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Abstract

The motivation behind the research described in this thesis is be able to navigate
a small unmanned aerial vehicle (uav) through complex environments. Missions
envisioned for small uavs now require low altitude flights among many obstacles.
These obstacles can be simple shapes (telephone poles) or more complex shapes
(corners and protrusions of an urban canyon).

This thesis focused on the problem of estimating obstacle locations and safe
navigation to a known goal location. The close proximity and complex nature of
these environments requires a system of navigation and obstacle avoidance using
onboard sensors. However, payload limitations of small uavs place significant
restrictions on sensor size, weight, and power consumption. This thesis describes
the development and simulation of an algorithm that enables safe navigation using
only a monocular camera and gps corrected inertial navigation system (gps/ins).

The obstacle estimation problem poses many challenges. First, the camera
measurements (bearings to obstacles and bearing rates of the obstacles due to
motion of the vehicle) are heavily corrupted with noise. This greatly reduces
the certainty of information obtained from the camera. Second, the equations
governing the vehicle motion and vision measurements are highly non-linear. The
combination of noisy measurements with non-linear equations leads to significant
uncertainties in the estimation problem.

Traditional feature-based mapping techniques (like the Kalman Filter) become
intractable in this environment as too many features must be mapped to resolve
the complex shaped obstacles. A local occupancy grid is instead used to store
estimates of occupied space. The local occupancy grid has a limited size that can be
specified depending on the sensor field of view and computational condiserations.
The origin of the grid is fixed to the vehicle and in this application the orientation
is fixed to an inertial frame. By keeping the grid centered on the vehicle, vehicle
motion must be accounted for in the grid with a motion update step. A potential
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field trajectory generator provides the means for vehicle navigation and obstacle
avoidance. The algorithm performance is examined through simulations in an
environment modeled after the McKenna Military Operations in Urban Terrain
site at Ft. Benning, GA.
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Chapter 1
Introduction

This thesis presents the development and simulation of a an algorithm which en-

ables safe autonomous navigation in complex environments using a limited sensor

suite. The motivation for this research is to fly small unmanned aerial vehicles

(uavs) through cluttered environments consisting of trees and buildings. The size

of the uavs limits the types of sensors which are available to gather information

about its surroundings. A monocular camera is used to obtain bearing and opti-

cal flow measurements from obstacles as it fits within both the power and weight

restrictions.

The estimation problem poses many challenges. First, the vision measurements

are heavily corrupted with noise. This greatly reduces the certainty of informa-

tion obtained from this sensor. Second, the equations governing the system and

measurements are highly non-linear. The combination of noisy measurements with

non-linear equations leads to significant uncertainties in the estimation problem

which must be accounted for.

This thesis will:

• Provide a framework for navigation using only a monocular camera and

gps corrected inertial navigation system (gps/ins). This involves prepar-

ing mathematical models for vehicle dynamics and the on board sensors, and

selecting an appropriate tool to estimate and retain the locations of obstacles.

• Present a solution to the navigation problem based on an occupancy grid

and a potential field controller
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Figure 1.1. The McKenna MOUT Site at Ft. Benning, GA is an example of a com-
plex cluttered environment. It consists of a central town of various shaped buildings
surrounded by a forest.

• Present simulation results to show the effectiveness of the designed system

in avoiding obstacles through both a forest and urban environment.

1.1 Motivation

Currently, many unmanned aerial vehicles (uavs) operate at high altitudes where

the region is free of obstacles. However, this limits the tasks which can be per-

formed. Missions envisioned for small uavs now require low altitude flights among

many obstacles such as search and rescue in forests and surveillance in urban en-

vironments (such as the one shown Fig. 1.1). The close proximity and complex

nature of these environments requires a system of navigation and obstacle avoid-

ance using on board sensors.

Current technologies for on board detection of obstacles rely heavily on LIDAR

and RADAR, large active sensors with great power requirements. The Department

of Defense (DoD) specifies passive detection as a goal for all unmanned systems

and lists reconnaissance as the number one priority for all classes of unmanned
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Figure 1.2. Schematic of a mission scenario. The uav must avoid collisions with any
trees and buildings and navigate from a known start position to a known goal.

systems [1]. In addition to the restrictions imposed by passive sensing, vehicle

size adds significant complications: sensing payloads are restricted in both weight

and power requirements and vehicle performance requirements are very strict to

complete the necessary maneuvers for obstacle avoidance.

With the advent of low-cost, light-weight and low power CCD cameras, the use

of vision systems for obstacle avoidance has become an active field of research. In

addition to low power requirements and light weight, vision sensors are passive.

By not emitting an observable ping (like LIDAR and SONAR), vision systems lend

themselves to stealth applications.

This thesis is concerned with obstacle avoidance for small uav operating in

complex, cluttered, unsurveyed environments (see Fig. 1.2 for a schematic). The

primary focus is on generating a local map of the environment which is suitable

for use with generic control and planning algorithms.

1.2 System Overview

Autonomous flight through an urban environment is a complex problem. Making

the problem even more difficult is the noisy measurements of bearing and optical

flow from the single camera. The block diagram in Fig. 1.3 shows a system that

uses the given sensors (gps/ins and a monocular camera) to perform obstacle

avoidance and safe navigation to the goal.

The system is comprised of three major parts: a stabilized aircraft; an esti-
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Figure 1.3. System block diagram

mator; and a trajectory planner. For this thesis, the stabilized aircraft represents

a vehicle platform which can maintain a desired flight condition. As the vehicle

moves through the environment, the gps/ins sensor outputs estimates of vehicle

states, x̂v (position, velocity, and orientation). A single forward-pointing cam-

era obtains measurements of bearing and optical flow (bearing rates) to obstacles,

zcam. The estimator uses the available measurements of bearing and optical flow

combined with the estimated vehicle states provided by gps/ins to compute a map

of obstacle position estimates. The trajectory planner uses knowledge of vehicle

state and the map of estimated obstacle locations to compute a safe path to the

goal.

1.3 Problem Description

The critical technology described is the development of a system which can success-

fully navigate to a goal while safely avoiding obstacles using only measurements of

bearing and optical flow and estimate of vehicle states from gps/ins. This thesis

presents solutions to the challenges faced in the navigation problem: managing

noisy sensors, estimating obstacle locations in complex terrain, and trajectory

planning using a local map.
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1.3.1 Noisy Sensors

The camera obtains measurements of bearing and optical flow (bearing rate), both

very noisy measurements. To get an accurate estimate of obstacle location, a

robust estimator is necessary. In addition to the noisy sensor, this system must

also handle sensor dropouts (e.g. a brownout while operating over a desert).

This thesis proposes the use of a map to store estimates of obstacle location.

The map can continuously be updated with new information on obstacle location

taking account for the noise in measurements. Additionally, the map retains esti-

mates of obstacle locations in the case of sensor dropout so that obstacle avoidance

is still possible.

1.3.2 Estimating Obstacle Locations

Feature-based tracking techniques such as Simultaneous Localization and Mapping

(slam) (which have the advantage of not requiring the availability of camera mo-

tion measurements through external means such as gps) have been successfully

used in mapping problems in the past[2]. However, these methods often need prior

knowledge of the terrain to initialize the Kalman Filter-based estimators. In cases

where no knowledge of the environment is known, they can be initialized using a

particle filter approach or estimated based on a terrain map[3, 4].

While these feature-based approaches work well in environments populated

with point obstacles (e.g. tree trunks in a forest), they quickly become intractable

in large environments or complex environments where obstacles are difficult to

define by features.

This thesis proposes the use of an occupancy grid as a map of obstacle locations.

The occupancy grid is shown to handle complex objects and portray their location

accurately and precisely.

1.3.3 Trajectory Planning

The vehicle should not only go to the goal, but also avoid obstacles along the

path to the goal. The estimator and map used in this thesis are designed to

be compatible with generic trajectory planners. In this thesis a potential field

approach is used for its simplicity and speed of computation[5].
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1.4 Related Work

There has been much research relating to the problem of navigation and obstacle

avoidance for mobile robots. The previous section presented references specifically

relating to Kalman Filter-based implementations, this section presents a more

detailed discussion of research in the related fields of vision based navigation and

occupancy grids.

1.4.1 Optical Flow

Vision based estimation methods have been popular recently due to low power and

weight requirements. Vision based techniques such as structure from motion seek

to build a three-dimensional model of the surrounding environment using known

motion of a monocular camera (e.g. [6]) but this is typically formulated as a batch

process and is thus not suited for real-time implementation.

Hrabar et al. have fused optical flow and stereo vision measurements on both

a tractor and unmanned helicopter to fly in urban canyons in real time[7]. Here

the optical flow measurement is used to turn the vehicle away when too large a

measurement is obtained. While the fusion system worked well and optical flow

measurements could keep the tractor centered in a corridor, the vehicle could not

navigate corners using the optical flow techniques.

Kim and Brambley proposed a system to hold a constant altitude by fusing

two optical flow measurements from optical mouse sensors in an extended Kalman

filter[8]. With dual optical flow, they are able to estimate both velocity and dis-

tance to ground. However, they make use of a terrain map to predict optical flow

measurements. Roberts et. al. uses stereo cameras to determine altitude above

the ground [9]. Optical flow measurements from both cameras are then combined

with the estimate of relative altitude to determine ground speed.

Chahl and Mizutani propose an optical flow method for ground avoidance[10].

Using one camera to measure optical flow at each pixel, they generate an elevation

map of the terrain ahead. Zufferey and Floreano also use 1-D cameras for optical

flow measurements to turn away from textured walls[11]. Netter and Franceschini

follow ground terrain using optical flow values from a simulated insect eye to

estimate the relative ground altitude[12].
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Optical flow has been used for obstacle avoidance or ground speed estimation

by several researchers. However, direct reliance on measurements of optical flow

for obstacle avoidance results in low robustness to noise and sensor dropouts.

