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Abstract

Piloted landings on ship decks are a daunting challenge where life critical missions
require operations to continue even under adverse conditions. Automating the
landing process for a helicopter on any landing site would create a safer environ-
ment in many applications. The research detailed in this thesis was motivated by
an even more difficult and specific situation: attempted landing of a small, payload
limited uav on a moving, non-cooperative or mildly cooperative ship deck. While
current capabilities do include landing an autonomous rotorcraft onto a moving
deck, this can only be performed under very restrictive conditions involving a coop-
erative ship deck and calm seas. The goal for this system is to have the generality
necessary to successfully operate in a variety of sea conditions, and with many
potential ship types.

This thesis details the development and simulation demonstration of a state
estimation system that only requires the use of a monocular camera, an inertial
measurement unit, and gps. The ins/gps is required to determine vehicle states.
The camera provides information about landmark bearings relative to the uav,
but nothing else. By combining these two sensor systems, it is possible to es-
timate deck state, thus enabling the ability to autonomously land. This thesis
presents Unscented Kalman Filter based implementation that utilizes a generic
2nd order kinematic model driven by zero mean Gaussian noise for the ship deck
motion model. Use of this generic model contains unmodeled dynamics, but is not
particular to any ship.

The goal is to estimate position, attitude, velocity, and angular velocity for
the deck. Estimator performance is reviewed using single run and multiple Monte
Carlo simulations where the deck is subjected to a variety of wave conditions and
various wave modeling techniques.
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Chapter 1
Introduction

This thesis presents a comprehensive solution for autonomously estimating the

state of a moving platform via bearing measurements. The system is contained

entirely onboard an unmanned aerial vehicle (uav), and uses only information

obtained via a visual camera system aided by a global positioning system and

internal navigation system (gps/ins), as well as an inertial measurement unit

(imu). The research performed was motivated by the problem of smaller uavs

having limited capability in naval operations. This is due to the fact that landing

on a platform at sea can cause problems for even seasoned pilots (see Figure 1.1),

much less the limited navigation systems onboard the uavs discussed here. Small

uavs have payload restrictions far beyond that of larger counterparts, and require

creative solutions in order to accomplish complex goals like those set out in this

thesis.

Attempting to land on a moving landing platform will require the following

abilities:

• To sense where landmarks are on the deck

• Perceive their position in a visual frame

• Estimate the deck state from those measurements

• Plan a path to land at some future time

• Possess the ability to control the aircraft in following that planned path
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This thesis focuses on estimating the deck state using an integrated visual

camera and landmarks on some given platform. The helicopter state is assumed

to be provided by an onboard gps/ins and imu. Using these two measurement

systems, an estimator, trajectory planner, and flight controller can be used to

safely land on a platform for a variety of conditions.

Figure 1.1. An example of a manned helicopter landing on a ship deck subject to
significant wave motion.

(http://www.youtube.com/watch?v=bC2XIGMI2kM)

However, this system faces multiple complications inherent to this problem.

First, using only vision measurements can prove to contain some difficulties for

estimating deck states. The measurement for each landmark being tracked on the

deck is limited to bearings instead of physical positions. These nonlinear measure-

ments must then be converted in order to find deck states. Also the Equations

of Motion (eoms) governing the estimation are not known by the estimator. The

differences between the true kinematics and the estimated kinematics used by the

estimator can lead to unmodeled dynamics within the system. This can create un-

certainty or drift in the estimation and therefore can increase the odds for failure

when a vehicle is attempting a landing. These discrepancies in estimation cannot

be solved using simple, standard techniques, but by specific techniques formulated

for this type of problem.
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This thesis will serve the following functions:

• To depict a viable system for the deck and uav state estimation involved in

landing on a moving platform using only a monocular vision system and imu

contributions.

• To demonstrate that the estimation problems involved with this research can

be solved by utilizing an Unscented Kalman Filter (ukf).

• Present results that establish the viability, accuracy, and reliability of the

estimator via computer simulation

1.1 Motivation

The use of autonomous vehicles has the potential to change the world in both the

commercial and military sectors. Unmanned aerial vehicles, particularly smaller

models, do face more challenges than a piloted or larger vehicle including; the

increased significance of external forces and disturbances, smaller payload capacity,

and also the limited ability to carry as much sensing equipment as their larger

counterparts. However, these vehicles are preferable to larger uavs and piloted

vehicles because of the decreased cost, and versatility to be employed for a wide

variety of mission types.

