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Abstract

This thesis presents an approach to planning long distance soaring trajectories
which exploit atmospheric energy to enable long distance, long duration flights by
small and micro unmanned aerial vehicles. It introduces the energy map, which
computes the minimum total energy required to reach the goal from an arbitrary
starting point while accounting for the effect of arbitrary wind fields. The energy
map provides the path to the goal as a sequence of way points, the optimal speeds
to fly for each segment between way points and the heading required to fly along
a segment. Since the energy map is based on the minimum total energy required
to reach the goal it immediately answers the question of existence of a feasible
solution for a particular starting point and initial total energy.

The results obtained from energy map are compared with other generic trajec-
tory planners, namely A*. The A* algorithm used uses a cost function which is
the weighted sum of energy required and remaining distance to goal. The effect
of varying the weight parameter on the flight paths is examined. The energy ex-
pended along a path for varying weight is examined, and the results are compared
with a wavefront expansion planning algorithm. The weight is selected based on
maximum energy utilization that is available from the atmosphere and minimizing
time to reach the goal. Optimal weight is selected based on simulation results.

Both the methods of path planning are now used in real wind field data. Energy
efficient routes are found in the real wind field using both the methods.
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Chapter 1
Introduction

This thesis presents path planning through complex wind fields based on energy

harvesting from the atmosphere. The motivation of this research is to enable

Small Uninhabited Aerial Vehicles (uavs, here “small” means hand-launchable)

being capable of long distance long range operations. Small uavs are limited in

range and endurance because of their limitation of fuel that can be carried on

board. Moreover, the best L/D attainable for small uavs is typically much smaller

than for larger aircraft. While improvements in battery technology will enable

longer duration missions, immediate performance improvements can achieved by

harvesting energy available from the atmosphere.

Graph based path planning has been successfully applied for path planning in

mobile robots. Graph based path planning methods are used for identifying energy

efficient routes in the environment. Graph based planning problem poses certain

problems. Firstly the continuous space has to be discretized in such a manner such

that there is no loss of information. Moreover one has to explicitly define discrete

cost of transition through the graph. Moreover information about the world has

to be known a priori.

The thesis will:

• provide a mathematical framework for energy harvesting through any arbi-

trary wind field.

• Introduce a new concept in planning where the solution itself will provide

intuitive understanding about the feasibility of paths
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• Use known planning algorithms modified for this application of energy har-

vesting.

• Present simulation results to demonstrate the effectiveness of using the meth-

ods for energy harvesting.

• Finally use the techniques to find energy efficient routes in the environment.

1.1 Motivation

Birds constantly use atmospheric energy to minimize energy required for their

travel. Indeed, large birds such as hawks (Figure 1.1a)and eagles as well as human

sailplane and hang glider pilots (Figure 1.1b) routinely exploit the energy available

from updrafts of air to fly for hundreds of kilometers without flapping wings or

the use of engines. Migratory birds follow certain routes while traversing there

journey to a distant goal. They all use energy available from the atmosphere. For

this kind of long range paths updrafts is the main source from which energy can

be harvested.

(a) Red-tailed hawk (Buteo jamaicensis). This
bird is widespread throughout North America.
Image source: www.richard-seaman.com.

(b) Gliders using ridge soaring for
long distance travel. Image Source:
http://en.wikipedia.org/wiki/File:RidgeSrn.gif

Figure 1.1. Practical applications where wind energy is used for long distance travel.

Updrafts have three main causes: uneven heating of the ground, which produces

buoyant instabilities known as thermals; long period oscillations of the atmosphere,
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(a) Thermal (b) Ridge Soaring

(c) Wave

Figure 1.2. Different types of updrafts used for static soaring. Image source:
http://www.aerospaceweb.org/question/nature/q0253.shtml

generally called wave, which occurs in the lee of large mountain ranges; and oro-

graphic lift, where wind is deflected by the slopes of hills and mountains. Typically

updrafts have life spans measured in minutes (for thermals) to hours or days (for

ridge and wave lift). Ridge lift and wave are predictable phenomena, and thus one

can use trajectory planning techniques to compute paths which exploit vertical air

motion to enable extremely long distance or duration flights.

A second means of extracting energy from the air uses velocity gradients (which

can occur near the ground due to the boundary layer) or shear layers (which often

occur on the leeward side of mountains and ridges). This strategy, called dynamic

soaring, was first described by Lord Rayleigh in an analysis of albatross flight [1, 2].

Dynamic soaring is again becoming the subject of research both for recreational
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flight (mainly by RC flying enthusiasts) and for uav flight. However, this class

of dynamic soaring generally requires highly agile flight in close proximity to the

ground: this is a very risky endeavor.

The third means of extracting energy from the air exploits gusts. It has been

observed that the flight performance of large birds is improved by gusts, while it

is typically reduced on human-piloted aircraft [3]. This suggests that birds are

able to extract energy from gusts, and indeed Kiceniuk reports that it is even

possible to extract energy from a downward gust [4]! Extracting energy from gusts

is complicated by their typically short duration, hence very fast response (typically

exceeding human reaction time) is required. Control laws have been developed to

enable energy extraction from gusts by small uavs [5].

These three methods of extracting energy from the environment can be used

to enable autonomous long duration, long distance (denoted by (LD)2 flight) for

unmanned air vehicles. These three methods of extracting energy are referred to

as static soaring, dynamic soaring and gust soaring respectively.

The major focus of the thesis is is utilizing static soaring for enabling long

endurance and long range flight. Paths will be planned according to minimum

energy utilization and maximum energy available from the atmosphere.

1.2 Related Work

A rich and varied literature exists in the field of optimal static soaring trajectories

with the application of human-piloted soaring flight.

Autonomous static soaring is now becoming the focus of more research. Sim-

ulation results of thermal flight are reported by Allen (2005) [6] and flight test

results are presented in Allen (2007) [7]. Edwards reports very impressive results

of autonomous thermal soaring [8]. However, these do not consider the problem of

trajectory planning.

Wind routing for powered aircraft has been considered for both crewed and

uncrewed aircraft. Rubio describes a planning method based on genetic algo-

rithms [9]; Jardin discusses a method based on neighborhood optimal control [10].

Neither of these approaches consider the possibility of harvesting energy from verti-

cal components of the wind field. Several authors have addressed the optimal static
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soaring trajectory problem in the context of soaring competition. The MacCready

problem [11, 12], the final glide problem [13], and “Dolphin” flight along regions

of alternating lift and sink [14, 15, 16] all address optimal static soaring including

optimal speed to fly between thermals of known strength. de Jong [17] describes a

geometric approach to trajectory optimization. Most of this research is limited by

known lift distribution (e.g. sinusoidally varying lift [18] or “square wave” lift [19])

and generally do not consider the effects of horizontal wind components.

Recent works including simulation results of thermal flight are reported by Allen

(2005) [6] and flight test results are presented in Allen (2007) [7]. Autonomous

thermal soaring has has also been addressed by Edwards [8]. However, because

thermals are unpredictable trajectory planning is not addressed.

A genetic algorithm approach to flight path planning wind has been addressed

by Rubio [9]. Jardin uses neighboring optimal control [10] for wind routing prob-

lems. But none of these approaches uses the fact that energy can be harvested in

regions of upward moving air.

The focus of this thesis is on planning long-distance soaring trajectories which

harvest energy available from a known wind field (this may be obtained from pre-

dictions generated using meteorological forecasting tools such as MM5 [20]). Pre-

vious research addressed this problem using a probabilistic road map approach [21]

and using a gradient-based optimization [22].

Path planning methods are widely used in robotics application. The concept

of configuration space was first introduced by Lozano-Perez and Wesley [23], [24].

The planning in the configuration space is typically approached using one of the

three methods: search based, sampling based or a combination of both. Search

based methods are most widely used in the field of robotics owing to its ease of

implementation. The idea behind search based planning us simply to search a reg-

ularly sized grid cell which represents the configuration space. The first algorithm

was Dijkstra’s which was a variant of depth first algorithm [25]. In 1968 the A*

algorithm was introduced where the search procedure was narrowed by introduc-

tion of a Heuristic. A* is a complete search algorithm, i.e it will find a path if one

exists, but A* is a static algorithm.

For path planning in soaring application an wavefront expansion approach from

the goal is taken. This method is compared with the A* method where the cost
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function for A* contains energy gains from the atmosphere.

1.3 System Overview

Autonomous soaring is a complex problem. Moreover graphs based techniques are

used to identify energetically favorable routes in the environment. The environ-

ment will first be discretized by placing nodes or way points. It is assumed that

the wind information is known at each node. Using kinematics a mathematical

model is proposed which minimizes energy loss over a segment. It will be shown

that only velocity and thrust coefficient will completely describe the input to the

vehicle. The heading will be dictated by the nodes that the vehicle will fly. The

cost to fly between two nodes will be calculated.

In the first case this energy is minimized only with the restriction that the

vehicle has to always fly towards the goal. Thus energy required at each point in

the environment to reach the goal is found. Paths are obtained from tracing back

from the goal the start point. This is an upper bound on the minimum energy to

reach the goal.

In the second case the restriction of always flying to the goal is removed and

transition to all the neighboring nodes are allowed. A* algorithm is used where

the cost function is a linear combination of energy expended in the transition and

remaining distance to goal.