1.4.2 Occupancy Grids

Scherer et. al. recently successfully flew an autonomous helicopter through the

McKenna MOUT site at Ft. Benning, GA[13]. Their helicopter used a LIDAR

system to create a map of the surroundings and IMU and differential GPS mea-

surements to estimate the helicopter state. The use of LIDAR provides a near

perfect map of the surroundings (able to detect a 6 mm wire from 38 m away)

which greatly assists navigation but comes at the high cost of power, weight, and

electromagnetic emissions.

Braillon et al. used stereo and optical flow to populate an occupancy grid

representation of the local environment, but their approach required identification

of a ground plane [14]. Usher also made use of occupancy grids to fuse data from

stereo vision and a scanning laser range-finder[15]. Here, each sensor generated

its own occupancy grid which were then combined using a weighted average. The

system did identify and avoid obstacles, but the tests were performed on a large

tractor capable of handling the heavy LIDAR system.

Badino et. al. used stereo cameras with a Kalman Filter to generate estimates

of obstacle locations and store them in a polar occupancy grid[16]. Dynamic

programming was used to find a connected line of closest obstacles to determine a

region of free space in front of the vehicle.

Recently, occupancy grids have been used with dynamic environments. Two

groups have used temporal occupancy grids to look at the change in the environ-

ment over time[17, 18]. By noting differences over time, dynamic obstacles can be

separated from static ones. Coué et. al. have used a 4 dimensional occupancy

grid to estimate obstacle location and velocity across a 2-dimensional space with

measurements from a scanning laser range finder[19]. This system both identifies

dynamic obstacles and accounts for their movement in prediction steps. How-

ever, the computational expense of this approach becomes too great for portable

computer systems as the size of the occupancy grid is increased.
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Occupancy grids are useful for storing estimate of obstacle locations; however,

most current systems make use of LIDAR which is too heavy and power hungry a

device to use with small vehicles.

1.5 Contributions

The main contributions of this thesis are described below:

• Method for obstacle avoidance

A method for obstacle avoidance using only vision and gps/ins sensors has

been developed. This system fuses estimates of vehicle states from an inertial

navigation system correctly by gps with measurements from a camera to

determine relative obstacle locations.

• Estimator design

A map based on the occupancy grid was developed. Obstacle locations rela-

tive to the vehicle are estimated. This information was used by a trajectory

planner to compute a safe path to the goal through a complex environment.

• Performance verification through simulations

A simulation is run to test the performance of the designed system. Results

of simulations show that the occupancy grid based implementation provides a

solution to the navigation problem. The locations of obstacles are accurately

estimated and the vehicle reaches the goal on 95% of the simulation runs.

1.6 Reader’s Guide

The remainder of this thesis is organized as follows:

• Chapter 2 describes the navigation problem mathematically. It defines the

models for vehicle kinematics and the sensors. It also provides justification

and the derivation of the occupancy grid.

• Chapter 3 describes the tasks to be accomplished by the navigation system.

It then presents the mathematical implementation of the occupancy grid and

the controller.
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• Chapter 4 begins with a description of the simulation setup designed to

test the navigation system proposed in Chapter 3. It then presents results

of the 2 dimensional simulations.

• Chapter 5 summarizes the results of this research and provides recommen-

dations for future work.



Chapter 2
The Navigation Problem

The following chapter defines the navigation problem. The major topics discussed

are:

1. Problem Statement: The setup of the navigation problem is detailed. A sys-

tem is described to navigate through a previously unsurveyed obstacle field.

The use of an occupancy grid is proposed to handle the complex environment

and noisy measurements.

2. System Models: A mathematical model is proposed to simulate vehicle dy-

namics. A sensor model is proposed to emulate the working of the sensors,

a single forward looking camera. The measurements of bearings and bearing

rates to obstacles are simulated by this model.

3. Occupancy Grid: The mathematical derivation of the occupancy grid is pre-

sented. To make the occupancy grid easier to implement computationally,

the estimation equation is transformed to log-odds form.

2.1 Problem Statement

The situation considered here is a vehicle moving through an unsurveyed obstacle

field consisting of small, convex obstacles (such as tree trunks) and large, poten-

tially non-convex obstacles such as buildings, Fig. 2.1. An on-board camera obtains

measurements of bearing and optical flow while gps/ins provides estimates of ve-

locity and heading.
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Figure 2.1. Navigation/avoidance scenario. The vehicle must fly to a goal (not shown)
while avoiding small, convex obstacles (e.g. tree trunks) as well as large, potentially
non-convex obstacles such as buildings.

The problem is to navigate safely through the obstacle field to reach the goal.

As vehicle state is known through gps/ins the problem is limited to obstacle

avoidance, which requires a means of sensing and then computing relative obstacle

position. A robust estimator is needed to handle the noisy measurements associ-

ated with bearings and optical flow. The estimator can then be used to generate a

map of obstacles and plot a safe trajectory using the map. A map also allows for

both continued navigation during sensor dropouts or in areas currently not in the

sensor field of view, but previously surveyed.

Given known vehicle state (x) and measurements of bearing and optical flow

(z), a map of the environment (m) will be computed. Here,

x = [x, y, ψ, u, v]T (2.1)

where x and y are the location of the vehicle, ψ is the vehicle heading relative to

an inertial frame, and u and v are the velocity of the vehicle in the body frame.

As optical flow and bearing measurements are noisy, the uncertainty in the map is

also needed to determine a trajectory that minimizes the probability of a collision.

Thus, it is necessary to compute p(m|z,x), the belief in the correctness of the map

given vehicle state and measurement history and measurement model z = g(x,m),

the probability of getting a measurement given the vehicle state and the map.

The rotational freedom of the vehicle introduces a non-linearity to the problem

through the kinematic model. Additionally, the projection of the three-dimensional
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Figure 2.2. Schematic of occupancy grid. Cells which are known to be free are white,
those which are known to be occupied are black, those which are unknown are grey.

world onto the two-dimensional image plane and then conversion to bearings and

optic flow also creates non-linearities in the sensor model. These both complicate

the problem of mapping.

Information about obstacles is only available from measurements of bearing

and optical flow, thus camera motion (and therefore vehicle motion) is essential.

However, obstacles directly in the path of motion (which need to be avoided)

generate almost no optical flow and thus no information for a range estimate;

transverse motion is required to produce a useful estimate of obstacle location.

While transverse motion gives good estimates of obstacles in front of the camera,

the vehicle must avoid obstacles which cannot be measured as they are not in the

field of view of the camera. As stated above, a map of estimated obstacle locations

is useful in this scenario.

An occupancy grid is a mapping algorithm which computes the likelihood that

discrete regions of the environment (cells) are occupied by an obstacle. This is

shown schematically in Fig. 2.2. As measurements are taken, the likelihood of cells

corresponding to the measurements is increased. Occupancy grids can also show

areas of low probability of occupancy (i.e. high probability of being free space)

by decreasing the likelihood of cells where measurements indicate no obstacles.

This makes the occupancy grid very robust to noisy measurements. With several

measurements, the estimate location of an obstacle and the uncertainty in the

estimate rise out of the grid.

Complex obstacles shapes are easily handled by the occupancy grid, seen in
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Fig. 2.2. An occupancy grid is analogous to a greyscale image, where the intensity

is proportional to the likelihood that a cell is occupied. Like an image, if finer detail

is required for the map a higher resolution grid can be used. As the occupancy

grid requires no data association, can represent both occupied and free spaces and

the certainty of the belief, is robust to noisy sensors, and can handle complex

shapes without being as computationally expensive as a feature based approach,

the occupancy grid is chosen to estimate the map of the environment.

After a map of the surrounding environment is generated, a control or planning

algorithm can be used to compute a path to the goal which minimizes the likelihood

of collision. It is assumed that the flight control system is able to maintain stable,

controlled flight.

The techniques described here to address these problems are applicable to full

three dimensional, six degree of freedom vehicle. Here motion is considered in a

two dimensional environment for algorithm development.

2.2 System Models

2.2.1 Frames

The vehicle is located at position x, y in an Earth-fixed frame (assumed to be an

inertial frame). The body frame B (defined by unit vectors xb and yb) stays fixed

with the vehicle with its origin at the center of gravity of the vehicle. The orienta-

tion is defined by heading ψ with respect to the inertial frame. The occupancy grid

coordinate frame O (defined by unit vectors xo and yo) translates with the vehicle

sharing a common origin with frame B, but the orientation of its axes remain fixed

relative to the inertial frame, see Fig. 2.3. Frame O provides a link between the

moving vehicle and the occupancy grid. It gives obstacle positions relative to the

moving vehicle, but in the axes of the occupancy grid.

For this thesis, a slash in the subscript of a variable will be used to denote

the coordinate frame used. For example, yk/o is the y-coordinate of point k with

respect to frame O.
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Figure 2.3. Coordinate Frames used in the system.

2.2.2 Kinematic Model

Velocities u and v are expressed in the body frame B. Setting v = 0 gives a non-

holonomic vehicle (e.g. a tracked ground vehicle or a fixed-wing aircraft). Here

the main application is a small autonomous rotorcraft, thus all three degrees of

freedom (u, v, ψ) are retained. The control inputs are ax, ay, and ω (acceleration

in xb and yb and turn rate).

ẋ = u cosψ − v sinψ (2.2)

ẏ = u sinψ + v cosψ (2.3)

ψ̇ = ω +N (0, σ2
ω) (2.4)

u̇ = ax +N (0, σ2
ax

) (2.5)

v̇ = ay +N (0, σ2
ay

) (2.6)

Here N (0, σ2) denotes a Gaussian random variable with mean 0 and standard

deviation σ. The noise is due to wind, and unmodelled noise in the controller.