Operating aircraft at sea adds a level of difficulty to landing or performing

precise maneuvers coordinated with other vehicles, whether there is autonomy

involved or not. Not only are the aircraft subject to the normal environmental

forces, but the deck is now under the influence of the semi-random motion of

waves, as well as natural phenomena such as currents and tides. In order to

safely attempt a landing, these motions must be estimated to a high degree of

accuracy, so that the uav does not potentially crash or miss the target due to

unforeseen external influences. In the case of non-specialized ships, where there

is little to no communication between the ship and the helicopter, all sensors,

computational ability, and controlling equipment must be kept onboard. This

ensures the helicopter will always be able to provide itself with the information

needed in order to safely land or maneuver relative to the deck.
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While there is current capability to autonomously land on moving ship plat-

forms, there are many restrictions. Only larger uavs, with many sensors, in very

calm seas, with a cooperative ship moving in a simple one directional fashion can

accomplish such a task with consistency. However, even with the successes in the

autonomous landing field to date, the scope of operations is relatively narrow com-

pared to the goals of this research. Ultimately, this thesis seeks to enable landing

on vessels ranging from frigates (Figure 1.2(a)), to multipurpose amphibious as-

sault ships (Figure 1.2(b)), to naval capable hovercraft (Figure 1.2(c)), and on to

riverine capable craft (Figure 1.2(d)).

This thesis describes a system that uses a monocular vision system, gps/ins,

and an inertial measurement unit to estimate the state (position, orientation, ve-

locity, angular rate) of a ship deck to a sufficient accuracy where landing can be

performed.

imus are commercially available and have a history of being used for vehicle

state determination. Small, low powered imus are ideal for small uav applications.

However, imus are not a total solution to this thesis’s navigation problem. They do

not provide information about the deck state, only the vehicle states. Also imus are

susceptible to noise and bias, which if left unchecked could lead to significant drift

in measurements of some or all of the vehicle states. In order to solve the problem of

drift, another measurement system must be utilized. For this research, intermittent

gps measurements onboard the vehicle, provide the correction necessary to deal

with this drift issue. The camera must be utilized as the only system capable of

measuring information about deck states.

Research has shown that monocular cameras are capable of being used for

attitude or relative position measurements [34, 35, 16]. As camera technology

has improved, so has their functionality with respect to measuring information

about landmarks. By using prior knowledge about the landmarks in the camera

frame, and previous frames, knowledge can be gained about deck position, attitude,

velocity, and angular rate. Using multiple bearing measurements allows for an

ever-improving estimate of the decks’ state as well.

A schematic of the problem is shown in Figure 1.3.
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(a) (b)

(c) (d)

Figure 1.2. An example of autonomous ship-board landing and the vessels targeted by
this research

(a): A MQ-8B Fire Scout performing landing tests in 2009
(http://www.navair.navy.mil). (b): The USS Wasp on surge deployment

(http://commons.wikimedia.org). (c): A Navy LCAC unit performing operations
at sea http://commons.wikimedia.org). (d):A Riverine squadron 2 patrolling off

Iraq in December 2007 (http://commons.wikimedia.org)

1.2 Framework for Vision-Based Landing

Autonomous landing on a ship deck is an extremely challenging objective. In

order to successfully accomplish the goal of touching down safely; there are certain

conditions that any system must be able to meet. The tasks this system must be

able to perform are:

1. The uav must be able to maintain controlled flight with the goal of being

able to observe deck motion. This requires the vehicle to observe for long
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Figure 1.3. Two-Dimensional schematic depicting the autonomous ship-board landing
problem.

enough, and provide observational diversity in order to accurately estimate

deck state.

2. The uav must be able to determine a goal position, as well as plan the

best trajectory to said point on the deck. This trajectory can be planned to

maximize measured information (the equivalent of minimizing covariance),

or by planning the safest trajectory based on any one of a number of criteria.

3. Finally the uav must be able to repeat these tasks as necessary given ambient

conditions, unknown deck motion, and other possible causes in the deviation

of the estimate. The vehicle must be able to recognize when its estimate

is no longer accurate enough to use, and be able to return to a controlled

observation status until a better estimate is tabulated. This fidelity moni-

toring is essential to any robust system, especially when there is a chance for

significant monetary loss or loss of life.

For a full scale uav to complete these tasks would be a challenge, but at-

tempting them with a much smaller vehicle only exacerbates potential issues. The

payload limitations of small uavs means that there is less of a full sensor suite

than what other vehicles might be equipped with. While gps sensors are typically

small, and are expected to be included onboard the vehicle; camera equipment and

communication systems could potentially be restricted by these limitations. Also,



7

since there is little or no communication between the ship and the uav there is

little to no a priori knowledge of the ship deck motion or other state information.

All that is measured about the deck are bearings in the camera frame; which are

then used to produce relative deck states that are dependent on the uav states.

The task of observational flight can be accomplished by taking a preplanned

path towards the deck. Monitoring of the covariance estimates can be done, and

adjustments to the approach and observation path can be made as needed in order

maximize information. The approach does not have to be a straight line or any

simple shape, something such as slalom curve or even a full circling of the deck may

be the best observation approach. This observation method must also account for

possible loss of observable markers due to occlusion or limitations of the camera’s

field of view.

