computed by propagating

them through the measurement model defined in Section 2.3.2. Zk|k−1 is the matrix

containing the bearings computed for each of the sigma points that lie within the
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field of in view of the cameras. The weighting vector, wm, and weighting matrix,

Wc, are weighting parameters used to compute the mean and the covariance of

the sigma points respectively and they are tabulated in Appendix A. The mean

measurement of the sigma points is:

ẑk|k−1 = Zk|k−1wm (3.20)

The measurement variance is computed by the following equation:

Pzz =
[

Zk|k−1 − ẑk|k−11
]T

Wc

[
Zk|k−1 − ẑk|k−11

]
+ R (3.21)

where R is the variance due to measurement noise in the cameras.

The covariance between the measurements and the prediction of the state is:

Pxz =
[

Xk|k−1 − x̂k|k−11
]T

Wc

[
Zk|k−1 − ẑk|k−11

]
(3.22)

The Kalman gain is therefore:

K = PxzP
−1
zz (3.23)

The correction step is carried out to compute the a posteriori state estimate,

x̂k|k, and covariance, Pk|k, given the measurements from the cameras at the current

time step, zk, is as follows:

x̂k|k = x̂k|k−1 + K
(

zk − ẑk|k−1

)
(3.24)

and

Pk|k = Pk|k−1 −KPzzK
T (3.25)

The tracking procedure described above is carried out at every node to get

local estimates Lx̂k|k and covariance LPk|k. In order to compute the best possible

estimate of the bird state, all available local estimates are combined to compute a

global estimate F x̂k|k and covariance FPk|k.
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3.3.2 Computing Global Estimates

The local estimates computed as documented in the previous section, are trans-

mitted to a central processor via the communication link. The central processor

fuses all available estimates and transmits a global estimate back to all stations,

which is used by each station to correct its prediction for the consequent time

step. Although this approach still relies on the central processor for fusing the

estimates, its operation is not critical. The load on the processor has been reduced

significantly, and in the event of its failure, track is still maintained at each sta-

tion. It is important to realize that the estimates from each station are not entirely

independent and that they share the same process noise. Assuming independence

while fusing local estimates will lead to an overconfidence in the estimated state

caused by adding the same information repeatedly. A number of algorithms have

been developed to fuse estimates from various stations, specific to the flow of in-

formation in the distributed system [20]. A global state fusion algorithm based

on the information form of the Kalman Filter is employed, which accounts for the

correlation of local estimates [33]. An unbiased estimate is achieved by subtracting

the predicted estimate and covariance of each station from their corrected values,

to account for the correlation between node estimates, before adding them to the

global predictions of covariance and estimates. The global, a posteriori estimate,
F x̂k|k, and the associated covariance FPk|k can be obtained from the following

equations[20]:

FP−1
k|k = FP−1

k|k−1 +
n∑
i=1

(LP−1
i,k|k −

LP−1
i,k|k−1) (3.26)

FP−1
k|k

F x̂k|k = FP−1
k|k−1

F x̂k|k−1 +
n∑
i=1

(LP−1
i,k|k

Lx̂i,k|k − LP−1
i,k|k−1

Lx̂i,k|k−1) (3.27)

The fused covariance and estimates thus obtained are transmitted back to all

the stations an a time update is carried out by each station on the fused estimate

from the previous time step to obtain a priori estimates:

LPi,k|k−1 = FPk|k−1 (3.28)
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Figure 3.2. Data Flow

Lx̂i,k|k−1 = F x̂k|k−1 (3.29)

Transmitting the fused estimates back to all stations ensures that there is no

drift between stations over time and all stations benefit from the information from

all other stations at each time step, which leads to an improved estimate in the

next time step.

3.4 Data Flow

The data flow through the estimation process for every bird in the flock, from the

time it enters the field of view to the time it leaves it, is shown schematically in

Figure 3.2

At flight starting time t0:

• The initial position of the bird in view is estimated using a Particle Filter.

A velocity is chosen based on documented bird speeds and augmented to the
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estimated position to obtain the initial state x̂0 and P0.

At an intermediate time tk:

• Global estimates
F x̂k−1|k−1 and FPk−1|k−1 or x̂0 and P0 from the previous time step are avail-

able.

At every node i:

– Prediction

The global estimates F x̂k−1|k−1 and FPk−1|k−1 are put through the time

update step given by Equations 3.17 and 3.18 to obtain local a priori

estimates Lx̂k|k−1 and LPk|k−1.

– Measurement

Procure measurements from each camera that views the bird using the

measurement model described in Section 2.3.2. Add measurement noise

to simulate real sensor measurements.

– Data Association of Measurement

Data association is computed from camera to camera and frame to frame

as described in Section 3.2.