Both the methods are used in real wind field data.

1.4 Contributions

The major contribution of the thesis are outlined below.

• Path Planning Based on energy Map A new method have been devel-

oped for path planning based on wave front expansion. It is called the

Energy Map. The Energy map is the minimum energy that the aircraft

should have to make it to the goal with the constraint of always flying

to the goal.
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• Path Planning Based on A* algorithm Paths planned by the energy

map approach are compared with A* paths where the constraint of

always moving to the goal is removed and the cost function is a linear

combination of energy harvested from the atmosphere and the distance

to the goal.

• Routes of Minimum Energy in Real Wind Data real wind field data

is used to detect minimum energy routes by both the methods.

1.5 Readers Guide

The reminder of the thesis is organized is follows

• Chapter 2 describes the energy harvesting problem mathematically. Mini-

mizing energy over a segment is discussed and the cost function associ-

ated with graph based planning is detailed.

• Chapter 3 describes how graph based solutions are used to solve this kind

of problems. A single destination shortest path problem aka the Energy

map is discussed and the performance of energy map is sample wind

fields are performed.

• Chapter 4 defines how heuristic search procedures can be used for soaring

application. An useful cost function is found through simulations in

different wind cases.

• Chapter 5 original wind data obtained from the Meteorological Depart-

ment of Central Pennsylvania. The two different methods are tested in

this wind data and energy effienct rouotes are determined in given wind

field.

• Chapter 6 presents the concluding remarks and future works.



Chapter 2
The Planning Problem

The following chapter defines the path planning problem based on energy harvest-

ing from the atmosphere. The major topics discussed are

1. Problem Statement: The setup of the path planning problem is described.

Discretization of the environment is detailed and graph based path planning

is proposed for flight path planning.

2. Kinematics and Energetics of Soaring Flight: A mathematical model is de-

rived for the kinematics of soaring flight. Different cases for minimizing

energy required for flight between two particular nodes with arbitrary wind

is discussed

3. Graph Based Path Planning: Different graph based path planning techniques

are introduced and why certain other graph based techniques cannot be used

in this application is discussed.

2.1 Problem Statement

The problem considered here is a given a certain wind field what is the best path

to the goal utilizing maximum energy from the environment. Energy is available

from the vertical component of wind (i.e updrafts). It is assumed that a priori in-

formation about the wind field is available (this may be obtained from predictions

generated using meteorological forecasting tools such as MM5). Graph based tech-
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Figure 2.1. Schematic of graph-based planning for autonomous soaring over a wind
field.

niques have been successfully implemented in many robotic application for path

planning. The robot’s configuration space is divided into finite number of regions

(or nodes), and the planning problem is reduced to finding a sequence of of neigh-

boring nodes between the start and goal nodes(e.g. Stentz [26]). These graph-based

techniques have been used very successfully in many wheeled ground robot path

planning problems and have been used for some uav planning problems, typically

radar evasion [27]. However, these techniques typically only consider a fixed cost

for a transition between nodes in a graph (e.g. time required) and vehicle speed is

kept constant. In aircraft applications total energy can be a critical parameter in

trajectory planning (for example, when considering the fuel required to reach the

goal). Both environmental and control parameters can affect the energy required

for a particular transition: a head wind will increase the required total energy,

as will flying at non-optimal airspeed. Thus any graph-based planning technique

will require a means of accounting for environmental and control conditions in the

analysis of costs of transitions between nodes or cells.
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Figure 2.1 shows a schematic of graph based planning applied to autonomous

soaring. Contours show the vertical component of wind, with red showing upward

motion (allowing energy harvesting) and blue showing downward motion. The

environment is first seeded with waypoints (or nodes) and edges. This set of nodes

i = {i = 0 . . .m} (with i = 0 denoting the goal) and edges ij = {i = 0 . . .m, j =

0 . . .m} connecting nodes define the allowable paths to the goal. Each edge ij is

assigned a constant wind vector wij with components wx,ij, wy,ij, and wz,ij. Wind

field information is assumed to be available a priori. Figure 2.1 shows a sample

grid where the set of nodes are generated randomly. The black dot is the goal

node and the white dots are randomly placed nodes to discretize the environment.

The line segment joining two nodes are the edges. Here the energy required to

complete a transition forms a major part of the cost function of a transition. Note

that the energy eij required to complete a transition from node i to node j is not

necessarily the same as eji. Once the graph has been defined a minimum cost path

can be found between any two nodes.

2.1.1 Minimum energy paths

The minimum total energy required to complete each of the transitions in the

graph (note that the energy eij required to complete a transition from node i to

node j is not necessarily the same as eji) has to be calculated. The trajectory

planning problem then becomes a problem of finding the minimum energy path

through the digraph to the goal, i.e. the sequence of nodes n which minimizes the

energy required to reach the goal

egoal =
∑

i∈n,j∈n
eij (2.1)

Several techniques have been developed to compute cost-minimizing paths

through a graph. Dijkstra’s Algorithm is not applicable here because it is re-

stricted to problems where edge costs are non-negative, and the Bellman-Ford

algorithm encounters problems when negative cycles exist [28]. In this application

a non-negative edge cost implies energy gain, which occurs with flight through an

updraft of sufficient strength. Negative energy cycles occur when the aircraft flies
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Figure 2.2. Track coordinate frames (left) and resolution of airspeed and wind vectors
into the track coordinate frame (right).

repeatedly between two nodes, gaining energy with each trip.

The path planning problem is thus composed of:

• Defining the distribution of nodes and edges. Ideally the node distri-

bution will account for changes in wind field, with higher density in regions

of rapidly changing wind.

• Determining costs for each edge. This involves computing the cost of

transition along each edge in the graph. Here energy expended is the main

contributor to this cost.

• Finding a minimum cost path through the graph.

The problem of node distribution is not discussed in this thesis. Regular (but

not necessarily uniform) Cartesian grids are used here.

2.2 Flight between two nodes

The first part of determining the cost of transition is defining the kinematics of

flight between two neighboring nodes. Referring to Figure 2.2 the line segment

joining two successive nodes is the desired ground track. The velocity of the vehicle

is decomposed into in-track vt and cross track vc components, hence to maintain

flight along the desired ground track vc = 0. The wind vector is also decomposed
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into in-track wt and cross-track wc components. vg is the ground speed of the

vehicle.

From Figure 2.2 the relationship between air speed, ground speed, heading and

ground track for an arbitrary horizontal component of wind can be obtained:

vt =
√
v2

a cos2 γ − w2
c (2.2)

vg = vt + wt (2.3)

va cos γ sin β = wc (2.4)

where vg is the magnitude of the ground speed, va cos γ is the projection of the

airspeed vector onto the horizontal plane and β is the angle between the airspeed

vector and the desired ground track. Recall that flight path angle γ is assumed

to be small, hence cos γ ≈ 1 and the ground speed is vg ≈
√
v2

a − w2
c + wt. The

constraint vc = 0 is expressed in Equation 2.4.

The aircraft heading to maintain the desired ground track is ψ = ψt−β. Hence

ψ = ψt − sin−1 wc

va

(2.5)

Clearly heading ψ is dependent on airspeed va. The problem now is to deter-

mine the optimal value of airspeed va and thrust coefficient CT for flight between

two nodes. This will be done by analyzing the energy required to fly the path

segment between the nodes.

2.3 Vehicle Kinematics and Energetics

It is assumed that an on-board controller is able to follow heading, airspeed and

throttle commands. Moreover, it is assumed that response to step changes in

commands is very fast compared with the duration of a particular command. Hence

a point mass model is sufficient to describe vehicle motion for planning purposes

(Figure 2.3). Vehicle kinematics are given by

ẋ = va cos γ cosψ + wx (2.6)

ẏ = va cos γ sinψ + wy (2.7)
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Figure 2.3. Point mass model.

ż = va sin γ + wz (2.8)

where va is airspeed, γ is flight path angle with respect to the surrounding airmass,

ψ is heading and wx, wy and wz are the three components of the 3d wind vector.

The flight path angle γ is a function of airspeed va and throttle setting T , and

can be obtained for steady flight. From (Figure 2.3) resolving forces parallel and

perpendicular to the flight path,

mg cos γ = L+ T sinα (2.9)

mg sin γ = D − T cosα (2.10)

where m is mass of the vehicle and α is the angle of attack (nb this implicitly

assumes that the thrust axis is aligned with the aircraft’s body-x axis). Using the

standard definition of force coefficients,

cos γ =
qS

mg
(CL + CT sinα) (2.11)

sin γ =
qS

mg
(CD − CT cosα) (2.12)
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where CL and CD are lift and drag coefficient, q is the dynamic pressure, S is the

wing area, g is gravitational acceleration constant.

It is assumed that the flight path angle γ is small, hence sin γ ≈ γ and cos γ ≈ 1.

During trimmed cruise flight angle of attack is generally small (3◦ to 6◦) and thrust

is significantly smaller in magnitude than lift. Hence it is further assumed that

CT sinα is negligible compared with CL. From Equation 2.11

CL =
mg

qS
=

2mg

ρv2
aS

(2.13)

Here CL is lift coefficient, ρ is density of the air, and S is wing area. A poly-

nomial approximation is used for the aircraft’s drag polar:

CD =
n∑

i=0

aiC
i
L (2.14)

Typically a second order polynomial is used to represent drag coefficient. How-

ever, this is often only valid over a fairly narrow speed range, and here a fourth

order polynomial is used.