Once the observation of the deck is performed and the estimated state covari-

ance is satisfactory, a trajectory can be found for landing. Once the trajectory is

found, a controller then forces the uav out of observation mode and into a flight

condition such that it can follow the planned trajectory as closely as possible while

maintaining stability. This trajectory will need to be updated as the deck estimate

is changing and the vehicle is approaching. The uav must also be able to recognize

if the deck state covariance is too large, indicating that the deck state estimate is

too uncertain for safe landing. If something does go awry, the uav could re-enter

observation mode until confidence in deck state estimates is restored.

vehicle	

dynamics	
flight	


control	

trajectory	

planner	


deck state	

estimation	


GPS	

INS	


vision	

system	


deck	

markers	


external	

disturbances	


Figure 1.4. A top-level block diagram of an entire autonomous landing system
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The top-level block diagram in Figure 1.4 depicts a system which would enable

the vehicle to complete all the tasks detailed above. The framework begins with a

trajectory planner and controller. Depending on whether the vehicle is in observa-

tion or landing path planning mode, the planner appropriately sets conditions for

the vehicle to meet (i.e. maintain position behind deck, descend towards deck at

1 m/s). The flight controller then adjusts vehicle states such that the flight condi-

tions match the path planning conditions as close as possible. The controller uses

measurements of vehicle angular rates as well as accelerations in order to adjust

those flight conditions. Finally, measurements of the deck are obtained via the on-

board camera. Using the previously found vehicle state and the incoming camera

measurement, an estimate of deck state is found which can be used to update the

trajectory planner if necessary.

1.3 Estimator Overview

The defining piece of the system discussed in this thesis is the estimator that is

able to take uav states and vision measurements, and process them to determine

estimates of the deck states. This estimator deals with an extremely nonlinear

situation. Both deck motion and available measurements (azimuth and elevation

to markers on the deck) are nonlinear. Furthermore, deck motion is difficult to

predict accurately since it is driven by wave motion. Therefore, any deck state

estimator must be able to handle significant nonlinearities in measurements and

uncertainty in deck motion.

The main contribution of this thesis is a deck state estimation system that uses

only sensing available on the helicopter. This on-board sensing consists of a gps

receiver, an inertial measurement unit, and a vision system. It is assumed that the

vision system is able to compute bearings (azimuth and elevation) to features on

the ship deck. In this thesis it is assumed that these features are fiducial markers,

but a slightly more general approach (such as tracking corners) can also be used.

It is not assumed that the markers are individually identifiable: thus the problem

of data association is addressed in this thesis. To ensure that the system is general

across a wide range of ship types, a specific ship model is not assumed. Rather,

a second order kinematic model for ship deck motion is used. This model has the
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advantage of simplicity and broad applicability, but at a cost of potentially reduced

accuracy.

1.3.1 Data Association

When utilizing a Kalman filter, data association is of utmost importance. Without

knowledge of which measurement corresponds to which target, the ukf is prone

to divergence. The data association problem essentially consists of associating

bearing measurements

z =
[
γx1 γy1 γx2 γy2 · · · γxn γyn

]

to targets
[
L1 L2 · · · Ln

]
.

One solution to this problem is to design visually unique and identifiable tar-

gets. For this problem it could be done by coloring the landmarks or arranging

them in a nonsymmetrical pattern that could be discerned by classical feature ex-

traction techniques. However, an overarching theme of this research assumes that

the targets are not unique. Thus, simply stating that the markers are inherently

easy to differentiate is not an option.

By whatever means the data association is accomplished, it is imperative that

the system be robust due to possible interference. This may be due to markers be-

ing occluded on the deck, markers leaving the camera’s field of view during normal

operations, or possibly losses of an entire measurement cycle. It is also impor-

tant that the system remain operable when the targets have a high uncertainty in

position, such as when the observation first starts.

In Section 3.2 this thesis presents a solution for the data association problem.

The bearing measurements are compared from frame to frame, and once the bear-

ings are found a variation of Munkres algorithm is used to determine the most

accurate association.

1.3.2 Target Initialization

Any Kalman Filter needs a reasonable initial guess of all the states being estimated

in order to work properly. If the initialization is too poor, then estimator divergence
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or data association issues may arise. In this problem, it is assumed that the marker

positions relative to the deck centroid are known in the decks’ body coordinate

frame. Therefore, by having accurate estimates of the deck’s position and attitude,

it is possible to estimate where one would expect the targets to appear in the

camera frame at the initial time step.

1.4 Related Work

In recent years an immense amount of focus, funding, and work has been turned

towards uav operations. Some of the problems that the systems in this thesis

will encounter (navigation, target tracking, motion estimation, etc.) have been

analyzed to varying degrees, and within diverse frameworks of the scientific com-

munity. The following sections will attempt to segregate and analyze previous

work into distinct categories.

1.4.1 Sea Related Operations and Wave Motion Modeling

Considerable work has been done previously in the field of sea related helicopter

landing solutions. This work has included both manned and unmanned situa-

tions. For manned vehicles, work by Dr. Bernard de Ferrier has investigated the

possibility of utilizing a Landing Period Designator to assist piloted landings [2].

This designator would attempt to determine, either in advance or at the current

time, a period of low wave motion that is more conducive to attempting a landing.