– Correction

The measurements obtained are used to correct the Prediction by com-

paring the actual measurement to those estimated for the sigma points

defined by Equation 3.19. The ukf measurement update defined in

Section 3.3.1 is carried out to obtain a posteriori local estimates at

each station, of the bird state, Lx̂k|k, and covariance LPk|k. These local

parameters are all transmitted to the central processor

• Data Association of Local Estimates

Data association of is carried out to reorder local estimates to match existing

global estimates, as described in Section 3.2, before fusing to update the

global estimates.
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• Fusing Estimates

The estimates computed at all the local nodes are fused at the central proces-

sor using Equation 3.26 and Equation 3.27, to obtain the global parameters.
F x̂k|k and FPk|k.

F x̂k|k is the best estimate of the birds position and velocity

at tk and FPk|k is the covariance of the estimate.



Chapter 4
Bird Tracking Simulation Results

The following chapter presents the results obtained for a simulation de-

signed to test the performance limits of the bird tracking system proposed

in Chapter 3. The Monte-Carlo simulation consists of numerous flight paths at

distances varying from 10 to 100 times the distance between stereo pairs. The

simulation is programmed to represent the environment under observation and the

sensors used to observe it. The primary purpose of the simulation is to test the

performance of the tracking system proposed in the previous chapter to determine

if it would satisfy the requirements of a viable bird tracking system at the proposed

site. The simulation results presented address the following performance factors:

• The effectiveness of the track initiation process in formulating an initial esti-

mate that is Gaussian enough to prevent estimator divergence and facilitate

tracking within the desired limits of error.

• The effect of additional information at every time step on the Dilution of

Precision, as the bird flies it course across the Field of View of the camera

system.

• The comparison of explicitly computed to assumed Data association

• The level of accuracy of the tracking system and the consistency between

true and estimated error.

• Comparison of the performance of a Distributed tracking system to that of

a Centralized one.
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• Analysis of the systems performance for various hardware and installation

specifications.

The description of the simulated sensor system and the mathematical model of

the bird dynamics and the simulation of their flight paths is described in Section

4.1. Monte-Carlo results for the factors listed above are presented in Section 4.2

along with the inference that may be formed from the trends observed.

4.1 Simulation Setup

The tracking of migratory raptors involves the estimation of the actual positions

and velocity of birds viewed by a system of cameras in a user defined configuration.

The true parameters of the birds being tracked are simulated and the estimated

parameters are compared to these values in order to evaluate the performance of the

tracking system. The distribution of the sensors and their performance parameters

are also simulated to reflect actual geometric constraints of the tracking site and

documented features of most off the shelf cameras.

4.1.1 Sensor System

The camera system is set up so as to best cover the area under observation with a

low Dilution of Precision, dop, while obeying the constraints set by the physical

requirements of wiring the sensors to the processor and the terrain of the obser-

vation site. The distance between stereo pairs is dictated by the length of wiring

available to connect the local set of stereo cameras to the processor at that station.

The distribution of stereo systems is determined by the geographic properties of

the ridge where the migration is being observed.

The results presented in this chapter are all products of a distributed sensor

system consisting of 2 independent stations consisting of a two cameras each. At

each local station, the two cameras are placed, one on the East axis of the global

coordinate system, the other, 10 meters along the East and 10 meters along the

North, making the effective distance between cameras about 14 meters. Local

pairs point inwards at each other with a pan of 45 degrees. This causes the fields

of view of both cameras to overlap considerably and lowers dop. The groups of
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stereo cameras can be separated by longer distances since each group has its own

processor, and communication between stations can be carried out via a wireless

system. Two groups of stereo pairs, 800 meters apart, are utilized in this project.

Additional stations may easily be added and all of the above parameters can be

changed by the user.

4.1.2 Flight Path and Bird Dynamics

The simulation is initiated with the bird at any point along the edge of the Field

of View (fov) of the first camera in the array of stations. The distance of the

bird from the camera array is set up to be between 10 to 100 times the baseline of

the stereo pairs, d, in the system. The time of flight for each bird, given the true

velocity components, is computed as the amount of time it takes to pass through

the Fields of View of all cameras and reach the opposite edge. The velocity of the

bird is randomly chosen within a range of speed provided by Kerlinger [8]. The

velocity in the East-West direction is high compared to that in the North-South or

Up-Down direction since the birds in the simulation fly across the Fields of View

of the cameras in the East-West direction.The number of birds in the simulation

is specified by the user and the flight path of each bird is determined as described

above. Simulating flight paths in this manner facilitates a thorough analysis of the

problem at hand and tests the performance limits of the tracking system.
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Table 4.1. Simulation Parameters
Number of Runs 100

Number of Stations 2
Distance between Stations 800 meters

Cameras per station 2
Distance between Cameras 14.14 meters

Distance of Birds from Stations 150 to 1500 meters

4.2 Monte-Carlo Results

The routine of a set of birds flying across the Fields of View of the camera array,

is carried out a large number of times, for different sets of bird parameters. The

true and estimated positions and the covariance are recorded at every time interval

for all runs. The Monte-Carlo results for 100 runs are presented in the following

section for the three aspects of the tracking routine presented in Chapter 3. The

simulation parameters used for computing all the results presented in the following

section are listed in Table 4.1 and the setup is depicted in Figure 4.1.
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Figure 4.1. Simulated setup for the bird tracking system.
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4.2.1 Track Initiation
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Figure 4.2. Monte Carlo simulation results of initialization parameters.