2.2.3 Sensor Model

The camera is fixed to the vehicle pointed along the xb axis. It obtains measure-

ments of bearing and optical flow (bearing rate) generated by objects within the
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Figure 2.4. Sensor Model

field of view. To model the camera, bearings to each object are computed

βk = arctan
yk/o
xk/o

− ψ (2.7)

where xk/o and yk/o are the coordinates of the kth obstacle expressed in frame O.

The bearing rate is computed by taking the time derivative of Eq. 2.7

β̇k =
u sin βk
rk

− v cos βk
rk

− ψ̇ (2.8)

where rk is the distance between the camera and the object. This can be seen

graphically in Fig. 2.4.

Across the camera field of view, many feature points will be tracked and gen-

erate values of optical flow. Often, multiple feature points will be tracked for the

same obstacle. Having too many measurements could slow down the estimation

process considerably, while not adding much new information if many of the mea-

surements represent the same obstacle. To limit the number of measurements,

the field of view of the camera is divided into a number of regions, each of equal

angular width ∆β. The resolution of ∆β is arbitrary and can vary based on im-

plementation; however, it is limited at the upper end by the pixel resolution of the

camera. Figure 2.5 displays an example of optical flow vectors from an image. It

also shows how the camera field of view is divided into distinct regions.

Dividing the field of view is equivalent to having an array of optical flow sensors,
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Figure 2.5. Discretized camera field of view. The red arrows represent simulated optical
flow vectors. As this is only in two dimensions, only the horizontal component of optical
flow is shown.

the nth pointing along βn and viewing a region defined by βn ± ∆β
2

. As this thesis

is concerned only with a static environment, the closer an obstacle is along a given

bearing the larger the magnitude of its optical flow vector, as can be seen in Eq. 2.8.

Because of this, in each region, the bearing rate with the largest magnitude is taken

as the value measured, as this corresponds to the closest obstacle in that region.

The optical flow measurement is assumed to be corrupted by Gaussian noise where

σβ̇ is the standard deviation of the Gaussian which is a constant across the field

of view.

The measurement vector z is

z =
[
u, v, ψ̇, βT , β̇T

]T
+N (0,Σz) (2.9)

Σz =



σ2
u 0 0 0 0

0 σ2
v 0 0 0

0 0 σ2
ψ̇

0 0

0 0 0 0 0

0 0 0 0 Σ2
β̇


(2.10)

Where β and β̇ are vectors containing the measurements of bearing and optical
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flow for each of the N regions.

β = [β1, β2, . . . , βn]T

β̇ =
[
β̇1, β̇2, . . . , β̇n

]T
(2.11)

Σβ̇ = σ2
β̇
IN (2.12)

where IN represents an identity matrix of size N . Note that all measurements

have Gaussian noise except β. The β measurement does not have noise as it is

defined to be the center of the region where the particular measurement of β̇ is

obtained. The width ∆β is captured in the occupancy grid implementation of the

sensor model. This is discussed in the following section and in Chapter 3.

2.2.4 Range Model

As discussed above, the sensor obtains measurement of optical flow and bearing.

To update the map, an estimate of obstacle location is necessary. As bearing to

the obstacle is already known, estimating the range to the obstacle will provide

the location of the obstacle in polar coordinates. To compute an estimated range

r∗ for a given measurement β̇, Eq. 2.8 is solved for r

r = f(z)

r∗ =
1

β̇ + ψ̇
(u sin β − v cos β) (2.13)

As there is noise in optical flow measurement, uncertainty in estimates of velocity

and heading rate, and uncertainty of value of β within the measurement region,

an uncertainty in the estimate σr∗ is also needed. Three possible methods for

computing r∗ and σr∗ are compared:

1. Particle Transform: This method generates many random particles based on

the measurement probability distribution and propagates them through the

function f in Eq. 2.13 to then compute r∗ and σr∗ . This method preserves

the non-linearity of the system but at a high computational cost.

2. Unscented Transform: This method uses a small set of specifically placed

particles to represent the measurement probability distribution and propa-
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gates them through f to then compute r∗ and σr∗ . This method is much

faster to compute than the particle transform[20].

3. Linearization: This method uses the measurements directly to compute r∗

and linearizes f to compute σr∗ . This is the fastest to implement.

Each method will use the measurement vector z and uncertainty Σz. It is important

to note that Σz has been modified slightly from Section 2.2. In the creation of the

measurements, σβ is given to be 0, as the β value used is that for the center of

the region and no noise is added. As the measurement can come from anywhere

within the specified region, the distribution of possibilities is approximated as a

Gaussian with standard deviation σβ.

Each method is described in detail below and all three are compared to deter-

mine which is the best suited for this application.

Particle Transform

The particle transform retains the full non-linearity of Eq. 2.13. A series of particles

Z are sampled randomly from the Gaussian distribution N (z,Σz). These are then

propagated through f such that

S = f(Z) (2.14)

In this step, some particles generate a range less than zero. This implies measuring

an obstacle behind the camera, not in the field of view. As the camera can only

measure obstacles in the field of view, this computed range is illogical. Thus, any

particles with a range less than zero are omitted in the recovery of mean and

standard deviation. The computed mean and standard deviation of S become r∗

and σr∗ , respectively.

Unscented Transform

For an n state estimation, 2n+1 Sigma Points are sampled symmetrically about the

mean, z̄, with covariance, Σz. For this case, there are 5 states,
[
u v ψ̇ β β̇

]
,
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and therefore 11 Sigma Points.

Z =
[

z̄ z̄ + η
√

Σz z̄− η
√

Σz

]
(2.15)

where η is a scale factor that determines the spread of the Sigma Points. The

square root of the covariance is computed using Cholesky decomposition such that

Σz =
√

Σz
T√

Σz. Once the Sigma Points are computed, they are each propagated

through f in Eq. 2.13 to produce S, a 2n + 1 vector of ranges. The mean and

covariance of the estimated range are then computed.

S = f(Z) (2.16)

s̄ = S wm (2.17)

Σs = [ S− s̄ ]T Wc [ S− s̄ ] (2.18)

where wm and Wc are weight factors, and r∗ = s̄ and σ2
r∗ = Σs.

η = α
√
n (2.19)

wm,1 = α2−1
α2 wm,i = 1

2nα2 (2.20)

Wc,1 = α2−1
α2 + (1− α2 + γ) Wc,i = 1

2nα2 (2.21)

Typically α is chosen to be 1, and for Gaussian distributions, γ = 2 is optimal[20].

In this implementation similar to the particle transform, often times at least

one Sigma Point per region exists where S < 0. Unlike the particle transform,

the negative ranges cannot simply be discarded. For the unscented transform, all

of the Sigma Points are needed to represent the probability distribution. This

problem is documented by Huster who suggests two ways resolve the issue: to

make η smaller (by making α smaller) or to alter
√

Σz by rotating it by a unitary

matrix[21]. To ensure that all values are positive, the optimal γ = 2 was kept, but

α = 0.09 was used to reduce the spread of the Sigma Points, as this is the simpler

of the two posed solutions. Reducing the spread of the Sigma Points reduces the

amount of the uncertainty propagated through the non-linear function, providing

a less accurate representation of the non-linearity[21].
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Linearization

In the linearized method, r∗ is directly computed from Eq. 2.13 using the mea-

surements, z. The Jacobian of Eq. 2.13 is computed and used to determine the

uncertainty in range estimate:

∇r∗ =

[
∂r∗

∂u

∂r∗

∂v

∂r∗

∂ψ̇

∂r∗

∂β

∂r∗

∂β̇

]T
(2.22)

σ2
r∗ = ∇T

r∗ Σz ∇r∗ (2.23)

σ2
r∗ = (β̇ + ψ̇)−2

[
σ2
u sin2 β + σ2

v cos2 β + σ2
β(u cos β + v sin β)2

]
+

(β̇ + ψ̇)−4
[
(σ2

β̇
+ σ2

ψ̇
)(u sin β − v cos β)2

]
(2.24)

Results

Figure 2.6 shows a comparison between all three methods. For the comparison,

values of β̇ were generated using Eq. 2.8 with the parameters listed in Table 2.1.

Table 2.1. Values used for comparison
u = 4 m/s σu = 0.2 m/s

v = 0 m/s σv = 0.2 m/s

ψ̇ = 40 ◦/s σψ̇ = 0.06 ◦/s

∆β = 3 ◦ σβ = 0.5 ◦

r = 10 m σβ̇ = 2 ◦/s

α = 0.09 γ = 2

For β > 20◦, all three methods produce similar results, the estimated obstacle

location is very close to the actual location, and the uncertainty is also low. For β ≤
20◦, the differences between the linearization, unscented transform, and particle

transform are clear. The linearization does not account for the noisy measurements

in the estimate of r∗ and underestimates the covariance. As the spread of the

unscented transform is reduced to make all values non-negative, much of the non-

linearity is removed in the computation of covariance (note how it more closely

resembles the curve of the linearization).
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Figure 2.6. Comparison between the Particle Transform, Unscented Transform, and
Linearization. β̇ measurements were generated for parameters in Table 2.1.

Ideally, the particle transform would be used to retain the probability distribu-

tion through the non-linear function. However, to get an accurate representation

of the distribution, 50000 particles were necessary for each angular region. Using

fewer particles resulted in large variance in the computed r∗ and σr∗ on each run.

Using this many particles is not feasible as it takes too much time to produce an

estimate.

While the unscented transform does compute r∗ similar to that of the particle

transform, the differences between these methods and the linearization occur for

β ≤ 20◦. In this region, the value of β̇ is on the order of σβ̇. Measurements on the

same order as sensor noise produce poor estimates. When an estimate is known to

not be accurate in advance, the uncertainty in that estimate is more important than

the estimate itself. Here, σr∗ is nearly the same for both the unscented transform

and the linearization; however, the linearization method is much easier to compute.