This designator was tested in manned simulators as a way to alert pilots when the

best time to attempt a landing was with some success. In its current form the

landing period designator requires a piloted vehicle. If this were to be outfitted

for a uav the landing period designator could potentially be used within a larger

deck estimation system. The designator could provide a “go” or “no go” signal in

conjunction with the deck state estimator.

Research with unmanned vehicles has studied the possibility of using a tether-

based system for increasing sea-based landing viability. This would involve a uav

lowering a tether to an operator on the deck who would attach that line to the

deck. Once attached, controllers were tested which utilize the property that the
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tether can couple helicopter rotation and translation dynamics relative to the deck

[21]. Essentially, the helicopter would be able to reel itself in, using the tether

tension as a stabilizing force. While this solution is designed specifically for uavs,

it requires a human operator to physically attach and detach the tether. This can

be difficult, dangerous, or downright impossible depending on the sea conditions.

A landing system that uses differential gps, LIDAR and a vision system is de-

scribed by Garratt et al. [6]. While successful, that system incorporates significant

additional sensing, and only estimated a deck with fixed position.

While exact and specific models of ship motion in the presence of waves is not

a focus of this research (indeed, the estimator makes no assumption of specific

types of motion), this thesis does use a few motion models to assess the effect

of unmodeled dynamics on deck state estimation. Both a stochastic wave model

based on the Pierson-Moskowitz spectrum [22, 37] and a ship model based on a

TMV 114 fast ferry [8] are used here.

1.4.2 Vision Based Navigation and State Estimation

The benefits of vision sensors on small uavs has already been mentioned in this

thesis, but much other research has come to the same conclusion. Many published

documents have detailed potential usages for vision measurement systems in varied

operational environments. Vision-based navigation for uavs in applications such

as flight control and relative navigation is discussed in [33, 38, 3, 11]

More closely related to the research in this thesis, using vision measurements

for navigation in gps denied and/or occluded environments has been reviewed

[16, 15, 39, 35]. Also, more comprehensive, inertial guidance systems have been

established [34, 35] which partially rely on vision measurements. More specific

publications have also focused on: vtol aircraft [13], increasing efficiency and

safety for airfield operations [5], and integrated self-contained indoor navigation

systems [7].

There have also been significant forays into utilizing vision systems for opti-

mizing uav state estimation in relation to trajectory determination. Specific pub-

lications detailing possible solutions to state estimation on small uavs [36], with

single vision sensors [33], and for low-resolution and/or quality imaging capability
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[6].

With all of this work involving the usage of vision sensors within the scope of

autonomous aircraft operations, several publications have discussed comprehensive

solutions to the problem. These include research for using ekf techniques to

estimate the same deck state vector used in this thesis [23]. However, this system

was tested with a landing area that was not moving, simplifying aspects of the

problem significantly. Two separate publications by Srikanth Saripalli and others

have altered the scope to include moving targets [26, 27]. However, these works do

not address the problem of estimating the state of a six degree of freedom deck.

In the scope of this thesis, vision systems are not being utilized just to navigate,

but also to assist in knowledge of the environment around the uav in relation to

completing a given goal. In this case the vision subsystem is used to analyze deck

motion, and eventually safely land upon the deck. This mission type contains

several more general functions that research has shown vision systems are capable

of performing.

Vision systems have been used for guidance and control of uavs [12, 30]; land-

mark detection and mapping [15, 16, 29]; and obstacle avoidance [29, 32]. Further

research has examined target tracking (including control) for single [9, 25] and

multiple targets [17, 28]. A vision based landing system for a tailsitter is discussed

in [18].

As stated earlier, data association is a critical part of the deck state estimation

process. The Munkres algorithm was originally proposed as a means of optimally

solving the task assignment problem [14], and has been used to solve the data asso-

ciation problem as well in the context of landmark tracking [10], feature mapping

[24] and obstacle detection [1].

1.5 Summary of Contributions

• Framework for Autonomous Ship-board Landing

A system that enables observation of ship deck motion; where all components

are contained onboard a small uav using measurements of a monocular cam-

era, an imu, and possibly occasional gps measurements. The capabilities and

limitations of this system and these measurement types will be evaluated.
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• Estimator Design

The development of a robust estimator that utilizes an Unscented Kalman

Filter in order to estimate generic ship motion. Deck states (position, atti-

tudes, velocities, angular rates), are estimated, while uav states are assumed

to be known. This information would be utilized by a trajectory planner in

order to compute the optimal landing path.

• Performance Verification: MATLAB Simulation

Monte Carlo results of simulations involving deck state estimation with a

variety of sea states and wave modeling techniques prove that the system

detailed in this thesis provides a generic solution to the landing problem

independent of ship and specific wave motion There is a strong relationship

between error and covariance; both decrease as the uav approaches the deck,

and acquires more measurements. Once the estimation is accurate enough,

a trajectory planned can safely guide the helicopter to safe landing.

1.6 Reader’s Guide

The remainder of the thesis is organized as follows:

Chapter 2: The Deck State Estimation Problem describes what information

is necessary in order to solve the problem described in this thesis. Explanations

of coordinate frames, deck kinematic model, vision measurement model, and ship

deck motion models are all included. This is followed by a study of observability

issues within the estimation problem. Finally an outline of the ukf used to esti-

mate the system is introduced.