Substituting into Equation 2.12, the air mass relative flight path angle for a

particular speed and thrust can thus be computed as

sin γ =
qS

mg

(
n∑

i=0

aiC
i
L − CT

)
(2.15)

Combining Equation 2.13 with Equation 2.15 and vehicle kinematics, the vehi-

cle’s flight path is completely specified by inputs u = [va ψ CT ]T and wind speed

w. This model is adequate as long as the length of time of each trajectory segment

is large compared with the time constant of the vehicle’s step response with respect

to the inputs u.

The inputs va and CT affects the energy expended during the flight, thus the

choice of input is critical to energy efficient flight.
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2.4 Minimizing Energy Loss

Using the kinematics defined earlier the steady state airspeed which minimizes the

energy lost over a segment (or equivalently, maximizes the energy gained) will be

determined. Total energy is

Etot = mgh+
m

2
v2

a + Es (2.16)

where h is altitude and Es is on-board stored energy. Specific total energy is

etot =
Etot

mg
= h+

v2
a

2g
+
Es

mg

= h+
v2

a

2g
+ es (2.17)

Minimizing energy lost over a segment means maximizing ∆etot

∆s
. In steady state

flight this is equivalent to maximizing ė
vg

, in other words flying to maximize range.

The rate of change of specific energy is

ėtot = ḣ+
vav̇a

g
+ ės (2.18)

In steady flight acceleration is zero, hence

ėtot = ḣ+ ės = −ż + ės (2.19)

Recall that z is positive down and ż is defined in Equation 2.8.

The quantity ės is the rate of change of on-board stored energy. This is depen-

dent on motor power and the efficiency of energy conversion.

ės = − Tva

mgηecηp

= − qS
mg

CTva

ηecηp

(2.20)

where ηec is the net efficiency of energy conversion from source to shaft (in electrical

power systems this is the product of motor efficiency and speed controller efficiency)

and ηp is the propeller efficiency.
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Thus the rate of change of total energy (in steady state flight) is

ėtot = −(va sin γ + wz)− qS

mg

CTva

ηecηp

(2.21)

and maximum range flight occurs when one maximizes

ėtot

vg

= − va sin γ + wz√
v2

a − w2
c + wt

− qS

mg

CTva

ηecηp

(√
v2

a − w2
c + wt

) (2.22)

There may be cases where on-board energy is especially valuable (for example,

to maximize time on station at the goal). In this case a reward function which

weights stored energy more heavily may be appropriate.

re =
ḣ

vg

+ µ
ės

vg

(2.23)

Here setting µ > 1 will increase the importance of conserving on-board energy.

Hence the problem is to find the airspeed va and throttle setting CT which

solves the optimization problem

maximize
ḣ

vg

+
ės

vg

(2.24)

subject to ḣ = −va sin γ − wz (2.25)

vg =
√
v2

a − w2
c + wt (2.26)

sin γ =
qS

mg

(
n∑

i=0

aiC
i
L − CT

)
(2.27)

va,min ≤ va ≤ va,max (2.28)

CT,min ≤ CT ≤ CT,max (2.29)

vg > 0 (2.30)

The constraint defined by Equation 2.27 defines the air mass relative flight path

angle. Equation 2.26 and Equation 2.30 together ensure that the vehicle always

proceeds forward along the desired ground track. Airspeed limits are defined by

Equation 2.28 and thrust coefficient limits are defined by Equation 2.29

Since e has dimension distance, ė
vg

is a dimensionless quantity. Equation 2.13
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and Equation 2.15 together show that flight path angle with respect to air is a

function of airspeed and throttle setting (because in trimmed flight CL is a function

of airspeed). Hence for flight paths ė
vg

is a function only of airspeed and thrust

coefficient, and the airspeed and thrust coefficient which maximizes energy gained

over a segment can be computed. Note that in zero wind the energy change is

always negative.

Under certain conditions additional constraints may exist (e.g. gliding flight,

constant altitude flight). Constraints such as altitude limits can also be added as

needed.

2.4.1 Gliding flight

For gliding flight CT = 0 and ės = 0. The only free control input for flight along

a path segment is airspeed, and the optimization problem is

maximize
−(va sin γ + wz)√
v2

a − w2
c + wt

(2.31)

subject to sin γ =
qS

mg

n∑
i=0

aiC
i
L (2.32)

CL =
mg

qS
(2.33)

va,min ≤ va ≤ va,max (2.34)

vg > 0 (2.35)

This effectively minimizes the flight path angle with respect to the ground, and

if upwards component of wind is large enough the earth relative flight path angle

will be negative. The constraints of equation Equation 2.32 and Equation 2.33

define steady state flight.

In zero wind this will result in flight at best L/D.

2.4.2 Constant altitude flight

Many missions include altitude restrictions (for example to ensure separation or

to ensure appropriate sensor coverage). Hence aircraft motion will be restricted

to constant altitude. This has the additional benefit of reducing graph size (since
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there is no need to discretize in the vertical direction), improving computational

feasibility.

At constant altitude ḣ = 0. Hence va sin γ = −wz:

sin γ =
qS

mg

(
n∑

i=0

aiC
i
L − CT

)
= −wz

va

(2.36)

and the optimization problem becomes

maximize
ės

vg

(2.37)

subject to
qS

mg

(
n∑

i=0

aiC
i
L − CT

)
= −wz

va

(2.38)

vg =
√
v2

a − w2
c + wt (2.39)

va,min ≤ va ≤ va,max (2.40)

CT,min ≤ CT ≤ CT,max (2.41)

vg > 0 (2.42)

The constraint defined by Equation 2.38 limits the vehicle to constant altitude

flight. Equation 2.39 and Equation 2.42 together ensure that the vehicle always

proceeds forward along the desired ground track. Airspeed limits are defined by

Equation 2.40 and thrust coefficient limits are defined by Equation 2.41.

Thus this constraint will ensure that the vehicle will fly in constant altitude

and ės

vg
will be maximized by increasing either the kinetic energy or by minimizing

energy expenditure.

2.5 Regenerative Soaring

For battery powered aircraft a wind milling propeller (or a ram air turbine) can

be used to recharge batteries at the cost of increased drag. One can thus trade

potential energy (altitude) for stored electrical energy. When flying through a

strong enough updraft it is possible to either:

• gain potential energy by climbing at constant speed
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• gain kinetic energy by flying at higher speed but at constant altitude

• gain stored electrical energy by flying at constant speed and altitude and

windmilling the propeller.

Of course a combination of the three can also occur.

Using a windmilling propeller to gain electrical energy is known as regenerative

soaring, and was first described by MacCready. [29]

In the context of the optimization problem posed above, setting CT,min = 0

means that regeneration cannot occur (as ės, the energy expended from the on-

board supply, has a minimum value of zero). Permitting negative values of CT,min

implies that ės can be positive quantity (Equation 2.20), and thus the energy

(potential and/or kinetic) can be transferred to batteries.

For constant altitude flight ės signifies cost of transition between two nodes.

Energy expenditure ės will in general be positive, i.e, energy is required to make

a certain transition. Thus ės < 0 means negative energy expenditure or gaining

energy from the atmosphere which can be stored by charging the batteries. There

is a limit to the amount to which the batteries can be charged. Thus regenerative

soaring is allowed up to the full capacity of the batteries and once the batteries

have been fully charged CT,min is set to zero.

2.6 Cost Of Transition between Nodes

The energy required to fly a segment of the flight path can thus be found using the

approach discussed above. This can now be used to define the cost of a transition

in the graph which is used to discretize the planning problem. The cost of a

transition is defined as

cij = − ė

vg

∣∣∣∣
ij,opt

(2.43)

i.e. the energy expended in a transition. A generic function minimizer (such

as MatLab’s fmincon) can be used to find vopt
a and Copt

T which minimizes cij while

ensuring that constraints such as airspeed limits (stall and maximum speed) are

not exceeded. Once vopt
a has been computed the required heading to maintain the
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desired ground track between the start and end nodes is computed from Equa-

tion 2.27.Recall that in the optimization problem defined above, the change in

energy for a flight segment is maximized. The optimal energy cost of a transition

is thus the negative of this optimal energy change. The procedure outlined above

is used to find the minimum energy loss c∗ij, optimal airspeed vopt
a and required

heading to fly the desired ground track for each of the allowable transitions in

the environment. Once the cost of transition have been defined a graph based

approach can be used to find minimum cost paths through the environment.

2.7 Examples of Optimal Velocity and Thrust

Coefficient for SB-XC glider

For the rest of the thesis calculations were performed for an RnR Products SB-

XC glider; parameters are given in Appendix A. This section will provide some

intuitive understanding of various parameters that are calculated in the different

section.

Based on optimization criteria in the previous section for different wind cases

the optimal speeds and and optimal thrust coefficient for the SB-XC glider are

calculated. In all the cases the aircraft is constraint to flight at constant altitude

which is used in flight path planning.