As the linearization provides results similar to the unscented transform for the areas

of interest and is not as computationally intensive, Equations 2.13 and 2.24 are

used to compute r∗ and σr∗ .
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Adapting the linearized range model for use with an occupancy grid will be

discussed in Chapter 3.

2.3 Occupancy Grid

Qualitatively, an occupancy grid is a mapping algorithm which computes the likeli-

hood that discrete regions of the environment (cells) are occupied by an obstacles.

This is shown schematically in Fig. 2.2. While occupancy grids have been well

documented (e.g. [22, 23]), for completeness a derivation is presented here. This

section follows the derivation given in Thrun [23].

As discussed in Section 2.1, the goal is to estimate a map of the environment,

p(m|z1...t, x1...t), where z1...t is the set of all measurements and x1...t is the set of all

vehicle states up to time t. An occupancy grid is a numerical implementation of

a Bayes filter which computes the estimate of p(m) by discretizing the map into a

finite number of cells.

m = {mij} (2.25)

where mij is a cell in the map.

The probability that a cell is occupied (p(mij) = 1) or free (p(mij) = 0) is

computed for each grid cell[22]. This results in a binary estimation problem over

all possible maps, posing a computational problem. An environment with M

cells has 2M possible maps. To make the problem tractable, the probability of a

particular cell’s occupancy is assumed to be independent of all other cells. This is a

conservative approximation as possible information about the world is ignored (e.g.

continuity between cells along the wall of a building). Because of the assumption of

independence of cell occupancy, the problem of estimating p(m|z1...t, x1...t) becomes

p(mij|z1...t, x1...t) such that

p(m|z1...t, x1...t) =
∏
ij

p(mij|z1...t, x1...t) (2.26)

and now the likelihood of each cell’s occupancy can be computed independently.
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The binary Bayes filter for this discretized map of a static environment is

p(mij|z1...t, x1...t) =
p(zt|mij, xt) p(mij|z1...t−1, x1...t−1)

p(zt|z1...t−1, x1...t)
(2.27)

where p(mij|z1...t, x1...t) represents the probability that a grid cell mj is occupied,

given measurement history z1...t and vehicle path x1...t. The first term in the numer-

ator is the sensor model, the probability of getting a particular measurement based

on the map and current state. The map is not known, and what is desired is the

probability of the grid cell being occupied based on the measurements obtained and

the current state p(mij|zt, xt). To achieve this, Bayes’ Rule
(
p(A|B) = p(B|A)p(A)

p(B)

)
is used for the sensor model of Eq. 2.27 to yield Eq. 2.28.

p(mij|z1...t, x1...t) =
p(mij|zt, xt) p(zt|xt)

p(mij|xt)
p(mij|z1...t−1, x1...t−1)

p(zt|z1...t−1, x1...t)
(2.28)

Both the measurement probability and map are assumed to be independent of

state, p(zt|xt) = p(zt) and p(mij|xt) = p(mij). These assumptions are founded in

that the vehicle’s location in the map does not change the likelihood of getting

a measurement and that the map does not change based on the location of the

vehicle. This simplifies Eq. 2.28 further to:

p(mij|z1...t, x1...t) =
p(mij|zt, xt) p(zt)

p(mij)

p(mij|z1...t−1, x1...t−1)

p(zt|z1...t−1, x1...t)
(2.29)

To make the problem numerically better conditioned and easier to implement

computationally, the occupancy is represented in log-odds form. First the odds

form of Eq. 2.29 is computed

o(mij|z1...t, x1...t) =
p(mij|z1...t, x1...t)

1− p(mij|z1...t, x1...t)

o(mij|z1...t, x1...t) =
p(mij|zt, xt)

1− p(mij|zt, xt)
p(mij|z1...t−1, x1...t−1)

1− p(mij|z1...t−1, x1...t−1)

× 1− p(mij)

p(mij)
(2.30)

which simplifies Eq. 2.29 by canceling the p(zt| . . . ) terms. The factor p(mij) is the

initial probability that the cell at location (i, j) is occupied. As the environment
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is initially unsurveyed, the initial probability of occupancy is p(mij) = 0.5, thus

the term on the third line simplifies to 1.

Finally, the log-odds form of the binary Bayes filter is obtained by taking the

logarithm of Eq. 2.30:

lt,ij = log o(mij|z1...t, x1...t)

lt,ij = log
p(mij|zt, xt)

1− p(mij|zt, xt)
+ log

p(mij|z1...t−1, x1...t−1)

1− p(mij|z1...t−1, x1...t−1)
(2.31)

The probability of occupancy can be recovered from the log-odds form by solving

Eq. 2.31 for p(mij|z1...t, x1...t)

p(mij|z1...t, x1...t) =
exp lt,ij

1 + exp lt,ij
(2.32)

The second term on the right hand side of Eq. 2.31 is simply the accumulated

log-odds of occupancy over all previous time steps:

lt,ij = log
p(mij|zt, xt)

1− p(mij|zt, xt)
+ lt−1,ij (2.33)

The estimation problem is now a recursive equation to compute the occupancy of

each grid cell. This can be implemented easily and efficiently.

The first term on the right hand side of Eq. 2.33 is the inverse sensor model

(i.e. the change in log-odds occupancy of a grid cell given a sensor measurement

zt). Given that there are usually multiple measurements, in this case one for each

bearing βn, the inverse sensor model for each measurement will be added together

lt,ij =
N∑
n

log
p(mij|zt,n, xt)

1− p(mij|zt,n, xt)
+ lt−1,ij (2.34)

Functionally, detecting an obstacle in a grid cell means the log-odds of occu-

pancy in that cell is increased by some amount. The space between the vehicle

and the obstacle must be free, thus the log-odds of the occupancy of the cells

lying between the occupied cell and the vehicle is decreased. Cells outside the

field of view get no new information so the log-odds values of those cells remain

unchanged. The amount of the increase and decrease is dependent on the inverse
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sensor model, defined in Chapter 3.

2.4 Summary

The navigation problem is described in Section 2.1. As vehicle states are assumed

to be known, the problem is defined as reaching a goal location while safely avoid-

ing obstacles using noisy measurements of optical flow and bearing from a single

camera. To handle the noisy measurements, a map is used to estimate obstacle

locations so that the uncertainty in the estimates can be tracked. Due to the com-

plex nature of the environment, Kalman Filter (feature based) approaches are too

computationally intensive to execute. An occupancy grid is chosen for its ability

to handle both the noisy measurements and the complex environment.

Mathematical models of the vehicle kinematics and sensor are developed in

Section 2.2. Motion is modeled as a second order function with control inputs

of acceleration (ax, ay) and heading rate (ψ̇) expressed in the body frame. Op-

tical flow measurements are simulated by calculating the apparent bearing rate

of stationary obstacles due to the translation and rotation of the moving vehi-

cle. To obtain estimates of obstacle location, an estimated range to an obstacle is

computed from the optical flow measurement.

A mathematical derivation of the occupancy grid is presented in Section 2.3.

The estimation equation is represented in log-odds form to make the problem easier

to implement computationally. In log-odds form, the measurement updates can

simply be added to the map belief at the previous time step.

A solution of the navigation problem using the occupancy grid is given in

Chapter 3 and simulation results are presented in Chapter 4.



Chapter 3
System Design

The following chapter details the techniques used to solve the safe navigation

problem defined in Chapter 2. The design is divided into three sections:

1. Inverse Sensor Model: The inverse sensor model is responsible for updating

the occupancy grid with the obtained measurements. The inverse sensor

model is divided into two parts, range and direction. Functions are cre-

ated to approximate the probability distribution in order to save time and

computations.

2. Local Occupancy Grid: A global occupancy grid continues to grow as a

vehicle explores the area. As computational power is limited, storing and

manipulating this large grid will be problematic. A local occupancy grid is

used which limits the size of the grid and moves the grid with the vehicle. A

motion model for the local occupancy grid is required and the formulation is

described.

3. Vehicle Control: A potential field controller is used to create a desired head-

ing. While these are well documented, the particular setup used here is

detailed as well as the algorithm to create control inputs from the desired

heading.
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Figure 3.1. Schematic of the occupancy grid showing rij and ξij

3.1 Grid Cell Coordinates

To describe locations in the occupancy grid, both Cartesian and polar coordinates

are used. As the coordinate systems defined so far are all Cartesian, knowing

the location of cells in the occupancy grid in Cartesian coordinates is a relatively

simple task. The coordinates (xij/o, yij/o) are location of the center of the cell at

(i, j) as defined in frame O which translates with the vehicle. However, as the

sensor model is defined in a polar coordinate frame, a polar representation of the

grid cell locations is beneficial for the inverse sensor model. Polar coordinates are

also useful in the vehicle controller as distances to obstacles are used. Thus, rij is

defined as the distance from the vehicle to a grid cell, and ξij is the angle from the

xo axis to the center of the grid cell.

rij =
√
x2
ij/o + y2

ij/o (3.1)

ξij = arctan
yij/o
xij/o

(3.2)

Figure 3.1 shows a schematic.
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3.2 Inverse Sensor Model

The inverse sensor model is used to update the occupancy grid with measurements.

As discussed in Section 2.2, the camera field of view is divided into a series of

regions of equal angular width. For each region, the maximum magnitude optical

flow measured is used as the measurement but the location of that measurement

within the region is discarded. From the value of optical flow, an estimated range to

the obstacle is computed, thus the obstacle location is known in polar coordinates.

As such, the inverse sensor model is comprised of two pieces: first, a function of

range to the obstacle; second, a function of angular position to reflect the bearing

of the measurement and the angular resolution of the sensor.