Chapter 3: Implementation Using a UKF further delves into the estima-

tion problem and the challenges inherent to this application. A more detailed

implementation of the ukf algorithm is presented, and definition of vision mea-

surement noise and filter process noise is shown. This leads into an analysis of

data association techniques. This chapter concludes with a brief outline of how

deck estimate and associated covariance is initialized.
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Chapter 4: Estimator Simulation Results presents both the representative

run analysis and results of Monte Carlo simulations of estimation of deck state.

This analysis is performed for all wave motion models discussed in Chapter 2. State

estimates and uncertainty characteristics, as well as other trends are all analyzed

in 3D space simulations. The results here prove that an effective, efficient, robust

estimator has been developed.

Chapter 5: Conclusion summarizes the results of this research and provides

potential areas of focus for future work.



Chapter 2
The Deck State Estimation Problem

This chapter fully details the estimation problem introduced in Chapter 1. It

also serves the purpose of developing equations for the sensor measurements and

kinematics of all involved systems. This chapter ends at dynamics development;

however, the implementation and results are discussed in following chapters. This

includes how all these dynamics are executed in a real-time simulation within the

ukf.

Section 2.1 describes the estimation problem and state variables involved. Sec-

tion 2.2 details models for deck kinematics, vision sensors, and various wave mo-

tions. Section 2.3 discusses the issue of estimating unobservable wave states, which

motivated the current design of the estimator that is used in this thesis. Section 2.4

provides an introduction to nonlinear estimation techniques such as the ukf, and

outlines this recursive estimation process. To conclude, Section 2.5 contains a

summary of all the modeling and kinematic information covered thus far.

2.1 Problem Statement

As outlined in Chapter 1, the scenario considered in this thesis involves an un-

manned rotorcraft attempting to land on a ship deck which is being forced by

unknown wave motion. The rotorcraft is equipped with a gps/ins to compute

vehicle states and a monocular camera for measuring relative deck states: only

sensors available on the helicopter will be used for landing. A schematic of the

estimation problem at hand is shown in Figure 2.1.
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Figure 2.1. A schematic depicting the estimation problem at hand.

The aircraft obtains bearings to markers fixed to the deck and knowledge of its
own state from ins/gps. Using these measurements an estimate of deck position,

orientation, velocity and angular rate must be obtained.

Notionally, the problem of landing is assumed to comprise two main phases:

approach to a landing initiation point and landing. During the approach phase the

vision system tracks features on the deck; the combination of measured bearings

to these features and knowledge of helicopter state is used to compute an estimate

of deck state and an associated covariance. The estimate of covariance can be used

to determine if deck state has been determined with sufficient certainty to permit

landing.

While the path flown during approach can have a significant impact on the

accuracy of deck state estimation it is not the focus of this thesis.

Landing on the ship deck requires knowledge of deck position and orientation.

Further, knowledge of deck velocity and angular rate is required to ensure that

relative speed between the rotorcraft and the ship deck at touchdown is within

acceptable limits. Thus the deck state vector is

xd = [xd yd zd φd θd ψd ud vd wd pd qd rd]
T (2.1)
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Referring to Equation 2.1, the first three terms of the deck state vector represent

position in a north-east-down (ned) inertial reference frame; the second three terms

denote deck orientation with respect to the ned frame (as NASA-standard Euler

angles); the next three terms represent deck velocity expressed in the inertial frame;

and the last three terms denote angular rates about the deck body-fixed axes.

The helicopter state xh (assumed known) is

xh = [xh yh zh φh θh ψh uh vh wh]
T (2.2)

The first three terms denote position in the ned frame, the next three terms

represent orientation with respect to the ned frame, and the last three terms

denote velocity expressed in the vehicle’s body frame. States are summarized in

Table 2.1.

Table 2.1. State Information and Determinations

State Usage Determined By

Deck Positions Landing Controller Estimator
Deck Attitudes Landing Controller Estimator
Deck Velocities Landing Controller Estimator

Deck Angular Rates Landing Controller Estimator
Vehicle Positions Observation/Navigation known via gps/ins
Vehicle Attitudes Observation/Navigation known via gps/ins
Vehicle Velocities Observation/Navigation known via gps/ins

Given the limited sensing available and the unknown wave states driving ship

deck motion, the problem at hand is to obtain enough information about the deck

state to permit a safe landing. That is, the problem is to compute an estimate x̂d

and associated covariance P of the deck state xd using a process model

ẋd = f(xd,u) (2.3)

and measurement model

z = g(xh,xd) (2.4)

Here u represents inputs and disturbances to the ship deck and z represents

measurements from the vision system sensors. The deck motion model is described

in Section 2.2.2 and the vision measurement model is described in Section 2.2.3.
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Chapter 3 describes the implementation of these system models into the prediction

and correction steps of a nonlinear estimator.