Table 2.1. Optimal Speed and Thrust Coefficient for SB-XC glider.
wind vopt

a Copt
T

Zero wind 15.8 m/s 0.0238
Upward wind of 1m/s 14.6 m/s -0.0228

with regeneration
Upward wind of 1m/s 21.6 m/s 0
without regeneration

Downward wind of 1m/s 20.8 m/s 0.0342
Headwind 1m/s 15.9 m/s 0.0234
Tailwind 1m/s 15.7 m/s 0.0242

It can be seen from Table 2.1 at zero wind condition for minimum energy

expenditure the aircraft flies at best L/D and the the velocity of the aircraft at

best L/D is 15.8 m/s. In upwards moving air the aircraft either flies faster (thus
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increasing kinetic energy) if regeneration is not allowed or flies with negative thrust

coefficient (recharging batteries) if regeneration is allowed. While moving through

downward wind the velocity increase to reduce the time over which downward air

motion affects the aircraft. A tail wind results in an airspeed below best L/D in

still air and a headwind results in flight at an airspeed greater than best L/D in

still air.

2.8 Graph Based Path Planning

Graph based planning methods are extensively used for mobile robots trajectory

planning. Path planning methods transform a continuous problem (ie, finding a

path to a distant goal) into a discrete problem of searching a graph between initial

node and goal node. The goal is to find a “shortest” path from the start to the

goal. The “shortest” path will be based on the discrimination of the cost [30].

2.8.1 Single Source Shortest Path(SSSP)

The shortest path problem is the problem of finding a path between two vertices (or

nodes) to minimize the sum of weights of the individual edges. The environment

is first seeded with nodes with a weighted directed graph. The weight functions

being real valued weights. Edge weights can represent time, cost ,penalties, loss

or any other quantity that accumulates linearly along a path that one wants to

minimize. In this particular case the energy required for each transition forms

the most important part of the cost function. Note that the energy required ei,j

required to complete the transition from node i to j is not necessarily same as the

energy required for transition from j to i (headwind becomes a tail wind). Further,

in some cases energy can be harvested along a transition (e.g. when flying through

an updraft), leading to a negative transition cost. The cost can also be a linear

combination of one or two of the individual costs that are described, eg. a linear

combination of either of energy expended, distance, time.

There are many variants of SSSP.

1. Single-Destination shortest path problem

2. Single-pair shortest path problem
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3. All pair shortest path problem.

In single destination shortest path shortest path is found to a given destination

from each vertex. If this problem is solved one also solves the Single pair shortest

path problem. The all pair shortest path problem is not considered here. Most

robotic application requires single pair shortest path problems. There are plenty

of known algorithms of solving single pair shortest path problems.

Because of the presence of negative transition cost, as the aircraft can gain

energy from updrafts Dijkstra’s algorithm is thus not applicable here. Further,

negative cycles are likely to exist (e.g. when the aircraft flies repeatedly through

an updraft, gaining energy with each cycle). Hence the Bellman-Ford algorithm

cannot be directly applied [28].

Finding the shortest path between the start and goal node will be answered

in this thesis with two different flavors. First a single destination shortest path

approach is taken. Thus shortest path to the goal from all nodes of the domain are

calculated. This method not only provides a possible path to the goal, but also

computes the minimum energy required to reach the goal from anywhere in the

domain. This is an important criteria because this will enable one for feasibility

of flights between two certain points in the environment.

Another approach for solving the shortest path will be answered using A* algo-

rithm. A* is a classical algorithm [Hart, Nilsson and Raphael,1968] [Nilsson,1980].

Under simple conditions A* is guaranteed to return a path of minimum cost when-

ever a path exists, and to return a failure otherwise. In this particular case the

feasibility of such paths will be checked based on energy requiremnets and time

constraints.

A careful comparison is made between both the methods and both the methods

are tested against real wind field data.

2.9 Summary

This chapter has defined the use of graph based techniques to solve the path

planning problem defined by energy constraints. The section of kinematics and

energetics has given an insight into the equations of motion and what is being

optimizing to maximize energy gained from the atmosphere. Optimal speed and
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thrust coefficients for SB-XC glider through different wind conditions are calcu-

lated. Finally how graph based techniques can be used for solving these kinds of

problems have been discussed.The two distinct methods of solutions are discussed

in the next chapters. The success of Graph based techniques have been exploited

to be used in soaring applications. The next chapter will demonstrate single source

shortest path techniques to effectively plan in presence of arbitrary wind in order

to minimize energy expenditure of the batteries.



Chapter 3
The Energy Map

In this chapter graph based planning techniques has be implemented in planning

soaring trajectories. A variant of Single destination shortest path problem has

been devised which is hence forth referred to as energy map.

3.1 Introduction

Recall that standard graph search algorithms such as Dijksta’s Algorithm and

Bellman-Ford Algorithm cannot be directly applied to the problem of autonomous

soaring. However, adding constraints can allow the problem to be solved. To

remove problems associated with cycles one can add constraints: e.g. A* only

allows a node to be visited once. Another approach is to constrain transitions

so they are always towards the goal. This is a rather severe constraint, however

it enables very fast computation of minimum energy paths to the goal through

wavefront expansion.

This wavefront expansion method allows the definition of a map which specifies

the minimum energy required to reach a goal from anywhere in the environment.

This map (denoted by energy map) actually defines an upper bound on the mini-

mum energy required to reach the goal: the constraint of transitions towards the

goal means that a lower-energy path may actually exists. However the energy map

can immediately answer the question of existence of a feasible path to the goal: if

a vehicle begins with higher energy than that defined by the energy map, then it

is guranteed to have a feasible path to the goal.
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3.1.1 Map Definition and Minimum Energy Paths

To define the energy map, the environment is first seeded with waypoints (or nodes)

and edges. This set of nodes i = {i = 0 . . .m} (with i = 0 denoting the goal) and

edges ij = {i = 0 . . .m, j = 0 . . .m} connecting nodes define the allowable paths

to the goal. Each edge ij is assigned a constant wind vector wij with components

wx,ij, wy,ij, and wz,ij. Wind field information is assumed to be available a priori.

After the set of nodes and the set of allowable transitions has been defined, the

cost of each transition is computed. In steady state flight, the energy eij required

to fly from node i to j is a function of the wind vector wij, air speed va and throttle

setting T . The heading ψij required to fly along the desired ground track between

the two nodes is a function of the horizontal component of the wind field and the

air speed. The problem of computing va which minimizes the energy required for

transition ij is discussed in Section 2.3.

It is assumed that the vehicle is in a trimmed, steady state condition during

each transition over an edge ij, and the time required to change from one trim

condition to the next as a node is passed is short compared with the length of time

required to complete a transition.

Aside from the constraint that the time required to complete a transition at

a particular trim condition is long compared with the time required to change

trim conditions from one transition to the next (which defines the minimum node

spacing), node placement is arbitrary. Higher node density can thus be used in

regions where spatial gradients in wind field are large, allowing higher resolution

trajectories when necessary.

3.1.2 Minimum Energy Paths via Wavefront Expansion

An example discretization is shown in Figure 3.1. The goal is shown as the black

circle and allowable transitions are shown as a black circle and allowable transitions

are shown as arrows. To generate the energy map, the set of nodes is first ordered

by increasing distance to goal, and transitions which simultaneously satisfy the

condition of being to a neighboring node and reducing the distance to the goal are

defined as allowable.

The energy to reach the goal is computed for the group of nodes nearest the
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Figure 3.1. Sample regular Cartesian grid showing allowable transitions for wavefront
expansion. The goal is at the center of the grid.

goal, and the energy corresponding to each node is defined as their respective

costs-to-go. For the next group of nodes the energy required to reach nearest

neighbors in the first group is computed, and the cost-to-go for each node is the

minimum total energy over all possible paths to the goal. The process continues

until energy to goal has been computed for each node. This is a breadth-first

dynamic programming approach, and with the constraint that transitions must

always end in nodes nearer to the goal, the resulting energy map gives an upper

bound on the minimum energy required to reach the goal from any point in the

environment.

In this approach each node is encoded with the total energy required to reach

the goal (i.e. the cost to go), the next node in the path to the goal, and the control

inputs (speed to fly and heading) required to reach the next node. The energy

map thus encodes a complete path to the goal from anywhere in the environment.

Further, it provides a means to check the feasibility of a path to the goal for an

aircraft with a particular initial position and initial total energy.

Note that paths found using this method are not necessarily minimum energy

approaches: since paths are constrained to always approach the goal, trajecto-

ries which are more energy efficient may exist. Such a path would first proceed



27

away from the goal before turning towards it. However, relaxing the constraint

that the goal must be approached would make the wave front expansion approach

computationally intractable for large environments.

A critical criterion in hardware implementation is the time required to com-

pute a solution. Fast planning solutions permit on-line re-planning as changes in

the environment (i.e. the wind field) occur. Here, the definition of nodes and the

allowable transitions between nodes is pre-determined and stored in a tree. Com-

puting the costs of allowable transitions and maintaining the minimum cost to go

for each node can thus be performed quickly.

3.2 Energy Maps for Horizontal Wind Fields

To demonstrate the energy mapping approach energy maps for some simple wind

fields are computed.

Calculations were performed for an RnR Products SB-XC glider; parameters

are given in the Appendix. The SB-XC glider is an electrically powered aircraft.