The track is initiated using a particle filter as described in Section 3.1 is car-

ried out when the bird is first viewed by any of the cameras in the distributed

systems. Cameras that consequently view the bird initiate the track using the

current global estimate of the bird. The initialization of the bird involves making

use of the first set of information to formulate a viable initial estimate of the bird.

It is a heuristic process that depends on the strategic formulation of an initial set

of particles, using a weighting procedure to compute an initial estimate and its

covariance. Since the uncertainty along the bearing is higher than that across,

due to dop , the uncertainty ellipse obtained from the initialization step is skinny

and has a high condition number. Intuitively, a high condition number can cause

an ambiguity that can cause the estimator to diverge exponentially. Figure 4.2

shows a scatter plot of the true position error at the time of initialization vs. the

condition number of the covariance associated with the initial estimate, obtained

from the initialization step in the 100 run Monte-Carlo Simulation. Note that
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condition number, on the order of 105, is very high, which can be attributed to

the distance of the bird from the station at the time of initialization and the lack

of more measurements. The error in the estimate, however, does not exceed 100

meters for the even the highest of condition numbers at the time of initialization.

Although the initialization is highly uncertain, the estimator recovers from it in a

few time steps and it does not affect the performance of the tracker much.
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4.2.2 Tracking Performance

The path of a bird flying through the field of view for five different runs is shown in

Figure 4.3. It can be seen that the estimated position of the bird closely matches

the true position and the covariance ellipse reduces with time. Initially, the el-

lipse is strongly elongated along the bearing from the camera to the bird: this is

caused by the relatively small baseline between the cameras which causes dilution

of precision along the bearing.Although the covariance of the estimate at the time

of initialization has a high condition number, especially at further distances from

the camera, it remains within 3 standard deviations from the true bird position.

It can also be noted that despite poor initialization, the ukf is able to converge to

an accurate estimate within a few time steps, as more measurements are collected.

A closer view of the bird at a later time is shown in Figure 4.3. The uncertainty

ellipse seen here is well conditioned and about a meter wide.

To assess estimate consistency we compare the mean of the estimated er-

ror variance,
√

trace(P), with the mean of the 2-norm of the estimate error,√
(x− x̂)T (x− x̂). Results in Figure 4.4 show the performance of the proposed

distributed system that fuses independent estimates from all stations to compute

a global estimate and covariance of the bird’s state at each time step.
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Figure 4.3. Tracking performance, projected onto the plane z=0. Green dashed lines
depict field of view of the stereo cameras at two stations, facing each other at 45 degrees,
the solid blue line and + show true bird positions, red dashed line and ellipsoids show
3-sigma position covariance and are centered on the estimated bird position. The lower
plot shows the true and estimated positions of the bird and the associated uncertainty,
at a later time in the flight path of the bird, after having obtained bearing measurements
from both stations.
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In order to cross check the performance of the distributed system, the same

camera setup is used to simulate a centralized system with one processor and the

result obtained is compared with those obtained for a distributed system. Since

the information available to both systems is the same, the results should also be

identical. Results in Figure 4.4 show the performance of a centralized system with

one estimate and covariance computed from measurements from all stations.

The vertical axis shows true and estimated error on a logarithmic scale. The

horizontal axis shows time normalized with respect to the total time a bird was

within the field of view of both cameras. We can see that for most of the first

half of time that the bird is in view, the estimator over-predicts the error in the

position, indicating that the error predicted is more than the true error between the

actual and predicted state of the bird. The estimate error dips sharply when the

bird comes into view at both stations and the number of available measurements

or estimates double. Once more information is obtained, the estimated and true

error match each other consistently. Note that the results obtained by using a

distributed system are identical to those obtained by the centralized system. Also,

recall that the bird’s velocity is assumed to vary by a random walk, and this

uncertainty propagates into the position estimate. The average uncertainty in

bird position once seen at two stations is 1 meter: note that the uncertainty in an

individual bird’s position will depend strongly on its distance from the cameras

and the number of cameras where the bird is in view.
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(b) Centralized System

Figure 4.4. Monte Carlo simulation results for a distributed and centralized systems.
The dashed red lines show the maximum and minimum values of the 2-norm of the true
estimate error, the dashed blue line shows the mean value of the 2-norm of the true
estimate error and the solid blue line is the mean value of the estimated error variance.
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4.2.3 Data Association

The tracking procedures discussed assume that the measurements involved have

a fixed order and the association between the measurements and the bird that it

belongs to is known. The data obtained from the cameras, however, are bearing

measurements to all the birds seen in each camera at a particular time period

and the order is not know. Data association is computed to determine the relation

between the measurements obtained from the camera and the state estimates being

computed by the tracking system. Data association is carried out between stereo

camera pairs and from frame to frame as described in Section 3.2. Moreover, data

association is carried out before fusing local estimates as described in Section 3.2,

to ensure that only local estimates that correspond to the same bird are fused to

obtain a global estimate.