2.2 System and Sensor Models

2.2.1 Coordinate Frames

Figure 2.2. Definition of Relevant Coordinate Frames

All reference and coordinate frames defined in this section are depicted in Fig-

ure 2.2. The inertial frame for this problem is a standard North-East-Down (ned)

coordinate frame. This frame, centered on point O, is used for the global naviga-

tion of the uav. Since the time required for landing and the distance flown during

landing is typically short, this flat Earth model is adequate for navigation.

Sensors (i.e. the camera and gps/ins) are fixed in the vehicle’s body frame B.

It is assumed that the camera is located at a known (stationary) point in the vehicle

body frame and the orientation of the camera with respect to the body frame is

constant and known. Bearings to deck markers are obtained in the camera frame

C. Transformation matrices T and Tcam define the transformation of a vector in

O to B and from B to C, respectively. Finally a deck frame D is fixed to the ship

deck, and a transformation matrix Td defines the transformation of a vector in O

to D.
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The transformation matrix is defined by Euler angles of one frame with respect

to another. This matrix is used to convert from the ned to deck body frame.

Following the NASA standard roll-pitch-yaw convention,

T = TφTθTψ (2.5)

with

Tφ =




1 0 0

0 cosφ sinφ

0 − sinφ cosφ


 (2.6)

Tθ =




cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ


 (2.7)

Tψ =




cosψ sinψ 0

− sinψ cosψ 0

0 0 1


 (2.8)

Thus

T =




cos θ cosψ cos θ sinψ −sinθ

sinφ sin θ cosψ − cosφ sinψ sinφ sin θ sinψ + cosφ cosψ sinφ cos θ

cosφ sin θ cosψ + sinφ sinψ cosφ sin θ sinψ − sinφ cosψ cosφ cos θ




(2.9)

2.2.2 Deck Kinematic Model

To keep the deck motion model general across a wide variety of ships and boats a

second order kinematic model driven by Gaussian noise is used. This is a constant

acceleration model, and clearly there will be significant unmodeled dynamics (ac-

celeration of a ship deck driven by wave motion is not constant!). However, the

simplicity and broad applicability of this model makes it an attractive choice.

Both deck position and velocity are expressed in the inertial frame, so that

ẋd = ud (2.10)
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ẏd = vd (2.11)

żd = wd (2.12)

Body angular rates can be expressed as Euler angle rates by

φ̇d = pd + qd sinφd tan θd + rd cosφd tan θd (2.13)

θ̇d = qd cosφd − rd sinφd (2.14)

ψ̇d = qd
sinφd
cos θd

+ rd
cosφd
cos θd

(2.15)

Deck acceleration and angular acceleration are driven by unknown forcing func-

tions

u̇d = Fdu (2.16)

v̇d = Fdv (2.17)

ẇd = Fdw (2.18)

ṗd = Fdp (2.19)

q̇d = Fdq (2.20)

ṙd = Fdr (2.21)

Ultimately, deck motion is forced by waves acting upon the ship. To avoid a

specific ship model, here the forcing term

Fd =
[
Fdu Fdv Fdw Fdp Fdq Fdr

]T
(2.22)

is assumed be zero-mean Gaussian random noise:

Fd ∼ N (0,Q) (2.23)

The covariance Q of this forcing term must be large enough to “cover” the

unmodeled dynamics. It will be determined based on sea state. The actual value

of the covariance of Q will be defined in Section 3.1.1.



21

2.2.3 Vision Model

The camera is located at a known position ∆s from the helicopter center of gravity

with a known rotation Tcam with respect to the vehicle body frame. The camera’s

x-axis is the optical axis, so that camera y and z axes lie in the image plane.

For a vector s expressed in the camera frame, the pinhole projection model

defines that vector’s projection onto the image plane:

z =
f

sx

[
sy

sz

]
(2.24)

where f is the focal length and sx, sy, and sz denote the components of the vector

expressed in the camera frame.

The pinhole projection model becomes ill conditioned for vectors that are nearly

perpendicular to the optical axis. A modified pinhole model computes bearings

(azimuth and depression angle: here a positive angle is down with respect to the

camera’s optical axis) as the arctangent of the pinhole projection. A comparison

of the two vision models is shown in Figure 2.3 [16]. For the ith deck marker the

vision model gi is

zi =


 arctan

(
si,y
si,x

)

arctan
(
si,z
si,x

)

+ nc (2.25)

The measurement is corrupted by zero-mean Gaussian random noise nc. The

vector si represents the vector to the ith marker, expressed in the camera frame:

si = Tcam


T



xi − xh
yi − yh
zi − zh


−∆s


 (2.26)

where xi = [xi yi zi]
T is the position of the ith marker in the inertial frame.

The position of a deck marker in the inertial frame is dependent on the deck
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Figure 2.3: Projection models.
Rather than express the pinhole projection as vector components in the image plane
(left image), the projection is expressed as an azimuth and depression to the feature
(right image). This leads to better conditioning of the measurement model.