Regenerative soaring is allowed in these simulations. The battery pack is assumed

to be a 4S1P (4 series, 1 parallel) lithium-polymer battery with total capacity of

4.9 Ah. Pack voltage is 14.8V, resulting in a total capacity of 261 kJ. At a vehicle

mass of 10kg the specific energy of the pack is 2748m. For simulations presented

here this is reduced to 2500m. Thus for regenerative soaring the total energy

expenditure is permitted to reach a minimum of -2500m. Positive values of energy

expenditure thus represent energy lost and negative values of energy expenditure

represent energy gained from the atmosphere.

3.2.1 Constant Wind

Simple cases of zero wind and horizontal air motion(wind blowing along x axis) are

considered. The mesh surface represents the total energy required at that point to

reach the goal and the black stream lines on the plane z=0 shows the flight paths

to the goal.

From Figure 3.2 shows expected results for the zero wind case. The energy

required to reach the goal increases steadily with the distance to the goal. The
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stream lines also suggest that flying straight to the goal is the best option for

minimizing energy required. The horizontal component of wind ”tilts” the cone

so that starting points downwind of the goal require more initial total energy to

reach the goal than starting points upwind of the goal. The path to the goal also

modifies accordingly. This also matches intuition.

Note that uniform Cartesian grids are used, and the effect of the grid can be

seen in the solutions. Instead of straight line paths manhattan distances are found

to be favored by the trajectory planner. A polar grid will not only smooth cone in

the zero wind case but also straight line trajectories to the goal will be observed.
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Figure 3.2. Energy maps for a uniform horizontal wind fields..

3.2.2 Horizontal Wind Shear

Wind shear is considered in the second case. Here the horizontal component of

wind varies linearly from wx = 10m/s at y = -5000 to wx = -10m/s at y = 5000.

The energy map as well as trajectories to goal are shown in Figure 3.3. A ”twist” in

the energy map as expected is noticed. The optimal trajectories are also modified

accordingly. The vehicle maximizes exposure to favorable winds and minimizes

exposure to unfavorable wind. Starting points in the regions x > 0, y > 0 and

x < 0, y < 0 show flight paths that remain in the region of high tailwind before

turning to approach the goal. For starting points in the regions x > 0, y < 0 and
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Figure 3.3. Constant wind shear energy map and minimum energy flight paths.

x < 0, y > 0 the same is true: flight paths begin with motion towards regions of

more favorable wind before turning towards the goal.

3.3 Ridge soaring

(a) Digital elevation map of Pennsylvania
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(b) Cross section of parallel ridges and wind
field

Figure 3.4. Subfigure (a): Topography of central Pennsylvania showing Appalachian
mountains; Subfigure (b): Schematic of ridges and potential flow solution of wind field.

To demonstrate energy maps applied to flight path planning consider flight to

a distant goal in terrain representative of the ridges of Appalachian Mountains

of Central Pennsylvania.(Figure 3.4). A distance of 12 km separates two parallel

ridges.A global coordinate frame is defined with y parallel to the ridges, so that
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the ridge centerlines are located at x = 4km and x = 16km. Each ridge is modeled

as an infinitely long hemi-cylinder with radius of 300m, to compute the wind field

a potential flow method is used. Potential flow cannot model flow separation on

the downward side of the ridges. But upward air motion is found on the upwind

side. This upwind side is the favorable side where one expects the glider to gain

energy. Intuition suggests that the glider will tend to follow the upwind sides of

ridges, thus the flow on the downwind sides of ridges is less critical to trajectory

planning (except for the times when the vehicle must traverse these non-favorable

regions). The results will verify intuition.

The origin is located at (0; 0) and the energy map is computed for an area

defined by 0 ≤ x ≤ 20km and 0 ≤ y ≤ 100km. Here the wind field is computed

at an altitude of 310 m and it is assumed that the wind field does not vary with

altitude. The altitude is chosen in such a manner such that it is sufficient to

just clear the ridges. Uniform grid spacing is not desirable in terms of practical

use. This is because uniform grid spacing may result in inaccurate energy maps,

because it is assumed that wind field is constant over an edge or may result in

excessive computational requirements (using very fine meshing for example). For

this example a non uniform Cartesian grid is used, with finer grid spacing over the

ridges, where the wind field changes rapidly over short distances. And wider grid

spacing is used between the ridges where the wind is roughly constant. Figure 3.4b

shows a vector plot of the computed wind field at the x coordinates of the grid.

Spacing varies from a minimum of 100m to a maximum of 1000m. Grid spacing

in the y direction is constant at 1000m.

Energy maps for two different cases are considered. In the first case regenerative

soaring is not allowed, i.e minimum thrust coefficient of the aircraft is set to zero.

Since the aircraft is constraint to move in a plane thus in the regions of upward

moving air the speed of the glider increases considerably and no energy is required

by the aircraft to travel in these cases.

Figure 3.5 shows the energy map and and paths to fly for a wind field resulting

from wx,∞=-5m/s (which results in maximum vertical component of wind of ap-

proximately 3m/s along the ridge). The minimum sink rate of SB-XC glider (i.e.,

minimum rate of altitude loss in still air) is 0.56m/s. Hence the maximum vertical

wind speed is enough to gain energy from the ridges. Figure 3.5 shows energy
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Figure 3.5. Energy Map and paths to the goal in case of Non-Regenerative soaring.

maps regenerative soaring is not allowed. Thus in the regions of upward moving

air the energy required to reach the goal remains constant. Constant altitudes of

energy in the regions of upside of the mountain ridges are observed. Thus once

the aircraft flies into such a region it does not need to expend any energy from its

onboard energy source and glide with an elevated speed. There is a small region

near the goal where the best path indicated is to directly fly towards the goal. But

this region is quite small since it is always advantageous to fly towards the ridge

and then proceed towards the goal.

Typically paths follow the upwind side of the ridges. Because regeneration is

not permitted (and neither is altitude gain) it is not energetically favorable to

fly along the ridge at x = 16. It is seen that in the region from y0 ≥ 60 and

x0 ≥ 15 paths instead of following the ridge at x = 16 crosses over and comes

directly to the near ridge and follows the near ridge before proceeding towards the

goal. This happens due to the fact that following any of the ridges are energetically

equivalent. Since energy is not gained in the ridges in terms of stored energy which
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Figure 3.6. Energy Map and paths to the goal in case of Regenerative soaring.

is the driving criteria for the path planning. The maximum energy required from

the farthest point to make it to the goal is around 1900 m.

Figure 3.6 shows energy maps where regenerative soaring is allowed. As ex-

pected when regenerative soaring is allowed the aircraft can gain a lot of energy

from the ridges. Negative energy implies that the aircraft can start with less than

fully-charged batteries and still reach the goal. Flight paths are also modified ac-

cordingly. One can now see that trajectories starting from region y0 ≥ 60 and

x0 ≥ 15 stick to the far ridge and only make a transition to the other ridge when it

is equal in terms of energy. The region of attraction for the far ridge is much wider

in this case. Also path constraint dictates how much energy can be gained from

the ridges. When regeneration is allowed the maximum energy that can be gained

from the atmosphere is almost equal to the total battery capacity of the aircraft.

Thus one can gain enough energy starting from anywhere and still reach the goal.

Missions involving perpetual endurance can be looked upon as long as the winds

keep blowing. Given the constraints on the flight path it is not possible to fully
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charge the battery to its maximum value of 2500m in this environment. How-

ever, relaxing the progress to goal constraint does allow full charging (discussed in

Chapter 4).

3.4 Conclusion

This chapter has defined the Energy Map. The Energy Map approach has been

successfully implemented is sample wind cases. The energy map provides energy

efficient routes which an airplane should follow to minimize usage of on board

energy supply. In addition to providing energetically favorable routes the Energy

Map also provide the energy required at each point in the domain to make a flight

to the goal. The energy requirement provided by the energy map will immediately

answer the question of feasibility of the solution with the aircraft constraints. The

important drawback of the energy map is the restriction of always moving towards

the goal. The next Chapter demonstrates how much energy can be gained from

the ridges if the path constraint of always moving towards the goal is removed. A

critical analysis on how much energy is lost by removing the constraint of always

moving towards the goal will be made.



Chapter 4
Optimal Paths via Heuristic Search

This chapter describes how heuristic searches can be used for soaring application.

The success of heuristic searches is well known for robotic applications. Thus

heuristic search procedure will be used for soaring applications.

One can use a variety of informed or heuristic searches to search the nodes of

the environment to find the minimum cost path. The A* algorithm is a best-first

search algorithm that finds the least costly path from an initial configuration to

a final configuration. It uses a cost function or heuristic at each node. For each

previous step an exact cost is known while the estimated cost to reach the goal

is estimated. One of the requirements of A* is that the cost function must be

admissible,i.e., the estimated cost must be less than the actual cost, this produces

computationally optimal results.

The A* algorithm is reproduced from [Nilsson,1980], can be summarized as

1. Create a search graph G, consisting only with start node n0. Put n0 on a list

called OPEN.

2. Create a list called CLOSED that is initially empty

3. If OPEN is empty, exit with failure

4. Select the first node on OPEN, remove it from OPEN, and put in CLOSED.

This node is called n.

5. If n is a goal node, exist successfully with the solution obtained by tracing
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a path along the pointers from n to n0 in G. (The pointers define a search

tree and are established in step 7.)

6. Expand node n, generating the set, M, of its successors that are not already

ancestors of n in G. Install these members of M as successors of nin G.