3.2.1 Range

As discussed in Section 2.2, a linearized range model is used to compute an estimate

of range r∗ and the uncertainty in the estimate σr∗ from the measurements of

optical flow β̇ in each sector βn.

In addition to the Gaussian uncertainty described by σr∗ , the sensor model must

reflect the intuition that the space between the camera and the detected obstacle is

unoccupied and the space behind the detected obstacle remains unknown. Here, a

95%/99.7% rule is used. For a Gaussian distribution, 95% of the values lie within

2 standard deviations from the mean and 99.7% of the values lie within 3 standard

deviations from the mean.

p


> 0.5, r∗ − 2σr∗ ≥ r ≥ r∗ + 3σr∗

= 0.5, r > r∗ + 3σr∗

< 0.5, 0 < r < r∗ − 2σr∗

(3.3)

Here, the obstacle is assumed to most likely exist 2 standard deviations in

front of and 3 standard deviations behind the estimated range, and this region

should have a probability of occupancy greater than 0.5. The region greater than

3 standard deviations behind the estimate is unknown, and thus the probability

remains 0.5. Finally, the region greater than 2 standard deviations in front of the

estimate is believed to be unoccupied and thus have a probability of occupancy
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Figure 3.2. The range vs. probability (solid green) is constructed by combining a
Gaussian (dashed blue) and sigmoid (dash-dotted red). Here r∗ = 15 and σr∗ = 2. Note
the comparatively low probability of occupancy for r < r∗.

less than 0.5. To model this behavior a sigmoid curve and a Gaussian curve are

combined to produce the probability curve of occupancy as a function of range,

seen in Fig. 3.2.

One problem with the linearization and this approach is when obstacles are

far away or not present. For distant obstacles, β̇ ≈ −ψ̇, from Eq. 2.8, and thus

β̇ + ψ̇ ≈ 0. Equation 2.13 will yield r∗ ≈ ∞, which makes sense for a distant

object. Unfortunately, Eq. 2.24 will also estimate σr∗ ≈ ∞. While a large estimate

uncertainty for a distant object is logical, it is problematic. As can be seen in

Eq. 3.3, if σr∗ > 2r∗, the occupied region extends from the estimated location all

the way to the camera. Thus, there is no region to mark as free space between the

estimated location and the sensor.

For this reason, a limit is set for the value of r∗. When r∗ > rmax, r
∗ will be set

to rmax and σr∗ will be set to a small value. By doing this, when a very far away

obstacle is measured or no obstacle is present, the grid will be updated to reflect

the knowledge of free space.

The same problem exists for obstacles located in the direction of motion. As

mentioned in Section 2.1, these obstacles generate almost no optical flow separate

from the rotation of the vehicle; from Eq. 2.8, again β̇ ≈ −ψ̇. This is currently

handled as described above, such that often the area directly in the path of motion

will be marked as free space. The control section addresses this problem, and

implements methods to properly resolve the area in the path of motion.

In the final equation in the derivation of the occupancy grid, Eq. 2.34, the

inverse sensor model must be in log-odds form in order to add it to the previous
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Figure 3.3. Examples of approximate inverse sensor model curves. Subfigures a and
c use a Gaussian and Sigmoid to generate the inverse sensor model probability (solid
red lines). The log-odds representation is then calculated and shown in subfigures b
and d (solid red lines). Subfigures b and d use a Gaussian and sigmoid to generate an
approximate of the log-odds representation (dashed blue lines). These values are then
converted back to probability form and are shown in subfigures a and c (dashed blue
lines). Here r∗ = 15 and σr∗ = 2.

log-odds belief. Thus, the probability form inverse sensor model must be con-

verted to log-odds form. While this is possible, performing this calculation over

every grid cell for every measurement is computationally intensive. Thus an ap-

proximation for the log-odds form of the probability curve shown in Fig. 3.2 is

desired. Figure 3.3 shows the method of approximation.

Figure 3.3(a) shows an inverse sensor model probability curve (solid red line).

The log-odds representation of this curve is shown in Fig. 3.3(b) as the solid red

line. For this case, the probability and log-odds representation curves are of very

similar shape, but shifted and scaled. Thus, an approximated log-odds representa-

tion is generated by combining a sigmoid with a Gaussian, shown in Fig. 3.3(b) as
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the dashed blue line. The probability representation of this approximated log-odds

curve is computed and shown in Fig. 3.3(a) as the dashed blue line.

For this case, the true and approximated probability curves appear nearly iden-

tical. The average error between the two curves is εrms = 0.0054 for 5 ≤ r ≤ 21, the

region where the curves differ. This similarity holds well for 0.1 ≤ p(mij|zt, xt) ≤
0.9. Outside this range, the non-linearities of the log-odds conversion become

apparent.

Figures 3.3(c) and 3.3(d) show the same procedure as above, but for a larger

range of probabilities. While the approximated curve does not exactly match the

true range model, the log-odds form can still be reasonably approximated as a

sigmoid and a Gaussian. For 0.05 ≤ p(mij|zt, xt) ≤ 0.95 the average error between

the two probability curves is εrms = 0.0513 for 5 ≤ r ≤ 21.

In log-odds form, the range portion of the inverse sensor model is approximated

by the following:

fn(r) = −c1

{
1 + exp

[
2π(r − r∗n + 2σr∗n)

σr∗n
√

3

]}−1

+
c2

σr∗n
√

2π

{
exp

[
−(r − r∗n)2

2σ2
r∗n

]}
(3.4)

Here r∗n is the estimated range obtained from the optical flow measurement in the

nth bearing. The factors c1 and c2 are used to scale the two contributions to the

probability of occupancy and to account for normalization.

Note that in Eq. 3.4, the log-odds value for free space (the amplitude of the

sigmoid) is not scaled. This amplitude could be scaled identically to the Gaussian

−c1(σr∗n
√

2π)−1. This would incorporate the idea that as the uncertainty in the

range estimate increases, the magnitude of the log-odds belief should decrease.

This would be the case for a Gaussian distribution; as the standard deviation

increases, a lower probability is spread across a wider area. However, a greater

uncertainty in obstacle range does not change the belief that the region between

the vehicle and the obstacle is free space. Because of this, the log-odds value for

believed free space remains a constant, −c1.
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3.2.2 Direction

A scaling factor is calculated to account for the bearing of the measurement and

the uncertainty in vehicle heading. To model the uncertainty in vehicle heading, a

Gaussian would ideally be used to scale the value calculated from Eq. 3.4. However,

as the range estimate is for the entire angular region because the specific bearing is

not kept, the scaling factor over the width of the region should be a constant. To

achieve this constant value over the width of a measurement region which tapers

off similar to a Gaussian at the edges, a sigmoid function is again used to compute

the scaling factor as a function of the difference between ξ and the center of the

angular region:

gn(ξ) =

(
1 + exp

c3(|ξ − βn − ψ| − 0.5∆β − 1.25σψ)

σψ

)−1

(3.5)

where c3 is a weighting parameter, ∆β is the angular width of the measurement

region, and σψ is the uncertainty in the current heading estimate.

For the grid cell located at (xij, yij) , the log-odds of occupancy induced by a

measurement of optical flow in the nth region zt,n can be computed by evaluating

rij and ξij for that cell and computing

log
p(mij|zt,n, xt)

1− p(mij|zt,n, xt)
= fn(rij)gn(ξij) (3.6)

An example is shown in Fig. 3.4.

The inverse sensor model given in Eq. 3.6 will update the occupancy grid with

measurements obtained from the camera. The following section provides details

on how the occupancy grid was implemented in this application to store estimates

of occupied space.

3.3 Local Occupancy Grid

Typically, occupancy grids remain globally fixed while the vehicle moves through

the grid. This allows for a simple implementation; however, as the vehicle explores

the environment, the map quickly grows large and becomes computationally in-

tractable. As local obstacle avoidance is the focus of this research, a local occu-
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Figure 3.4. Example of the Inverse Sensor Model in log-odds form. The example shows
an obstacle located at r∗ = 15, indicated by the peak, with σr∗ = 1.2. Between the sensor
and the obstacle is likely to be unoccupied, indicated by the trench. Regions outside
the sensor field of view (or occluded by obstacles) have zero change to their log-odds
of occupancy. Here the angular width of the region is ∆β = 30◦. To create the high
resolution, the grid cells are 0.25 m on each side.

pancy grid (fixed to the vehicle) is used. The local occupancy grid has a limited

size governed by sensor field of view and computational considerations, and can

thus be adapted to the specific hardware available on a particular vehicle. For the

local occupancy grid, the grid origin remains fixed to the vehicle, Fig. 3.5. Then,

the grid can either rotate with the vehicle, or the vehicle can rotate within the

grid.

Grid orientation can be fixed to any convenient frame. Vehicle (and thus grid)

motion is computed using a motion update step. The complexity of this motion

update depends in part on the choice of grid orientation. If the grid remains fixed

with the vehicle, both a rotation and translation are performed as part of the

motion update. If the orientation of the local occupancy grid remains fixed to an

inertial frame, only a translation is necessary.

Computationally the occupancy grid representation of the environment can be

treated as an image, and techniques developed for image processing (e.g. blur-

ring, convolution, rotation) and libraries used for image processing (e.g. OpenCV,

MATLAB Image Processing Toolbox) can be used to translate and rotate the local

occupancy grid as it moves with the vehicle. In any update where one grid cell

does not map directly to another, some blurring (loss of certainty in the estimates)

will occur. For a rotation, the grid cells will only match if the rotation is a mul-
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yb

xb

yo

xo

Figure 3.5. Schematic of local occupancy grid. Cells which are known to be free are
white, those which are known to be occupied are black, those which are unknown are
grey. Note that the center of the occupancy grid is at the origin of the O frame.

tiple 90◦. In order to keep the grid correctly matched to the vehicle orientation

many small rotations will take place, thus creating a large loss of precision over

time. Additionally, a rotation is a time consuming task. For these reasons, the

orientation of the grid is fixed in frame O.