To assess estimate consistency we compare the mean of the estimated er-

ror variance,
√

trace(P), with the mean of the 2-norm of the estimate error,√
(x− x̂)T (x− x̂). Results in Figure 4.5 compare the performance of a system

with explicitly computed data association to that of a system where the order of

the measurements remains unchanged, and data association is inherent. It can be

seen that the result in both cases match. Hence the data association procedures

fulfil the tasks of maintaining the same order of measurements between cameras

and over a sequence of frames, as well as rearranging local estimates to match the

order of the global estimates they correspond to. Intermediate results for cases of

partial data association and data association of more than three birds are presented

in Appendix A.
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(b) System with explicitly computed Data Association

Figure 4.5. Monte Carlo simulation results for systems with known and explicitly
computed data association. The dashed red lines show the maximum and minimum
values of the 2-norm of the true estimate error, the dashed blue line shows the mean
value of the 2-norm of the true estimate error and the solid blue line is the mean value
of the estimated error variance.
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4.3 Hardware Selection Criteria

Selecting the right sensors is imperative in designing a system that not only pro-

vides data that is accurate enough to make a good contribution to migration

research, but is not too sophisticated to be implemented using readily available

hardware at any given site. Some of the implementation details that need to be

considered are the distance between cameras at each local distance, or baseline,

distance between stations in the distributed system, camera specifications, etc.

Although the system presented in this thesis has been designed keeping realistic

bearing noise and acceptable baselines in mind, a mathematical analysis of perfor-

mance parameters for varying sensor configurations would provide a more in depth

understanding of the effects of sensor specifications and locations on the accuracy

of the estimate.

The number of pixels that represent a bird determine how much discernable

information can be obtained from the scene. The cameras used should be able

to detect birds that are several hundreds of meters away from the camera. The

number of pixels that the bird takes up on an image depends on the distance of

the bird from the camera, the focal length of the lens and the size of a pixel as

shown in Equations 4.1 through 4.3.

Npixels = Nx × Ny (4.1)

where

Nx =
2× f × wbird

d× wpixel

(4.2)

and

Ny =
2× f × hbird

d× hpixel

(4.3)

wbird and hbird are the wingspan and cross-sectional height of the bird and d

is the distance of the bird from the camera. f is the focal length of the lens, and

wpixel and hpixel are the width and height of a pixel respectively. The number of

pixels occupied by the image of a bird with a wingspan of 2 meters and cross

sectional height of 0.2 meters in relation to its distance from the camera is shown
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Table 4.2. Camera Features
Camera Resolution Focal Length Pixel size FOV Noise

648 × 488 3.6mm 5.6 × 7.4 µm 67◦× 53◦ 0.2◦

1032 × 776 2.9mm 4.65 × 4.65 µm 79◦× 63◦ 0.1◦

1296 × 964 2.1mm 4.65 × 3.75 µm 98◦× 81◦ 0.1◦

in Figure 4.6, for standard camera parameters.

The selection of the camera and corresponding lens defines the scope of the

system. As seen in Figure 4.6, the resolution of the camera is an important factor

in deciding how many pixels of data can be obtained from the image. The focal

length of the lens for any given resolution plays a decisive role in the performance

of the tracking system. While using a standard lens, with a relatively higher focal

length, allows us to detect a bird at longer distances from the camera, it also

reduces the fov. Having a wide angle lens, with a short focal length, allows us to

keep the bird in the image for a longer period of time, by consequently does not

detect objects at further distances from the camera. Some trade-offs, therefore,

have to be made to obtain the desired performance. Some camera parameters based

on the specifications of commonly available cameras and wide angle lenses and are

given in Table 4.2. The Field of View along the width or height of the scene is

computed using Equation 4.4, where a is the width or height of the sensor on which

the image is projected. The noise in bearing measurements can also be computed

based on the fov and pixel resolution. The error in bearing measurements may be

approximated by Equation 4.5, where Np is the number of pixels across the sensor

and σpixel is the error due to pixel noise in the sensor.

FOV = 2× atan(
a

2f
) (4.4)

σbearing ≈
FOV

Np

× σpixel (4.5)

The difference in bearing measurements from different cameras in a stereo sys-

tem is related to the difference in the position of the cameras, or baseline. Cameras

that are far apart provide a more varied set of measurements as compared to those

close together. This disparity in measurements provides more unique sets of in-

formation, leading to a better estimate of the position. The terrain at the site
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Figure 4.6. Number of pixels occupied by a bird on the image with respect to the
distance in meters from the camera, for various camera specifications. The minimum
number pixels required to detect a bird is assumed to be 1 and is marked by the dashed
red line.

and wiring constraints, however, restrict the baseline of a stereo system. In order

to determine the effect of the baseline on the error in the position estimate, an

analysis of the measurement model is carried out. In the case of a system with m

cameras that each provide an azimuth to the bird in view, the expected error in

the 2d position estimate may be computed by the analysis presented.