7. Establish a pointer to n from each of the members of M that were not already

in G (i.e., not already on either OPEN or CLOSED). Add these members

of M to OPEN. For each member,m, of M that was already on OPEN or

CLOSED, redirect the pointers of each of its descendants in G so that they

point backward along the best paths found so far to these descendants.

8. Reorder the list OPEN in order of increasing f̂ values. (Ties among minimum

f̂ values are resolved in favor of the deepest node in the search tree.)

9. Goto step 3.

A*is complete. In the context of trajectory planning complete implies that an

algorithm is guaranteed to find a solution if one exists. then one can guarantee

that no such solution exists.

4.1 Applying A* to Autonomous Soaring

The A* path planning method will be used for long distance trajectory planning

to exploit energy from the atmosphere. To the author’s knowledge this is the first

application of A* for autonomous soaring. As can be seen from the algorithm

above the process in which the search process expands is twofold: (1) selecting the

next node to visit and (2) and planning the best path through the rest of the graph

to arrive at the goal. The cost is a linear combination of two terms: g(n), the cost

of best found path so far; and h(n), a heuristic function which is an estimate of cost

from node n to the goal. Here h is defined as the straight line distance between the

current node and the goal, and thus is an estimate of the time required to reach

the goal.
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In soaring application the cost function that is used is a weighted linear com-

bination of the two terms:

f(n) = αg(n) + (1− α)h(n) (4.1)

The function g(n) is evaluated as the total energy required to reach node n:

g(n) = cij (4.2)

where cij is the cost of the transition ij which reaches node n, and is defined in

Section 2.3.

Thus changing the weight α allows changing the cost function to favor energy

gain (α = 1) or time to goal (α = 0). The effect of varying α on the initial energy

can be evaluated by computing the energy required to fly the path generated using

a particular value of α. Finding the value of α is critical in this context, as both

energy expended and time to goal are important parameters governing the utility

of a flight path.

4.2 Weighing energy gain vs. distance to goal

The energy map approach described earlier [31] is used as a comparison to evaluate

the utility of paths generated using A* approach. The energy map is an upper

bound on the minimum energy required to reach the goal in a given wind field.

Thus the energy expended in the path when compared with the energy map will

give us an intuitive understanding of the critical value of α to choose to successfully

use A* for soaring application. The value of α is important tradeoff between energy

gained and time to reach the goal. If the value of α is too large the aircraft will

will spend too much time looking for energy and not go to the goal quickly enough

and if the value of α is too small it wont go easily to the easily exploitable energy

sources.

Finding the critical value of α is the key to using A* to soaring problem. In

this chapter detailed simulation results are carried out which will enable one to

select a particular α which will be best considering the energy that can exploited

from the atmosphere also considering the time to reach the goal.
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The results obtained from A* will be compared with the energy map approach.

It shall become clear that the cost function has an enormous influence on the utility

of computed paths.

4.3 Choice of Weight

Simulation of flights through various wind fields are used to find the effective value

of α. Two example wind fields are used to examine the effect of the weight α on

flight paths: a thermal-like field consisting of two regions of upwards moving air

and two regions of downwards moving air and a ridge wind field consisting of two

parallel hemi-cylindrical ridges(same environment as the last chapter). For both

cases a rectangular Cartesian grid is used to discretize the environment. Allowable

transitions can occur to nearest neighbors along the sides and diagonals of the grid.

4.3.1 Thermal-like wind fields
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Figure 4.1. Subfigure (a): A* and energy map paths to the goal; Subfigure (b): Com-
parison of Energy expended to reach the goal.

Consider a square region of 25kms × 25kms which is divided in uniform carte-

sian grid of 50 × 50 nodes which has different regions of vertical wind (both

upwards and downward wind). Upward moving air representative of thermal of
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approximate radius of 0.5 Km are located at (x, y) = (12.5 km, 6.25 km), located at

(x, y) = (18.75 km, 12.5 km), located at (x, y) = (6.25 km, 12.5 km) and located at

(x, y) = (12.5 km, 18.75 km). Similar regions of downward moving air are located

at located at (x, y) = (6.25 km, 6.25 km), located at (x, y) = (12.5 km, 12.5 km)

and located at (x, y) = (18.75 km, 18.75 km).In Figure 4.1a upward moving air is

in the regions shown in red and downward moving air in regions shown in blue.

The goal is the origin of the co-ordinate system.

The sample wind field is so chosen as it has both regions where the aircraft can

gain energy and lose energy. A “good” path planner should avoid regions where it

loses energy but should try to fly in proximity of those regions where it can gain

energy. This example also shows the effect of discretization on the final solution.

Figure 4.1a shows paths to goal from a distant point of (x, y) = (25km, 25km).

As the weight factor α is varied between zero and one, the path planned for the

UAV shows clear changes. When α equals zero there is no weight on the energy

available from the atmosphere and the cost function is driven by only the distance

to goal. In this case all paths with α < 0.8 behave similarly, and the optimal path

is straight to the goal, thus the aircraft flies straight through the energetically

unfavorable regions of downwards moving air. The blue path in Figure 4.1(a)

shows that this is indeed followed. When α = 0.9 the path avoids the regions

of downwards moving air (green path) but does not divert further to exploit the

energy in the other rising pockets.

As the value of α is increased further (α > 0.96) paths begin to exploit upwards

moving air. More time is spent in the region of upwards moving air as more

emphasis is placed on energy gain. When α = 1 time to goal is irrelevant, and the

flight path traverses every node where energy gain is possible. Note that the path

still does not crosses to other nodes where there are unexplored regions of upward

moving air. This is because the thermals are too small to make it worth the energy

gain that the aircraft will expend along the path to reach the thermals. The path

in black shows the energy-map computed path [31].

For each value of α the energy expended along the path is calculated. As

seen from Figure 4.1b the energy expended for α = 1 is much lower compared

to the other values. Energy expended for values of α ≤ 0.8 is high as the paths

goes straight through the regions of downward moving air. Energy expended is
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considerably reduced for α ≥ 0.9 as the aircraft starts avoiding the unfavorable

wind. But the real jump in the energy expended is found at α = 0.96. For values

of α > 0.96 the energy expended along the path is lower than that expended if

followed the energy map path.

Comparing the energy expended for each path shows the influence of the dis-

tance:energy weight on the computed paths. Further, comparison with the energy

map path shows that for 0.96 < α < 0.97 the required initial energies are roughly

equal. Higher weights on energy reduce required initial energy but the cost is sig-

nificantly longer paths to goal. Similar results were found for planning scenarios

using ridge-like wind fields.

4.3.2 Ridge Soaring

Terrain representative of the Appalachian Mountains (the same as used earlier for

the Energy Map approach) is used to analyze the A* approach. The results are

compared to energy map and energy map is used to find the right cost function

as well. Recall that the energy map is the upper bound on the minimum energy

required to the goal. Thus energy map will be a good mode of comparison to find

the correct cost function.

Simulation results were carried out with wx,∞ = −5m/s (which results in max-

imum vertical component of wind of approximately 3.0 m/s along the ridge). The

wind blows from right to left. Thus there is upward moving air (which permits

energy extraction) on the right side (positive x) of the ridges. Flight paths were

computed for four different starting positions: (x, y) = (20km, 100km), (x, y) =

(20km, 50km), (x, y) = (20km, 20km), and finally (x, y) = (10km, 70km). Flight

paths were generated for each starting position for varying values of α and results

are compared with flight path computed using the energy map. Here results from

only one of the starting points, namely (x, y) = (20km, 100km) are shown. Start-

ing points from the other regions also produced similar results. The results for

other starting points are given in Appendix B.

From Equation 4.1 it is evident that for α = 0 the energy required is not

included in the total cost function. Figure 4.2a shows the path to the goal from a

distant point of x=20 km and y=100 km. As α is varied from 0 to 1 flight paths
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Figure 4.2. Left: Different paths to the goal starting from x=20 km and y=100 km;
Right: Comparison of the initial starting energy for x=20 km and y=100 km

goes more in the regions of upward moving air. For α=0 the path goes straight

towards the goal. Note the effect of grid on the path. Instead of moving straight

towards the goal the vehicle opts to proceed towards the diagonal first. As the

value of α keeps on increasing the flight paths are seen to wander near regions of

the upwind where it can gain energy. The energy map path is also shown in the

same figure. For α = 0.8 almost similar path is seen than that of energy map. The

energy map path always moves towards the goal. It leaves the first ridge and moves

over to the second ridge in between as those two will have same energy gains and

are effectively equivalent paths. The path for α = 1 is interesting. Flight paths

are seen to zigzag in the first ridge and then when all the nodes are exhausted

the path crosses over to the next ridge. Upon reaching the next ridge the aircraft

continues to gain energy moving to and fro in the upwind side of the ridge and

eventually reaches the goal.

Figure 4.2b shows the expended energy for different values of α. Results match

the intuition that as the importance of energy gain is increased, the net expended

energy is reduced. Because the starting point is at the extremum of the task area

the A* path (which would otherwise allow motion away from the goal) is equivalent
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Figure 4.3. Energy, Velocity and Thrust Coefficient along the paths for different values
of α
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Figure 4.4. Left: Different paths to the goal starting from x=20 km and y=100 km;
Right: Comparison of the initial starting energy for x=20 km and y=100 km

to the energy map path (which does not).