By fixing the orientation in frame O, only a translation of the grid is necessary

for the motion update. Here this is performed using a convolution. The convolution

kernel is generated based on the translated area of a grid cell, see Fig. 3.6. The

percentage of the original cell area overlapping a surrounding cell determines the

value of the convolution integral.

Lt+1 = K ∗ Lt (3.7)

K = Ky ∗Kx

Ky =

[
max

(
−ẏ∆t

∆grid

, 0

)
1−

∣∣∣∣ ẏ∆t

∆grid

∣∣∣∣ max

(
+ẏ∆t

∆grid

, 0

)]
Kx =

[
max

(
+ẋ∆t

∆grid

, 0

)
1−

∣∣∣∣ ẋ∆t

∆grid

∣∣∣∣ max

(
−ẋ∆t

∆grid

, 0

)]T
(3.8)

where ∆grid is the size of a grid cell, the ∗ operator indicates a convolution, and

max(n, 0) returns n if n > 0.

The rate of motion update is in principle arbitrary. In practice is it affected
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Figure 3.6. Example translation of occupancy grid in the yo direction

by grid size, vehicle motion, and computational considerations. Performing the

motion update at every time step poses two problems. First, a convolution takes

computational time. Performing a two-dimensional convolution at 50Hz slows the

operation of the algorithm. Second, performing the convolution introduces blur

when the translation does not map one cell exactly to another (Fig. 3.6). The top

image shows the initial occupancy grid, with the center cell known to be occupied.

Translation by a fraction of a grid cell (middle image) means that the probability

of occupancy must be split over the neighboring cells (bottom image), introducing

a blur. This blur artificially decreases the belief in occupancy (or freedom) of a

grid cell.

To reduce the artificial blurring, motion updates are only performed when the

translation is greater than or equal to the length of a grid cell. Additionally,

the motion updates are performed separately in the xo and yo directions. Not

only does this reduce some of the blurring, but also decreases computational time

as performing two one-dimensional convolutions is less computationally intensive

than one two-dimensional convolution.

To model the reduction in certainty of the grid as the vehicle moves, the kernel

does not sum to one. By making the sum of the kernel less than one, the magnitude

of each cell goes down at each iteration, and thus the certainty in the estimate will

also be reduced. Thus the motion update kernel becomes:

Ky = wc ×
[
max

(
−∆y

∆grid

− 1, 0

)
max

(
1−

∣∣∣∣−∆y

∆grid

− 1

∣∣∣∣ , 0) 0

max

(
1−

∣∣∣∣+∆y

∆grid

− 1

∣∣∣∣ , 0) max

(
+∆y

∆grid

− 1, 0

)]
(3.9)

Kx = wc ×
[
max

(
+∆x

∆grid

− 1, 0

)
max

(
1−

∣∣∣∣+∆x

∆grid

− 1

∣∣∣∣ , 0) 0
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max

(
1−

∣∣∣∣−∆x

∆grid

− 1

∣∣∣∣ , 0) max

(
−∆x

∆grid

− 1, 0

)]T
(3.10)

where ∆y = ẏ∆t, ∆x = ẋ∆t, and the kernels are evaluated when ∆y ≥ ∆grid or

∆x ≥ ∆grid.

The value of wc is the overall magnitude of the kernel. For wc = 1, there is

no loss of information over the motion update. If wc = 0, the log-odds of the

occupancy grid will go to 0 after the motion update (i.e. no knowledge of the sur-

roundings). For 0 < wc < 1, the magnitude of the log-odds of the occupancy grid

will be reduced after the motion update, and thus the certainty of the occupancy

grid will be reduced.

Note that the artificial blurring can also be reduced by increasing the reso-

lution of the occupancy grid. This comes at the cost of increased computation

requirements.

The local occupancy grid is implemented as follows:

1. Initialize the log-odds occupancy grid to all zeros (0.5 probability).

2. Update the grid with measurements using the inverse sensor model.

3. Determine how far the vehicle has moved since the last motion update.

4. If the distance is greater than the length of a grid cell, use the convolution

to perform a motion update.

5. Repeat from Step 2.

3.4 Vehicle Control

While the methods described are applicable for a vehicle with three degrees of

freedom [u v ψ], a non-holonomic vehicle is used to simplify vehicle control (i.e. v

and v̇ are set to be 0). Thus the trajectory planner consists of a heading generator

and the controller uses the desired heading to compute control inputs, ax and ω.

The heading generator uses a potential field type approach to avoid obstacles

and reach the goal[5, 24, 25]. The particular implementation in this thesis is similar

to the virtual force field and vector field histogram methods used by Borenstein and
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Koren[26, 27]. Regions of high probability of occupancy represent high potential

(to be avoided) and the goal is represented by a sink. The desired heading is

determined by a gradient. This gradient is computed at the vehicle (i.e. the origin

of the occupancy grid) as

∇ = (1− wg)∇grid + wg∇goal (3.11)

where wg is a factor to weight goal seeking vs. obstacle avoidance, ∇grid is the

gradient term from the occupancy grid and ∇goal is the gradient term resulting

from the sink representing the goal. The desired heading is computed from ∇ as

ψdes = arctan
∇y

∇x

(3.12)

where ∇y and ∇x are the y and x components of the gradient ∇, respectively. Put

simply, the controller will attempt to steer the vehicle in the direction of steepest

descent towards the goal.

Figure 3.7 shows the steps in creating ∇grid (the gradient vector due to the

occupancy grid) at a particular point in time. Only a region in the vicinity of

the vehicle (here, a 30 by 30 cell box centered on the vehicle) is considered. The

gradient of the occupancy grid in probability form is computed, ∇∗grid. This is then

scaled by K (∇grid = K ×∇∗grid) so that the location of an obstacle relative to the

vehicle is included in the trajectory planner. Figure 3.7(a) shows the probability

values of the local occupancy grid with colors representing p(mij = occupied). The

probabilities are computed from the log-odds representation using Eq. 2.32.

3.4.1 Grid Gradients

First a Prewitt edge detector (seen in Fig. 3.7(b)) is used to find gradients in both

the xo and yo directions, ∇∗grid. This will give large values only at edges (i.e. at

boundaries between occupied and unoccupied space) and small values in regions

of similar occupancy probability.
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Figure 3.7. Creating the potential field controller. The vehicle is shown by the cranked
triangle. Subfigure (f) shows the gradient vectors with non-uniformly scaled magnitudes:
short green = ∇grid, medium magenta = ∇goal, long red = ψdes
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3.4.2 Scaling

Second, scaling factors kij are introduced to allow weighting to the occupancy grid

gradient term, ∇∗grid. This factor is created in two parts. The first part to the

scale factor is a long term planner. It looks ahead and determines which direction

is better in terms of avoiding obstacles. The second part looks closer to the vehicle

and in a wider span to be sure that the vehicle is not headed towards or will turn

into an area of high probability of occupancy.

Long-term

For the first part of the scale factor, values near the vehicle should still be weighted

more heavily than values further away to avoid the more immediate obstacles.

However, values at a distance are included to cause the vehicle to turn before

it strikes them. A Gaussian is used to scale the gradient field with the standard

deviation being a function of vehicle speed. This makes the occupancy grid gradient

influence to be a function of time, reacting to obstacles that are a certain time away.

The standard deviation of the Gaussian is

σdist =
c4

√
u2 + v2 + c5

∆grid

(3.13)

where ∆grid is the length of a grid cell and c4 and c5 are parameters which allow

further tuning of the scaling factor in its dimension and standard deviation.

Values in the direction of motion should have greater influence on desired head-

ing than those from values to the sides and those already passed. A second Gaus-

sian was used to weight the occupancy grid gradients based on vehicle orientation.

σdir =
π

c6

√
u2 + v2 + c7

(3.14)

where c6 and c7 are more tuning parameters. Again the standard deviation is a

function of vehicle speed. At high speeds, obstacles in the direction of motion are

of a larger concern than obstacles to the sides. At slow speeds, the vehicle can

more quickly change directions, thus there is a wider field to consider to determine

the best possible path.
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These two Gaussians were combined to create the scaling factor k
long
ij

k
long
ij = exp

(
−

r2
ij

2σ2
dist

)
× exp

(
−(ξij − ψ)2

2σ2
dir

)
(3.15)

where rij is the distance from a grid cell to the vehicle, and ξij − ψ is the angle

between the unit vector to the grid cell and the direction of motion. This is shown

in Fig. 3.7(c).

Short-term

For the second part, the construction of the scale factor is similar to that of the

first, using a Gaussian for both distance and direction. However, the parameters

are different to reflect the different objective. Additionally, the areas off center are

weighted more heavily to keep the vehicle from turning into any obstacles. This is

accomplished by using an absolute value on the directional Gaussian:

kshort
ij = c8 × exp

(
−(rij − c9)2

2c2
10

)
× exp

(
−(c11 − |ξij − ψ|)2

2c2
12

)
(3.16)

This is shown in Fig. 3.7(d).

The scale factor is simply the combination of the two parts:

kij = k
long
ij + kshort

ij (3.17)

The term ∇grid is generated by taking the sum of the scaled occupancy grid gra-

dient.

∇grid =
∑
ij

(
kij × ∇∗grid,ij

)
(3.18)

Figure 3.7(d) shows the scale factor due to the close avoidance, Fig. 3.7(c) shows

the scale factor from the longer trajectory planning and Fig. 3.7(e) shows the

combination of these, kij. Figure 3.7(f) shows the result of applying the scale

factors to the initial gradient, shown in Fig. 3.7(b).
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3.4.3 Goal

The goal gradient ∇goal is simply a unit vector in the direction of the goal.