The 2d position of a bird at location (xb, yb) in world coordinates can be ex-

pressed in the coordinates of a camera m as,[
xcb,m

ycb,m

]
= Tm

[
xb − xo
yb − yo

]
+

[
∆xcm

∆ycm

]
(4.6)

where Tm is the rotation of the camera axis with respect to the world, (x0, y0)

is the origin of the stereo camera system and (∆xcm,∆y
c
m) is the displacement of

camera m from the origin of the stereo system, in camera coordinates.

The azimuth to a bird from camera m is,

θm = arctan

(
ycb,m
xcb,m

)
(4.7)
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The measurement model described in this section is of the form,

y = Hx + v (4.8)

y being the measurements, x the state measured, H the measurement model

and v being measurement noise of variance R . For a linear system, the minimum

variance estimate is computed by a weighted least squares procedure. The estimate

is a Gaussian with mean x̂ and covariance P, where,

x̂ = (HTR−1H)−1HTR−1y (4.9)

and

P = (HTR−1H)−1 (4.10)

However, the measurement model of this system is a non-linear one. Computing

the Jacobian of the measurement model, a measurement model, G, linearized about

a bird position (xb, yb), is obtained for an m camera system as follows,

G =


dθ1
dx

dθ1
dy

dθ2
dx

dθ2
dy

...
dθm

dx
dθm

dy

 (4.11)

where θm is the computed azimuth to the bird from camera m.

On computing the differentials, Equation 4.11 can be expressed as,

G =


−sinθ1
r1

cosθ1
r1

−sinθ2
r2

cosθ2
r2

...
−sinθm

rm
cosθm

rm

 (4.12)

where,

rm =
√

(xcb,m − xcm)2 + (ycb,m − ycm)2 (4.13)

(xcm, y
c
m) being the 2D position of camera m in camera coordinates.
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The covariance of the position estimate can therefore be computed based on

Equation 4.10, and is given by,

Σposition =
(
GTΣ−1

bearingG
)−1

(4.14)

where Σbearing is the covariance of noise in bearing measurements. Σbearing,

also known as the sensor noise, is dependant upon the characteristic noise of the

cameras used and varies with camera parameters like Field of View and pixel

resolution as per Equation 4.5.

The error in the position estimate is predicted as
√

trace(Σposition).

For a two camera simple stereo system, where the baseline is the displacement

between the two cameras along the y axis, the error in the position estimate can

be computed for varying bird positions (xb, yb). Figure 4.7 shows the effect of

increasing distance from the cameras on the estimated error in 2d position based

on the measurement model, for baselines between 1 and 16 meters. Note that this

estimated error in 2d position is the lower bound of the expected error for one set

of measurements. The bearing noise assumed is 0.5 degrees. It is observed that the

estimated error in position increases with distance, and having a larger baseline

lowers the rate at which it increases.

Figure 4.8 shows the effect of increasing distance from the cameras on the

estimated error in 2d position based on the measurement model, for sensor noise

varying from 0.25 degrees to 1.5 degrees error in the bearing measurement. The

baseline assumed is 10 meters. It is observed that the estimated error in position

increases with distance, and lowering measurement noise curbs the rate at which

it increases. A combination of various lens and camera parameters can give the

desired degree of sensor noise.
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Figure 4.7. Estimated error in the position estimate is plotted against increasing dis-
tance in meters from the origin of the stereo camera system. The plot is repeated for
varying baselines of 1 through 16 meters.
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4.4 Summary

The simulation of the bird tracking system as described in this chapter yielded the

following results for the performance parameters listed below:

• Track Initiation: The error in the position estimate of the bird on ini-

tialization remains lower than 100 meters even for condition numbers in the

order of 105 at track initiation. The estimates obtained from the initiation

process never caused the estimator to diverge and led to state estimates that

were accurate enough to tabulate the migratory route.

• Dilution of Precision: The error ellipse is elongated over the first few time

steps due to the higher Dilution of Precision along the optical axis. The error

ellipse shrinks over the consequent time steps and becomes more rounded,

due to the information added with time.

• Tracking Performance of a Distributed System: The error in the esti-

mated position is bounded within the required accuracy. The error decreases

with time and drops sharply with the addition of more sensors. The true

error coincides with the error predicted by the covariance of the computed

estimate.

• Tracking Performance of a Centralized System: The tracking perfor-

mance of the Centralized system is identical to the Distributed system and

confirms that the estimate obtained from one processor matches the fused

estimate computed from multiple processors.

• Tracking Performance under explicit Data Association: The perfor-

mance of the the tracker without the knowledge of the number and sequence

of birds at each station is tested. The correspondence between measure-

ments from different sensors over time and the relation of local estimates to

the fused global estimates is computed explicitly. The tracking performance

with explicitly computed data association matches the tracking performance

with known data association.