Figure 4.3 shows the value of energy, velocity and thrust coefficient along the

path for different values of alpha. For α = 0 as seen from Figure 4.3a the energy

required increases steadily. Also note that with a battery capacity of 2500m a flight

path straight to the goal is not feasible, thus energy gain from the atmosphere (i.e.

soaring flight) is required to reach the goal. There are two places where the energy

dips a little bit. These are the regions where the path crosses the ridges. The

velocity profile shows an increase in velocity while moving through the downward

air in the lee ward side of the mountains, while velocity decreases and thrust

coefficient touches negative as the vehicle passes through the regions of upward

moving air. For the other cases of α one can see such values of velocity and thrust

coffering as the aircraft crosses the ridges. As the value of α increases total energy

required decreases. It can be seen from the velocity profiles that the aircraft spends

very little time in the leeward side of the mountain where it loses energy. Velocity

in this cases hits the peaks. For α = 1 the energy dips very quickly and hits

-2500m. This is the point where regenerative soaring is stopped and minimum

thrust co-efficient is set to be zero because the batteries are fully charged. Thus



43

0 50 100 150
−2000

0

2000
alpha =0.95

en
er

gy
(m

)

0 50 100 150
0

20

40

ve
lo

ci
ty

(m
/s

)

0 50 100 150
−0.5

0

0.5

Th
ru

st
 c

oe
ffi

ci
en

t

(a)

0 50 100 150 200 250
−5000

0

5000
alpha =0.96

en
er

gy
(m

)

0 50 100 150 200 250
0

20

40

ve
lo

ci
ty

(m
/s

)

0 50 100 150 200 250
−0.5

0

0.5

Th
ru

st
 c

oe
ffi

ci
en

t

(b)

0 50 100 150 200
−5000

0

5000
alpha =0.97

en
er

gy
(m

)

0 50 100 150 200
0

20

40

ve
lo

ci
ty

(m
/s

)

0 50 100 150 200
−0.5

0

0.5

Th
ru

st
 c

oe
ffi

ci
en

t

(c)

0 50 100 150 200
−5000

0

5000
alpha =0.98

en
er

gy
(m

)

0 50 100 150 200
0

20

40

ve
lo

ci
ty

(m
/s

)

0 50 100 150 200
−0.5

0

0.5

Th
ru

st
 c

oe
ffi

ci
en

t

(d)

0 50 100 150 200
−5000

0

5000
alpha =0.99

en
er

gy
(m

)

0 50 100 150 200
0

20

40

ve
lo

ci
ty

(m
/s

)

0 50 100 150 200
−0.5

0

0.5

Th
ru

st
 c

oe
ffi

ci
en

t

(e)

0 100 200 300 400 500
−5000

0

5000
alpha =1.0

en
er

gy
(m

)

0 100 200 300 400 500
0

20

40

ve
lo

ci
ty

(m
/s

)

0 100 200 300 400 500
−0.5

0

0.5

Th
ru

st
 c

oe
ffi

ci
en

t

(f)

Figure 4.5. Energy, Velocity and Thrust Coefficient along the paths for different values
of α
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velocity shoots up and thrust remains zero. It is at this point the aircraft decides

to leave the first ridge. While crossing over to the other ridge the aircraft has

to again expend energy and one can see drop in velocity and increase in thrust

coefficient. After reaching the second ridge again the vehicle gains energy and hits

-2500 m of energy and thrust coefficient remains zero for the next rest of the path

and also the velocity becomes high.

Thus in these cases one can see a significant drop in energy expended as α is

varied from 0 to 1. Increasing alpha reduces the starting energy required but the

time to reach the goal also increases dramatically (as indicated by the number of

nodes traversed during the flight: 500 nodes are traversed for α = 1 while less

than 100 nodes are traversed for α = 0).(Note the difference in scales of horizontal

axes).

Thus to find an effective value of α results with higher values of alpha were

analyzed.

Figure 4.4a shows the paths to the goal as α is varied between 0.95 to 1.0.

Close observation of the paths reveal that there is a certain value of alpha which

shows a finite jump in the trajectory. For α = 0.96 the path for the first time goes

to and fro through the ridge and then crosses when the distance function takes

over. From Figure 4.4b also one can see that there is a sharp decrease in energy

required to reach the goal as α is increased from 0.95 to 0.96. If alpha is increased

further there is little improvement in terms of energy required. For α = 1 the

energy reaches the maximum value of maximum allowable charging limit of the

batteries.

Similar flight paths are generated four different starting positions: (x, y) =

(20km, 100km), (x, y) = (20km, 50km), (x, y) = (20km, 20km), and finally

(x, y) = (10km, 70km). After analyzing the data obtained from all the starting

positions the critical value of α for which energy gain can be maximized without

redundant paths is found to be α̂ = 0.96. The results are give in Appendix B.

From Figure 4.5 shows the energy, velocity and thrust coefficient for the dif-

ferent values of α. α = 0.96 shows saw tooth nature of the velocity and thrust

coefficient. This happens due to zig-zag flying of the aircraft through the upwind

side. Thus α = 0.96 seems to be the transition value of alpha where there is cor-

rect correlation between energy gained and distance left to travel. Higher values
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of alpha leads to redundant paths which increase the time to reach the goal un-

necessarily. It is interesting to note that results for α = 0.96 show longer paths

to goal, and greater energy gain, than for α = 0.97 through α = 0.99. This runs

counter to intuition, and will be examined further in future works.

4.4 Conclusion

This chapter has shown that the A* approach which weights energy and time to

goal is able to plan “energy efficient” trajectories for soaring applications. By

changing the relative weight of energy cost vs. distance to goal qualitative state-

ments about flight paths can be made, but the flight paths show a strong jump

once α ≥ 0.96. Once value of energy weight causes the flight path to divert from

the goal in favor of gaining energy, flight paths will divert as far as the task area

allows, with no means of heading to the goal once “sufficient” energy has been

gained. This suggested that the upper limit on “useful” values of energy weight is

roughly 0.96. Similar results are seen from other starting point in the ridge. The

results are given in Appendix B. These simulation results are now applied to see

the performance of A* in a real environment.



Chapter 5
Flight in a Realistic Wind Field

The previous chapters have shown two methods of planning for autonomous soaring

namely the The Energy Map and A* methods. Most useful cost function of A* has

been identified through simulation results. In this chapter real wind field data is

used to evaluate the performance of the two methods. A critical comparison will

be made about the energy map approach for path panning.

5.1 Realistic wind Field

A sample wind field was obtained from the Department of Meteorology at Penn

State (courtesy George S. Young, Brian J. Gaudet, Nelson L. Seaman and David

R. Stauffer [32]). The wind field represents the evolution of mountain wave over

Central Pennsylvania from 0000h UTC to 1200h UTC on October 7, 2007, and

was computed using the Weather Research and Forecasting Advanced Research

WRF (WRF-ARW) version 2.2.

A visualization of this wind field showing regions where energy can be harvested

(i.e. where the vertical component of the wind speed is greater than the minimum

sink rate of the aircraft) is shown in Figure 5.1. Blue isosurfaces bound energy

harvesting regions, with subfigures (a) through (e) showing the time evolution

of the wind field. Note the significant spatial as well as temporal variation of

the wind field, leading to a particularly challenging planning problem. Clearly a

“good” path planning algorithm will find trajectories that fly through these regions

while avoiding regions of downwards moving air.
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(a) t=0000h UTC (b) t=0330h UTC

(c) t=0700h UTC (d) t=0930h UTC

(e) t=1200h UTC (f) slice at t=0700h UTC

Figure 5.1. Visualization of wind field data for a realistic wind field.
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As before it shall be assumed that constant altitude flight is required, either

to ensure separation from other aircraft or to satisfy mission parameters such as

sensor coverage. Further, the mission at hand is flight towards a goal, and it is

assumed that in this context the aircraft flies quickly compared with the rate of

change of the wind field. Two simplifications to the planning problem can then

be made: first, only the winds at the desired cruise altitude need to be modeled;

second, temporal variations in the wind field can be ignored. Trajectories for flights

at two altitudes (1000m MSL and 2000m MSL) will be computed and compared

using the energy map and the heuristic search. A contour plot showing the vertical

component of wind field at 1000m MSL and 2000m MSL (at 0700UTC) is shown

in Figure 5.1(f).

5.2 Energy Map

In this example a uniform cartesian grid with node spacing 444m is used. This

node spacing is derived from the spacing of the wind field data. The goal is

located at (40km,45km). The Energy map is calculated to reach the goal from all

points in the environment. Separate energy maps are calculated for two different

altitudes. Figure 5.2a shows the energy map in the domain and paths to reach

the goal over the energy map. From the figure it is evident that the energy to

reach the goal is affected by the given wind field data. The energy to reach the

goal from the regions where there is updraft is very low as shown by the blue

regions. Figure 5.2b reveals the presence of updrafts in the low energy regions

shown by the energy maps. Energy to reach the goal from other parts in the

environment is significantly higher. As seen from the paths to reach the goal

the planner successfully finds its way to the goal following regions of low energy

required, or regions of updrafts as shown in Figure 5.2b.

Similar calculations are made for wind field at an altitude of 2000m. Figure 5.3a

and Figure 5.3b shows the energy map and path to goal over the wind field. Spatial

wind variation results in slight modification of energy efficient paths than for lower

altitude. But a similarities in path in both the altitudes can be attributed to the

terrain influence on the wind field data.