∇goal =

[
xgoal − x√

(xgoal − x)2 + (ygoal − y)2
,

ygoal − y√
(xgoal − x)2 + (ygoal − y)2

]T
(3.19)

3.4.4 Control Inputs

Once a desired heading ψdes is determine from Eq. 3.12, the turn rate command is

computed as a function of the difference between the desired current heading.

As described earlier, the estimator provides poor estimates of obstacle location

in the region in front of the camera. A dither term is incorporated which causes

the vehicle to sweep back and forth, resolving the area that would otherwise be

unknown.

ω = c13(ψdes − ψ)c14 + c15 cos

(
2π × t
c16

)
(3.20)

where ω is in units of rad/s and ψ and ψdes are in radians.

To allow smaller radius turns (which may be necessary in environments with

densely packed obstacles) a speed controller is implemented. This allows vehicle

speed to vary (within a set range) with commanded turn rate, which permits

smaller radius turns.

ax = c17 − c18ω (3.21)

Here c17 and c18 are the acceleration control parameters.

3.5 Summary

This chapter has presented a method for navigation through an unsurveyed envi-

ronment. The occupancy grid serves as a map to store the locations of free space

and obstacles. By making a local occupancy grid, the system is tractable and less

computationally intensive while still retaining the information necessary to navi-

gate through the surrounding environment. A convolution is used to translate the

occupancy grid with the vehicle motion. The inverse sensor model updates the

grid with the measurements of bearing and bearing rate obtained from the cam-
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era. A potential field method controller is used to create a desired heading based

on the local occupancy grid and the desired goal location. Lastly, a simple differ-

ence controller generates control inputs based on the current and desired headings.

The next chapter will provide simulation results showing the performance of this

method.



Chapter 4
Simulation Results

The following chapter presents the results obtained from a simulation designed

to test the system proposed in Chapter 3. The simulation consists of navigation

between 100 different starting locations and 3 different goal locations. The simu-

lation is setup to represent a typical environment for navigation given the sensors

described in Chapter 2.

The description of the simulated environment and the definition of parameters

and constants presented earlier are described in Section 4.1. Results are presented

in Section 4.2.

4.1 Setup

To demonstrate the utility of the proposed approach, simulations of flight through

an environment modeled after the McKenna Military Operations in Urban Terrain

(MOUT) site at Ft. Benning, GA (shown in Fig. 4.1) are conducted..

The urban town is made up of a series of walls, each represented by a line of

points. Points are used for convenience in computing bearings and bearing rates to

obstacles. Instead of having to ray cast across a simulated surface, measurements

are computed for each point. The town limits are defined by an ellipse 87 m by

57 m rotated 20.◦ For the perimeter forest, tree trunks are represent by a circle

of 8 equally spaced points. To be sure the algorithm works for all sizes of trees,

diameters vary between 0.5 m and 1.5 m. One hundred and fifty trees are randomly

located outside of the town, but no closer than 8 m to another tree. In addition to
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Figure 4.1. McKenna MOUT Site at Ft. Benning, GA

convenience in implementing the simulation, the use of points to represent objects

corresponds well to the actual computation of optical flow where feature points are

found for each object and tracked across the field of view.

Three goal locations are selected in different parts of the urban setting. One

is close to the center of the town, the other two are between buildings near the

edge of the town. One hundred starting locations are randomly generated. These

locations are either within or outside of the forest. The locations are no closer than

4 m to a tree and no closer than 10 m to one another. This provides an even spread

across the environment while not starting the vehicle in an immediate avoidance

scenario before it has a chance to map the environment.

The simulation is called a success if the vehicle reaches within 2 m of the goal.

If the vehicle comes within 1 m of any obstacle, the simulation is marked as a

failure. Additionally, due to memory constraints, the simulation is allowed to run

for 60 s. As the maximum distance between any starting point and goal is 150 m,

this means that the vehicle must travel faster than 2.5 m/s on the longest route

(ignoring the extra distance required to avoid obstacles).

The local occupancy grid is a square of 30 m per side. As the smallest obstacle

to detect is no smaller than 0.5 m, each grid cell of the occupancy grid is also a

square 0.5 m per side. As stated in Section 2.3, the initial belief of the environment

is uncertainty. Thus, the occupancy grid is initially set with a probability of 0.5

and the log-odds representation of the grid is initialized to zeros.

As stated in Section 3.4, vehicle kinematics are assumed to be non-holonomic
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(i.e. v and v̇ are set to be 0). This is a more challenging example of kinematics than

that provided by a holonomic vehicle both from the standpoint of map generation

and obstacle avoidance: turns are required both to avoid obstacles and to ensure

that obstacles directly ahead of the vehicle are accurately resolved. The vehicle

is initialized with a speed of 4 m/s and pointed in the direction of the goal. This

sometimes positions the vehicle so that it is initially heading towards a tree. This

is one reason for creating the starting locations such that they are no closer than

4 m to any obstacle. Limits are set on the maximum and minimum vehicle speed

and turn rate control input:

2.5 m/s ≤ u ≤ 5.5 m/s

−1 rad/s ≤ ψ̇ ≤ 1 rad/s

Vehicle kinematics are computed at a rate of 50 Hz. The kinematics are also

updated using a second order model (e.g. xt+1 = xt+ ẋ∆t+ 1
2
ẍ∆t). Measurements

of optical flow are sampled at a rate of 10 Hz. Because of this, the controller

only produces control commands at 10 Hz. If the controller were to run more

frequently, there would not be any new information regarding obstacles, only a

possible slight change in the positions of obstacles due to the distance traveled

by the vehicle. As the occupancy grid cells are 0.5 m in size and the vehicle

maximum velocity is 5.5 m/s, the maximum distance the vehicle could travel in the

0.1 s between controller updates, is slightly larger than the length of a grid cell.

As the occupancy grid is only translated in a motion update when the vehicle has

traveled the length of a grid cell, the occupancy grid could displace at maximum

one cell between control updates.

For this simulation, the camera model has a field of view of 90◦ which is divided

equally into 24 measurement regions, each 3.75◦ wide. As discussed in Section 3.2,

there is a maximum range rmax where values of r∗ beyond that return no useful

information. For the parameters used in this simulation, rmax = 27 m. As the local

occupancy grid is 30 m on a side, the furthest distance from the vehicle is 22 m to

the corners of the grid. With rmax = 27 m, this means that all measurements can

be represented in the local occupancy grid.

The standard deviation for parameters which contain Gaussian noise are given

in Table 4.1.
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Table 4.1. Standard Deviations
σβ = 0.625◦ σβ̇ = 1.25 ◦/s

σu = 0.2 m/s σax = 0.05 m/s2

σψ = 1◦ σω = 2 ◦/s

σψ̇ = 0.25 ◦/s

Table 4.2. Constants
c1 = 0.3 c2 = 1 c3 = 15 c4 = 1

c5 = 1.25 c6 = 0.99 c7 = 1.95 c8 = 0.0035

c9 = 1 c10 = 0.75 c11 = 5π
16

c12 = π
6

c13 = 1.1 c14 = 0.85 c15 = 0.45 c16 = 3

c17 = 0.9 c18 = 1.2 wg = 0.0385 wc = 0.9772

There are 18 constants and 1 weighting parameter used in the system design.

The values of these are provided in Table 4.2. Values c1 − c3 are for the inverse

sensor model and are dependent upon the sensor used. The control weighting

parameter wg and control constants c4 − c18 dictate the path followed by the

vehicle. Limited tuning was performed on these values, and they are not necessarily

optimal.

The magnitude of the motion update kernel wc is determined to be 0.9772

based on the speed of the vehicle and resolution of the local occupancy grid. It is

decided that after the vehicle travels half the length of the grid, the certainty of a

grid cell should be halved. For a a grid that is 30 m on a side, this should occur

every 15 m. For a grid cell size of 0.5 m on a side, there will be 30 motion updates

over that span.

wc = 0.5
1
30 ≈ 0.9772 (4.1)

4.2 Results

As previously stated, one run is executed from each starting location to each goal

location for a total of 300 runs. Table 4.3 displays the raw data from these 300

runs. Initially, there appears to be a success rate of 89.33%, with 29 instances

where the vehicle comes closer than 1 m to an obstacle. Upon looking at the data,

in 19 of the 29 runs marked as crashes, the collision occured within the first 2 s of



48

the simulation.

Table 4.3. Results
Goal 1 Goal 2 Goal 3 Total

Success 89 89 90 268
Crash 8 11 10 29
DNF 3 0 0 3
Total 100 100 100 300

These collisions are most likely due to the vehicle being pointed directly at an

obstacle. In an actual application, the vehicle would be aimed so that it is heading

towards the goal, but initially away from any close obstacles. Most likely, these

collisions could be avoided with better initial conditions. Table 4.4 shows the data

if these collisions inside of 2 s are thrown out. The simulation now has a success

rate of 95.37%.

Table 4.4. Adjusted Results
Goal 1 Goal 2 Goal 3 Total

Success 89 89 90 268
Crash > 2 s 2 4 4 10

DNF 3 0 0 3
Total 94 93 94 281

The reason for the three runs which did not finish is unknown. The data for

these runs is not saved so one can only speculate on what occurred. One possibility

is a simple lack of time to complete the course. Two of the 3 were starting at a

distance greater than 130 m from the goal. Looking at the data, they both traveled

over 250 m. The other was initially under 50 m from the goal. It would appear

from this that there was ample time to reach the goal for all three of these runs,

if the vehicle could take a direct line.

Due to the complexity of the environment and the potential field controller, it

is possible that the shortest path to the goal had a lower potential than a longer

path, due to the noisy measurements. In this case, the vehicle could have turned

away from the optimal path to pursue one with a lower potential.