• Hardware based Performance Evaluation: An analysis of performance

parameters, including the number of pixels and estimated error for one set
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of measurements is computed for several configurations of sensor and instal-

lation specifications. It is found that the performance goals can be met with

practically feasible hardware configurations.

The results presented in this chapter imply that the proposed system will per-

form favorably as an autonomous bird tracking technique. The problem of tracking

small objects from a large distance, given a non-linear measurement model and a

distributed network of sensors has been dealt with to obtain state estimates of mi-

grating raptors with the desired level of accuracy. The implication of these results

and future work for improved functionality of this system are discussed in Chapter

5.



Chapter 5
Conclusion

Tracking migrating raptors along routes adjacent to possible wind farm

locations has been the motivation for the distributed tracking system proposed

in this thesis. The danger that windmills may pose to birds flying along these routes

is a threat that has yet to be quantified. The specific knowledge of these routes

is required to estimate the effect of wind farms on migrating species. Present bird

monitoring techniques rely heavily human input and are therefore time consuming,

expensive and non uniform. Having an autonomous system that continuously

monitors a given site for migratory behavior would be both effective and reliable.

An inexpensive set of sensors, like off-the-shelf cameras, will ensure that minimum

capital is required to provide essential information at a low cost. The system

described in this thesis has been designed with these factors in mind so that sources

of renewable energy may be developed without endangering species of birds that

share the same sky.

Tracking from long distances using low-resolution and noisy measurement is a

difficult problem prone to significant uncertainty and Dilution of Precision(dop).

The measurement model, which involves computing bearings using trigonometry,

makes the estimation a non-linear one. The problem of non-linear estimation can

be tackled by using one or more of the textbook non-linear Kalman filters. dop

may be lowered by using a spatially spread out and symmetric geometry of sensors

so that ambiguities in various directions may cancel each other out. The limita-

tions provided by the terrain of the geographic site and the physical constraints

of the hardware have motivated the construction of a Distributed System. The
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Distributed System consists of independent tracking stations consisting of a stereo

pair and a processor, each computing independent estimates. Local estimates are

then fused to provide the resulting higher priority state estimate which is the cur-

rent best estimate. The fusion algorithm must account for the shared process noise

among all local stations in order to avoid overconfidence in the state estimate.

Track is initiated when a bird is seen at any of the local stations for the first

time. Since no prior information is available to the tracking system regarding the

state of the bird, the Particle Filter is used to compute an initial estimate and

covariance of the bird, that are Gaussian enough to be used as initial estimates in

the Sigma Point Kalman Filter (sp-kf). A Gaussian set of particles, or possible

states, is generated in a solid angle about the fist bearing measurement obtained.

The measurements from the other cameras that view the bird are then used to

provide a weight for each particle based on how closely the proposed measurement

for that particle matches the true measurement to the bird in view. The weighted

mean and covariance of these particles provide the initial estimate and associated

covariance for the state of the newly seen bird. This initial estimate is Gaussian

enough to be used as an initial estimate in the sp-kf without causing it to diverge.

Once track is initiated at a particular station, track is maintained by performing

motion and measurement updates using the sp-kf to compute independent esti-

mates at each time step. Should a previously seen bird come into view at another

station, track is initiated with the best available estimate. Consequent estimates

are obtained by fusing all the available local estimates of the bird.

The assumption of data association is inherent in the Kalman filter although

the sensors do not perform data association, they only provide a set of measure-

ments, the association of the measurement set to the birds being tracked has to

be computed explicitly. The data association has to be performed between pairs

of cameras to ensure that the pair of bearing measurements from the stereo pair

at each station correspond to the same bird. Data association also has to be

performed from frame to frame so that a correspondence is maintained between

bearing measurements obtained from one frame to the next. The camera-to-camera

correspondence of measurements is computed by checking the epipolar constraint

between the stereo pair. If the epipolar constraint is satisfied, the measurement

from both cameras belongs to the same bird. The measurements obtained from one
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camera are therefore reordered to correspond with the measurements to birds seen

by its stereo pair. Similarly, the gated Mahalanobis distance between the estimated

state vector in the present and previous frame, is used to perform frame-to-frame

data association. The combination with the minimum distance provides the cor-

respondence between one frame to the next. Data association is also carried out

before fusing local estimates to obtain one fused global estimate for each bird to

determine which local estimates correspond to the same bird and fusing them ap-

propriately. It is important to ensure that each bird corresponds to only one other

bird in the next frame to avoid the double copy of one bird and the loss of another

from the track.