The measurement is corrupted by zero-mean Gaussian noise nc. si represents the vector from
the camera to the ith tree, expressed in the camera frame:

si = Tcam


T




xi − x

yi − y

zi − z


−�s


 (2.30)

When vision measurements to several landmarks are available the vision measurement vector is
formed by concatenating the available measurements, i.e. zcam =

�
zT

cam,1 zT
cam,2 . . . zT

cam,m

�T .

2.3 Nonlinear Estimation

In general estimators follow a recursive process of prediction (governed by a plant model) followed
by correction (governed by a measurement model). The equations describing vehicle kinematics
and the available measurements are highly nonlinear. In addition, the uncertainty in estimated states
is likely to be significant due to the noise characteristics of low-cost IMUs. The combination of sig-
nificant nonlinearities and large uncertainty greatly complicates the state estimation problem. This
section briefly discusses and compares three techniques for nonlinear estimation: the Particle Filter,
the Extended Kalman Filter and the Sigma Point Kalman Filter (sometimes called the Unscented
Kalman Filter). Its purpose is to motivate the application of a SP-KF to an estimation problem with
the types of nonlinearities as those seen in this research (i.e. trigonometric functions).

Figure 2.3. Comparison of vision models.

position, deck orientation and the position of the marker in the deck frame:

xi =



xd

yd

zd


+ T−1

d bi (2.27)

where bi is the location of the ith marker in the deck frame (assumed known).

2.2.4 Modeling Ship Deck Motion

Ship deck motion can be very complex: in essence it is the dynamics of the ship

driven by wave motion. Ship motion modeling is not the focus of this thesis, but a

brief discussion is warranted to give confidence in the deck state estimation results.

2.2.4.1 Sinusoidal Method

The simplest model of deck motion is independent sinusoidal forcing of each degree

of freedom. In this model each degree of freedom is driven by

Fd(·)(t) = −A(·)ω
2
(·) sin (ω(·)t+ ϕ(·)) (2.28)
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Here A is the wave amplitude, ω is the frequency, and ϕ is phase. (·) denotes

a particular degree of freedom (x, y, z, φ, θ, ψ).

Integrating this forcing term twice gives simple sinusoidal motion for each de-

gree of freedom with amplitude A, frequency ω and phase ϕ. Note that amplitude,

frequency, and phase can be specified independently for each degree of freedom.

2.2.4.2 Stochastic Method

While the sinusoidal model gives motion that “looks” realistic, in practice that

model gives very regular motion. True ship motion is far less regular, with signifi-

cant changes in motion amplitude from one wave to the next.

To model this more complex motion a sum-of-sinusoids is used, so that [22]:

Fd(·)(t) =
N∑

k=1

−A(·),kω
2
(·),k sin (ω(·),kt+ ϕ(·),k) (2.29)

Choosing random, uniformly distributed values of ϕ(·),k will give a wave shape

that appears random. The problem now is making an appropriate choice of ampli-

tudes A(·),k and frequencies ω(·),k: these can be computed after a particular wave

power spectrum has been defined.

The Pierson-Moskowitz spectrum [37] is an empirically derived power spectrum

that defines wave energy as a function of frequency for a fully developed sea. The

power spectral density is

SPM(ω) =
0.78

ω5
exp(

−3.11

ω4h2
1/3

) (2.30)

Here h1/3 is the mean wave height, which is defined based on sea state. The

frequency for peak power density is

ω0 = 1.26h−0.5
1/3 (2.31)

Sea state is a numerical designation ranging from 0 (glassy calm) to 9 (wave

heights exceed fourteen meters) that defines wave height. Table 2.2 gives parame-

ters for sea states 1, 5, and 7; Figure 2.4 shows the Pierson-Moskowitz amplitude

spectrum for those sea states.
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Table 2.2. Sea state, mean wind speed and Pierson-Moskowitz parameters

Seastate
Approx.
Windspeed
(kt)

Vertical Wave
Height (m)

Average Wave
Period (s)

Range of Peri-
ods (s)

1 7 1 2 1-3.5
5 23 2.5 6 3.5-11
7 43 6.5 12 6.5-21
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Figure 2.4. Pierson-Moskowitz amplitude spectrum for Sea State 1, 5, and 7

To represent a wave condition that has the Pierson-Moskowitz spectral density,

amplitudes for a set of frequencies ωk and associated bandwidths ∆ωk are computed

as

Ak =
√

2SPM(ωk)∆ωk (2.32)

Now an appropriate range of frequencies must be selected. Figure 2.4 shows

that wave amplitude is near zero for frequencies less than one quarter the peak

frequency and greater than 4 times the peak frequency. To obtain good resolution

over this frequency range, one-third octave bands in the range
[
ω0

4
, 4ω0

]
are used.

Band frequency limits and bandwidth are given in Table 2.3.