Thus in this region these routes can be identified as the most energy efficient
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routes and aircrafts trying to reach the goal should follow these routes to mini-

mize onboard energy expenditure. The energy map paths successfully follow the

energetically favorable regions and also avoids regions of downward moving air.

The energy map also provides an insight on what stored energy will be required

by an aircraft to reach the goal. Thus feasibility of use of certain uavs will depend

on their payload capacity in this kind of wind fields.

As a comparison flight paths were generated using the A* algorithm in similar

wind conditions.

5.3 A* paths

Paths from eight starting points distributed around the domain to a goal located

near (40,45) are shown in Figure 5.4. For all paths the weight function was set to

the value αcritical = 0.96 found using the simplified wind fields.

Figure 5.4 shows A* paths to goal from eight different starting locations to the

goal for two altitudes. Both the figures show similar trends given the similar wind

fields. In Figure 5.4(a) paths originating in the north and northwest corners merge

in the middle to regions of favorable wind. Similarly two paths which originate in

the south and south-east corner of the map cross a narrow region of downwards

moving air and then joins before moving on to the goal.

Figure 5.4(b) also shows similar “corridors” in the results. Two paths which

originate in the south and south west corner merge in the region of strong upward

moving air. Paths originating from the south west also merge in this path near

just before the goal. Path originating from the north-west faithfully follows regions

of relatively upward moving air while avoiding any downward moving air. Finally

paths originating from north and northeast joins the other two just before reaching

the goal. Thus routes for the given wind field data that vehicles should follow

to optimize their energy requirement and time to reach the goal are identified.

Qualitatively the paths follow regions of upwards moving air, but there are some

cases where energetically more favorable paths would seem to exist. For example

the path starting from south west corner in Figure 5.4(a) should have followed

the more favorable wind and merged with the path originating from the bottom

middle.
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(a) Energy Map at 0700 UTC at altitude of 1km

(b) Energy Map Paths to reach the goal over wind field at 0700 UTC at altitude of 1km

Figure 5.2. Energy Map, and Energy Map Paths to reach the goal over wind field at
0700 UTC at 1000 MSL
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(a) Energy Map at 0700 UTC at altitude of 2km

(b) Energy Map Paths to reach the goal over wind field at 0700 UTC at altitude of 2km

Figure 5.3. Energy Map, and Energy Map Paths to reach the goal over wind field at
0700 UTC at 2000 MSL
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Thus a comparison with energy map reveal similar paths predicted by both

the methods. Even A* could not find any practical energy efficient route other

than what predicted by the energy map. Of course with a more weighage on the

expenditure of energy term more energy efficient routes could have been exploited

but such paths may not be useful for any practical application. Thus both methods

can be used successfully for wind routing problems in given wind fields.
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(a) A* Paths to reach the goal over wind field at 0700 UTC at altitude of 1km

(b) A* Paths to reach the goal over wind field at 0700 UTC at altitude of 2km

Figure 5.4. A* Paths to reach the goal over wind field at 0700 UTC at two different
altitudes



Chapter 6
Conclusion

This thesis has presented how graph based planning methods can be utilized for

soaring application. The continuous domain is first discretized by waypoints or

nodes. Then a mathematical framework to maximize range flight or minimizing

energy lost over a segment has been described. The energy expended over a seg-

ment is used as the cost function for transition between two nodes. The speed to

fly over an edge in the graph is computed by minimizing the energy expenditure

for that segment, including the effects of three dimensional wind. Regeneration

(conversion of potential or kinetic energy to stored electrical energy using a wind-

milling propeller or ram air turbine) is included, thus the net required energy for

flying a path to the goal can be computed. The optimal flight path planning has

been done by two methods

• Energy Map

• A*

In the energy map approach the energy-optimal path is computed using wave-

front expansion from the goal, keeping track of the cumulative minimum total

energy required to reach the goal. This energy map can immediately indicate

whether a feasible path to the goal exists for a particular starting way point and

initial stored energy of an aircraft.Paths generated using the energy map can be

used as an immediate, possibly sub-optimal solution, or the energy map derived

path can be used as an initial guess for further trajectory optimization. The energy
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expended along the path can also be used as part of a cost function which may

include other considerations (e.g. time to reach the goal), and can be used with

generic path planners.

One of the greatest assets of this method is the decoupling of the generation

of nodes and the calculation of energy. Thus the computation of path planning is

done in two stages. This independent calculation of energy grid makes it useful

to use in different grids. The other useful aspect of this method is that this really

speeds up the time to compute the energy map and thus path planning. Thus

this method may be implemented for real time applications. The challenge is to

implement the method in case of changing environments. The time to compute

the energy map suggest that it may be possible to use it for real time applications

in case of changing environments. Our future endeavors will be directed in these

directions.

The energy map is computed using a constraint that all transitions must be

towards the goal. This constraint means that lower energy paths which first pro-

ceed away from the goal may exist, thus the energy map defines an upper bound

on the minimum energy required to reach the goal.

The constraint of always moving towards the goal was not imposed in the second

case, where A* algorithm is used. Transitions are allowed to all the neighboring

nodes from the start position. The A* algorithm uses a weighted sum of required

energy and distance to goal as the cost function. A critical parameter is the value of

weight which balances energy expenditure versus progress to goal: improper choice

can result in either energetically unfavorable paths or in paths which meander

without sufficient progress to goal.

Scenarios involving simplified wind fields (a thermal-like wind field and a ridge

wind field computed using potential flow) were used to find a good value of the

weighting factor. For the scenarios examined here a sharp jump occurs in planned

trajectories once the weight parameter reaches a critical value. After this jump

flight paths follow the route of maximum energy gain without further refinement

for reducing time to goal. This suggests that there is a maximum practical value

of weight beyond which flight paths, while feasible, are not particularly useful.

Finally this thesis applied the two methods of flight path planning in a realistic

wind field computed using a high-fidelity forecasting tool. Both the methods were
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successful in identifying energy efficient routes in the wind field. The energy maps

computed for the wind field gave an insight on the internal energy required for

uavs to be used in this wind field. The effect of terrain was clearly visible for the

flight paths calculated.

6.1 Recommendation for Future Works

The two methods discussed in the thesis have been successful in identifying energy

efficient routes individually, and both the methods have given feasibility of paths

planned for uavs. It will be an interesting work to combine the two ideas. The

Energy map gives us an upper bound on the minimum energy that the vehicle

should possess to reach the destination. Thus if a vehicle has on board stored

energy less than that indicated by the energy map it in principle cannot reach the

goal flying always towards the goal. Here A* may be used to identify energetically

favorable pockets in the domain and gain sufficient energy in order that there is

enough available on-board energy to reach the goal.

The cost function included in A* approach included remaining distance to

reach the goal. Including time to reach the goal instead may improve the results.

A dual of energy efficient routes namely time efficient routes may also show some

interesting trends. A combination of distance and time may also be looked upon

for energy harvesting.

Another most important improvement that needs to be incorporated in the

planner is the ability to handle time varying wind fields. Also since atmosphere is

not predictable the model should be able to handle uncertainties.

Extending work to permit full three dimensional flight paths will be a significant

computational challenge (likely requiring an enormous increase in graph size) but

will allow significantly more sophisticated paths.



Appendix A
Vehicle Properties

Note that a fourth order polynomial is used to relate CD to CL: this provided a

better fit to the computed data over the full speed range.

Table A.1. Parameters for SB-XC glider.
variable value description

m 10 kg mass
S 1 m2 wing area

f(CL) 0.1723C4
L − 0.3161C3

L + 0.2397C2
L

−0.0624CL + 0.0194
va,min 12 m/s
va,max 35 m/s
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Figure A.1. Sink rate vs. airspeed for the SB-XC. Minimum sink is approximately 0.56
m/s and occurs at approximately 14.6 m/s.
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Ridge Soaring Different Starting

points
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Figure B.1. Left: Different paths to the goal starting from x=20 km and y=50 km;
Right: Comparison of the initial starting energy for x=20 km and y=50 km
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Figure B.2. Energy, Velocity and Thrust Coefficient along the paths for different values
of α
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Figure B.3. Left: Different paths to the goal starting from x=20 km and y=50 km;
Right: Comparison of the initial starting energy for x=20 km and y=50 km
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Figure B.4. Energy, Velocity and Thrust Coefficient along the paths for different values
of α
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Figure B.5. Left: Different paths to the goal starting from x=20 km and y=20 km;
Right: Comparison of the initial starting energy for x=20 km and y=20 km
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Figure B.6. Energy, Velocity and Thrust Coefficient along the paths for different values
of α
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Figure B.7. Left: Different paths to the goal starting from x=20 km and y=20 km;
Right: Comparison of the initial starting energy for x=20 km and y=20 km
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Figure B.8. Energy, Velocity and Thrust Coefficient along the paths for different values
of α
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Figure B.9. Left: Different paths to the goal starting from x=10 km and y=70 km;
Right: Comparison of the initial starting energy for x=10 km and y=70 km
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Figure B.10. Energy, Velocity and Thrust Coefficient along the paths for different
values of α
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Figure B.11. Left: Different paths to the goal starting from x=10 km and y=70 km;
Right: Comparison of the initial starting energy for x=10 km and y=70 km
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