The Monte-Carlo simulation of the described system was carried out for a vari-

ety of flight paths. It was found that despite the high dop of the initial estimate,

the error converges with information obtained in consequent time steps and the

initial estimate is Gaussian enough to be used in the sp-kf without causing it to

diverge. The sp-kf was found to perform favorably given the non-linearities in the

system. The deterministic configuration of the Sigma Points propagated through

the system equations, maintain a Gaussian distribution about the state estimate

through the non-linear transformations, so that Kalman Filter based tracking may

be carried out. The estimated error is found to correspond with the true error and

remains bounded. Both the true and estimated error drop sharply with an increase

in the number of measurement available. Results are shown for both distributed

and centralized systems. Both results are identical since the information available

to both systems is the same. The results of a system with explicitly computed

data association are compared to the results for a system where the data asso-

ciation is inherently assumed. The results are found to match, which indicates

that the association method gives results in the correct correspondence between

camera-to-camera, frame-to-frame and between sets of local estimates.
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5.1 Summary of Contributions

5.1.1 A novel bird observation technique

A cost effective method that can continuously monitor the flight path of birds

around the observation site with minimal or no human input, can provide valu-

able information about the migratory patterns of the birds without incurring the

capital of employing more people or buying specialized equipment. A continuous

and autonomous method has been proposed that can keep track of the position

and velocity of the birds in view. The system, consisting of a set of off-the-shelf

cameras and processors, does not require a great deal of fiscal or labor input.

Stereo-cameras can provide depth information based on epipolar constraints, and

allow 3d estimation from 2d image information. The distribution of cameras can

be specified based on the geography of the observation site. Bird dynamics and

the measurement model are simulated based on expected behavior and physical

constraints. The results of the proposed system on the simulation show that a

fairly accurate track of individual birds is maintained even from large distances.

5.1.2 Application based estimator designs

The choice of states is a trade-off between the complexity of the estimation process

and the information required to form a complete picture of the migratory route.

The state vector chosen consists of the 3d position and velocity components. Bear-

ings to the bird from each of the cameras in the system, are chosen for the mea-

surements. Since the measurement model used to compute these bearings contains

trigonometric functions, the estimation process becomes non-linear. The variations

of the Kalman Filter for non-linear estimation were all considered and the Square

Root form of the Unscented Kalman Filter was chosen. The Square-Root ukf was

chosen due to its ability to generate consistent estimates without divergence and

its computational efficiency. The prediction and correction equations were derived

based on the bird dynamics and measurement model, respectively. The ukf re-

quires an initial estimate and covariance, having a Gaussian distribution, in order

to carry out the subsequent estimation procedure. The only information available

when the bird first comes into view is a set of bearings from all the cameras that
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view it. Several geometric triangulation approaches were tested before the Particle

Filter was employed. A specific initialization process was designed to compute

an initial estimate that led to satisfactory results once fed to the ukf . A set

of particles, having a Gaussian distribution, are created in a solid angle about a

bearing and weighted proportional to the similarity between the expected bearing

measurements to it and the available bearings to the true position of the bird. The

weighted mean and covariance are computed to obtain an initial estimate for the

3d position of the bird and its covariance. It is found that using arbitrary velocity

components based on the expected velocity of the bird is sufficient for initialization

purposes, since the deviation of velocity from its expected values is much lesser

than that of position. Further, after obtaining the 3d position estimate using the

Particle Filter and augmenting it with an arbitrary velocity vector, a measurement

update is carried out on this initial state estimate in order to get a Gaussian esti-

mate of the state and the covariance associated with it. This initialization process,

that employed the Particle Filter, although heuristically designed, gave better ini-

tial estimates than plain trigonometry. The results obtained from this process, are

stable and Gaussian in nature and allow the ukf to compute fairly accurate esti-

mates, without causing divergence. The performance of the estimators designed is

tested for multiple different tracking runs and satisfactory results are obtained.

5.1.3 Distributed implementation

Using more than one processor is not only computationally more efficient, but

also robust to processor or communication failure. Moreover, should additional

sets of measurements, like color information, become available, the distributed im-

plementation is better suited to incorporate them since each processor computes

an independent estimate. The interaction between various sensors and their rela-

tion to the final estimate can be designed depending on the nature of the system

under observation. A Distributed Hierarchical system is designed such that each

stereo camera pair in the system sends its measurements to a local processor that

computes an independent local estimate. All local estimates are communicated

to a central processor via wireless communication and fused to compute a higher

priority global estimate. The fusion computation accounts for the shared process
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noise by subtracting the information that has been added multiple times from the

covariance to ensure that the accuracy of the estimate remains bounded by the

noise present in the system. Once a fused estimate is computed, it is regarded as

the current best estimate and is transmitted back to all the local processors. This

step is important since it puts all the local estimators on the same level of certainty

at each time step and averts the possibility of a drift of local estimates from each

other. The system designed as described is tested against the conventional cen-

tralized implementation and results are found to be identical, as expected, since

the information available to both systems is the same. The distributed imple-

mentation of the system, however, has the added advantages of being easier to

implement physically, more computationally efficient, robust and versatile to a

variety of measurements.