A second possibility is the local minima associated with potential field con-

trollers. While overall the trend is to navigate towards the goal, there possibly

exist spots in the environment where the draw of the goal and the repulsion from
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the obstacles are equal to each other. One such example would be a corridor ending

in a dead end towards the goal. The vehicle is drawn down the corridor to reach

the goal, but is forced to turn away at the end. At some point leaving the corridor,

the draw of the goal turns the vehicle back down towards the dead end, and the

vehicle is stuck in an endless loop. Both of these possibilities could be solved with

a more intelligent control architecture.

For the 273 runs which did not result in a collision, the average distance of

closest approach is 1.786 m with a standard deviation of 0.4262 m. Over all of the

300 runs, the average velocity of the vehicle is 5.1069 m/s.

Figures 4.3 and 4.4 display the results from a representative run of the simula-

tion. Obstacles (shown in gray) are precisely and accurately identified, except for

those directly in front of the camera (as expected). Note that the gradient-based

approach to control causes the vehicle to steer away from space with unknown

occupancy, thus causing the vehicle to turn to improve its knowledge of the area

directly in front. The added dither also aids in the resolution of the unknown area

directly to the front.

Figure 4.5 shows the vehicle flight paths from a sample of 30 successful runs

of the simulation, 10 to each goal. The effect of the added dither control can be

observed when the vehicle operates in open space. When no obstacles are present

to force an avoidance maneuver, the dither control causes a sinusoidal shape to

appear in the vehicle path.

As a particular obstacle remains within the field of view it is localized with

greater accuracy. Further, the confidence that space thought to be unoccupied

actually is free space increases with time in the field of view. The model handles

both small point obstacles and large complex shaped obstacles equally well.

The occupancy grid also maintains its memory of space which has left the field

of view. This aids in the navigation around corners and trees, as the controller

can use the information of what is directly to the sides of the vehicle even thought

it is not currently in view. The convolution successfully translates the occupancy

grid beliefs such that the grid memory is possible. The scaling of the convolution

to less than one does cause the confidence of the cells to fade over time while not

blurring the grid.
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Figure 4.3. Sequence of images from representative run. The vehicle is shown as a
red cranked triangle, camera field of view is shown as green dashed lines. Cell color
represents occupancy probability: red = high, blue = low, green = 50% (uncertainty).
Obstacles are shown as gray lines, where visible the magenta dot is the goal, otherwise
the magenta line points towards the goal.
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Figure 4.4. Continuation of the sequence of images from representative run from
Fig. 4.3. Again, the vehicle is shown as a red cranked triangle, camera field of view
is shown as green dashed lines. Cell color represents occupancy probability: red = high,
blue = low, green = 50% (uncertainty). Obstacles are shown as gray lines, where visible
the magenta dot is the goal, otherwise the magenta line points towards the goal.
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Chapter 5
Conclusion

Flying a small unmanned aerial vehicle (uav) through cluttered environments has

been the motivation for the obstacle avoidance algorithm presented in this thesis.

Missions envisioned for small uavs require low altitude flights among many obsta-

cles such as search and rescue in forests and surveillance in urban environments.

The close proximity and complex nature of these environments requires a system

of navigation and obstacle avoidance using onboard sensors. This thesis focused

on the problem of estimating obstacle locations and safe navigation to a known

goal location using a monocular camera and gps/ins.

The current technologies for obstacle avoidance rely heavily on LIDAR and

RADAR, large sensors with great power requirements. However, payload limita-

tions of small uavs places significant restrictions on sensor size, weight, and power

consumption. With the advent of low-cost, light-weight and low power CCD cam-

eras, the use of vision systems for obstacle avoidance has become an active field of

research. In addition to low power consumption and light weight, vision sensors

are passive, reducing the probability of detection.

The obstacle estimation problem poses many challenges. First, the camera pro-

vides measurements of bearings to obstacles and bearing rates of the obstacles due

to motion of the vehicle (and thus camera). Both of these measurements are heav-

ily corrupted with noise. This greatly reduces the certainty of information obtained

from the camera. Second, the equations governing the vehicle motion and vision

measurements are highly non-linear. The combination of noisy measurements with

non-linear equations leads to significant uncertainties in the estimation problem
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which must be accounted for.

To handle the noisy camera measurements and produce an accurate estimate of

obstacle location, a robust estimator is necessary. In addition to the noisy sensor,

the estimator must also handle sensor dropouts (e.g. a brownout while operating

over a desert). A map is used to store estimates of obstacle locations. The map can

continuously be updated with new information on obstacle location and take into

account the noise in measurements. Additionally, the map retains the estimates of

obstacle locations in the case of sensor dropout so that obstacle avoidance is still

possible.

Traditional mapping techniques based on the Kalman Filter fail in this partic-

ular application. While the feature based approaches work well in environments

populated with point obstacles (e.g. tree trunks in a forest), they quickly become

intractable in large environments or complex environments where obstacles are

difficult to define by features.

An occupancy grid approach is used to map the estimated locations of obstacles.

As local obstacle avoidance is the focus of this research, a local occupancy grid is

used. The local occupancy grid has a limited size governed by sensor field of view

and computational considerations. The origin of the grid is fixed to the vehicle

and in this application the orientation is fixed to an inertial frame. By keeping

the grid centered on the vehicle, vehicle motion must be accounted for in the grid

with a motion update step.

To make the problem numerically better conditioned and easier to implement

computationally, the occupancy grid is represented in log-odds form. This allows

for measurement updates to simply be added to the belief at the previous timestep.

In addition, the motion updates can be performed using a convolution kernel.

Estimates of range to obstacles are produced from the bearing and bearing

rate measurements obtained from the camera and estimates of vehicle state from

an inertial navigation system corrected by gps. The inverse sensor model takes the

estimates of obstacle locations and increases the log-odds of cells corresponding to

these estimates, and decreases the log-odds of cells between the vehicle and the

estimated obstacle.

Vehicle navigation and obstacle avoidance is handled by a potential field trajec-

tory generator. Regions of high occupancy represent high potential (to be avoided)
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and the goal is represented by a sink. The trajectory planner attempts to steer

the vehicle in the direction of steepest decent towards the goal.

A two-dimensional simulation of the described system was performed in an

environment modeled after the McKenna Military Operations in Urban Terrain

site at Ft. Benning, GA. The vehicle was started at various points in a forest

surrounding the town with goal locations inside the town. Out of 281 simulation

runs, the vehicle had a success rate of 95%, colliding with an obstacle 10 times

and not reaching the goal due to time constraints 3 times. The occupancy grid

provided both precise and accurate displays the estimates of obstacle and free

space locations. The longer an obstacle was in the field of view of the camera, the

more certain and more precise the estimated location became. The grid approach

was able to handle both small point obstacles and large complex shaped obstacles

equally well.

5.1 Summary of Contributions

5.1.1 Method for obstacle avoidance

A method for obstacle avoidance using only vision and gps/ins sensors has been

developed. This system fuses estimates of vehicle states from an inertial navigation

system correctly by gps with measurements from a camera to determine relative

obstacle locations.

5.1.2 Estimator design

A map based on the occupancy grid was developed. Obstacle locations relative to

the vehicle are estimated. This information was used by a trajectory planner to

compute a safe path to the goal through a complex environment.

5.1.3 Performance verification through simulations

A simulation is run to test the performance of the designed system. Results of

simulations show that the occupancy grid based implementation provides a solution
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to the navigation problem. The locations of obstacles are accurately estimated and

the vehicle reaches the goal on 95% of the simulation runs.

5.2 Recommendations for Future Work

5.2.1 Trajectory Planners and Controllers

While the gradient-based control algorithm implemented here worked well with an

overall success rate of 95%, it (like all potential field approaches to path planning)

is subject to local minima and the possibility of navigating into dead ends[28].

Additionally, the vehicle did have several collisions which would not be acceptable

in a hardware implementation. A more intelligent trajectory planner should be

used to minimize collisions and produce a closer to optimal path to the goal.

Combinations of global and local path planners has been successful in the

past[13]. Using a path planning routine (such as A* or D*) could provide a route

that leads to the goal, while a local potential field approach could ensure that the

vehicle still steers away when navigating too close to perceived obstacles.

The control algorithm used here also assumed a non-holonomic vehicle (v =

0. Rotorcraft have the unique maneuvering capability of sidewards flight. By

translating laterally, optical flow measurements could be obtained for objects in

front of the vehicle. While a controller to utilize this capability would be more

complicated than the one presented here, this would greatly improve the ability to

resolve the area in front of the camera.

5.2.2 Three Dimensions

The work presented in this thesis accounts for only two dimensions, though the

world is three-dimensional. While the two-dimensional environment used here is

similar in many ways (avoiding tree trunks and building walls), in practice these

small uavs will have to navigate through doorways, under branches, and other

obstacles with vertical components.

While the occupancy grid method used here can work in a third dimension

(becomes a cube-like occupancy grid), the required computer memory and compu-

tational effort will grow exponentially. While three-dimensional occupancy grids
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have been implemented, they used large vehicles with powerful computers[13]. For

the smaller vehicles discussed in this thesis, new techniques might need to be re-

searched to meet the computational requirements.

5.2.3 Hardware Implementation

The simulation results prove that the concept works in theory; however, an actual

hardware implementation will prove if the system can function in real-time. While

the models and equations designed in this thesis can be used in hardware, more

development is necessary. An actual method for calculation of optical flow from

a camera feed needs to be developed. Also, the vehicle will operate in a three-

dimensional environment and thus have 6 degrees of freedom (dof) (in contrast

the the 3 dof in this thesis). While a two-dimensional occupancy grid can still

be used to represent the environment, models of vehicle (and thus camera) motion

need to be derived for the 6 dof.
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