5.1.4 Performance Verification: Simulation

A Monte-Carlo simulation consisting of a number of varying flight paths is run

to test various aspects of the estimation process. The properties of the initial

estimate are compared to the error that the final estimate for each run converges

to. It is found that even for initial covariances with a high Dilution of Precision,

the error in the final estimate remains reasonable and bounded. The mean squared

error in the estimate for all estimates, is compared to the square root of the trace

of the covariance of the estimate as computed by the ukf and they are found

to correspond with each other. Hence proving that the estimated error is found

to match the true error. The performance of the distributed implementation is

compared to that of the centralized version and both results obtained are identical

as expected. This indicates that the fusion technique employed is representative

of the interaction between estimators and accounts for the process noise shared

among them. The advantage of a distributed system over a centralized one can

therefore be exploited at no loss to the quality of the tracking system’s performance.

The performance of a system with known data association is compared to the

implementation where data association is computed explicitly, and both results

match closely. The data association procedure, especially for a small number of

birds, provides satisfactory results.
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5.2 Recommendations for Future Work

5.2.1 Simulation Details

The simulation designed so far has a fixed number of birds in view, initialized at

the first time step and does not address the problem of continuous track initiation

and deletion. For a more realistic depiction of a continuously running system, birds

have to be designed to come into view at varying time steps. In such a case, the

track initiation routine will have to be invoked whenever a new bearing is available

at a station. Data association needs to be carried out between the new bearing

and the estimates bearings to all global bird estimates from this station in order to

ensure that there are no duplicate estimates. Also, birds that have gone out of view

at all stations have to be removed from the list of fused estimates. A more detailed

simulation that accounts for communication dropouts and birds being temporarily

out of view would be a more rigorous test of the existing system, which would be

beneficial to the study.

The initial estimates computed are prone to error.The quality of the estimates

needs to be monitored in order to determine when the estimates are good enough

to be added to a database. The condition number of the covariance matrix is a

good indication of the accuracy of the estimate. The use of a particle filter for

bearings only initialization needs to be reconsidered and other methods, possibly

linearized least squares, need to be tested for this task. However, although the

condition number at the time of initialization is high as seen in Figure 4.2, it

lowers within a few time steps and the estimates computed become more accurate

as more measurements are accumulated.

The Joint Compatibility Test implemented in this project is not set to compute

all the sets of data association matrices for more than three birds. The data

association for more than three birds is therefore not always correct, leading to

irregularities in the estimation process. This issue can be resolved by formulating

a method to compute all permutations of data association for any number of birds.
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5.2.2 Hardware Implementation

The proposed thesis is strictly based on modeling and mathematical simulation

of the bird tracking system at a given site. The hardware implementation of

the system has not been carried out yet. Although the physical constraints of

available technology have been kept in mind while modeling the system, hardware

implementation would involve addressing further, more specific details in order to

attain the performance predicted in the simulation.

5.2.3 Vision based Data Association and Recognition

The system modeled in this project has cameras for sensors. The measurements

used from these cameras are the computed bearings to the birds in flight which

can be obtained through standard image processing techniques. Cameras provide

a wealth of other information too, like color, texture and optical flow. Color infor-

mation, in particular, may be used to obtain more concrete data association. The

color histograms of birds can also be recorded and higher level learning techniques

may be used to build a database of various species of birds seen and recognize

previously viewed species, based on the unique color make-up of each species.

5.2.4 Learning Algorithms

Learning algorithms like Hidden Markov Models may be used to classify the com-

puted position and velocity of one or more birds as unique behavior. The interac-

tions between raptors can be recorded and identified for further study. Migratory

behavior may also be classified as safe or unsafe depending on the proximity of the

route from the wind farms. An intelligent system that is able to learn and identify

patterns in the results obtained from tracking would provide more insight into the

study of migrating raptors.



Appendix A
Appendix-A

A.1 Partial Data Association

Intermediate results of the tracking performance are presented as follows:

The tracking performance with partial data association is shown in Figure A.1.

The association of bearings between cameras and from one frame to the next is

unknown while the association of local estimates to each other is known.
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Figure A.1. Monte Carlo simulation results for systems with partially computed data
association. The dashed red lines show the maximum and minimum values of the 2-norm
of the true estimate error, the dashed blue line shows the mean value of the 2-norm of
the true estimate error and the solid blue line is the mean value of the estimated error
variance.
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A.2 Data Association with increasing numbers

of tracks

The ability to track more than three birds while fully computing data association

for measurements as well as local estimates is shown in Figure A.2, for simulations

consisting of four and five birds respectively.



73

0  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1  
10

−2

10
−1

10
0

10
1

10
2

10
3

Normalized Time

E
rr

or
 V

ar
ia

nc
e

(a) System tracking four birds while explicitly computing Data As-
sociation
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(b) System tracking five birds while explicitly computing Data
Association

Figure A.2. Monte Carlo simulation results for systems with explicitly computed data
association for four and five birds. The dashed red lines show the maximum and minimum
values of the 2-norm of the true estimate error, the dashed blue line shows the mean
value of the 2-norm of the true estimate error and the solid blue line is the mean value
of the estimated error variance.
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