Figure 2.5 shows a wave for sea state 5 generated using this approach.
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Table 2.3. One-third octave band frequencies in terms of ω0

Center Lower Upper Bandwidth
0.25ω0 0.2227ω0 0.2806ω0 0.0579ω0

0.315ω0 0.2806ω0 0.3536ω0 0.0729ω0

0.397ω0 0.3536ω0 0.4455ω0 0.0919ω0

0.5ω0 0.4455ω0 0.5612ω0 0.1158ω0

0.63ω0 0.5612ω0 0.7071ω0 0.1459ω0

0.794ω0 0.7071ω0 0.8909ω0 0.1838ω0

ω0 0.8909ω0 1.123ω0 0.2316ω0

1.26ω0 1.123ω0 1.414ω0 0.2918ω0

1.587ω0 1.414ω0 1.782ω0 0.3676ω0

2ω0 1.782ω0 2.245ω0 0.4631ω0

2.52ω0 2.245ω0 2.828ω0 0.5835ω0

3.175ω0 2.828ω0 3.564ω0 0.9263ω0

4ω0 3.564ω0 4.489ω0 1.167ω0
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Figure 2.5. Sample wave generated using the Pierson-Moskowitz spectrum at sea state
5

2.2.4.3 Fast Ferry Ship Model

Ship motion is wave motion modulated by ship dynamics. The two previous deck

motion models do not include ship dynamics, thus a model of direct ship motion
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is useful to more accurately assess estimator performance.

In [8] Hess defines a motion model for a TMV 114 fast ferry. This ship is 113.5m

in length, has beam 16.5m and displacement 700 metric tonnes (Figure 2.6).

Figure 2.6. A pictoral representation of the ferry used to accumulate data for this wave
motion model.

(http://www.rodriquez.it)

Hess defines the eoms for the ferry as:

y = 6.6 sinφ (2.33)

z = 57.11 sin θ + 13.2 sin2 0.5φ+ 0.2172 sin 0.4t (2.34)

+0.4174 sin 0.5t+ 0.3592 sin 0.6t+ 0.2227 sin 0.7t

φ = 0.021 sin 0.46t+ 0.0431 sin 0.54t (2.35)

+0.290 sin 0.62t+ 0.022 sin 0.67t

θ = 0.005 sin 0.46t+ 0.00964 sin 0.58t (2.36)

+0.00725 sin 0.7t+ 0.00845 sin 0.82t

The x position, and yaw angle are not as simply defined. For this research, x

position and yaw angle wave forces were left to be determined by the stochastic

model, while the other four wave forces use this fast ferry ship model. It is impor-

tant to note that this motion model is only defined for “moderate wave motion”

(sea state 4).
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2.3 Wave State Estimation and Observability Is-

sues

In principle the problem of landing would be made significantly easier if one could

predict the deck state at some time in the future. For this to be possible in the

estimation process proposed here the wave states would have to be defined and

estimated. To examine the feasibility of this approach, consider a one degree of

freedom ship deck (constrained to move only in the vertical direction), forced by

simple sinusoidal motion.

For this single degree of freedom ship deck the states to be estimated are

x = [z w A ω]T (2.37)

where z is deck height, w is deck vertical velocity, A is wave amplitude and ω is

wave frequency.

Assuming that wave amplitude and frequency are constant,

ż = w (2.38)

ẇ = −Aω2 sinωt (2.39)

Ȧ = 0 (2.40)

ω̇ = 0 (2.41)

Where A is the amplitude of the wave and ω is the wave frequency. Written

compactly,

ẋ = f(x) (2.42)

Now suppose that only a measurement of deck height z is available:

y = [1 0 0 0] x = Cx (2.43)

An analysis of observability will reveal if it is possible to estimate wave states

directly given measurements of deck position. Linearizing the equations of motion:

δẋ = Aδx (2.44)
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Here

A = ∇f =




0 1 0 0

0 0 a b

0 0 0 0

0 0 0 0




(2.45)

with

a = −ω2 sinωt (2.46)

b = −2Aω sinωt− Aω2 cosωt (2.47)

Writing down the observability matrix for this four state system,

O =




C

CA

CA2

CA3




=




1 0 0 0

0 1 0 0

0 0 a b

0 0 0 0




(2.48)

This is not full rank, thus it is not possible to directly estimate wave states

with a measurement of only deck height. Even if a measurement of deck vertical

velocity is included it is not possible to directly estimate wave states. While it may

be possible to obtain an estimate of wave states using a sequence of measurements,

but that is beyond the scope of this thesis.

2.4 Sigma Point Kalman Filters

Any non-specific recursive estimator generally has two main steps. First the esti-

mator predicts the next state using the prescribed kinematics. This is followed by

the estimator correcting that update using incoming measurements. Now it has

already been discussed that both the kinematics and the measurement model being

utilized are nonlinear, and that measurement is corrupted by inherent noise. This

combination of nonlinearity and uncertainty in measurement can lead to complica-

tions where estimators relying on linear eoms would fail. Thus it is imperative that

an estimator that is capable of working in a nonlinear environment be employed.

It has been shown in [16] that the Sigma Point Kalman Filter, also known as
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an Unscented Kalman Filter, is capable of such a task. This filter does not need to

approximate eoms in an attempt to linearize the system. Instead the ukf assumes

a Gaussian probability distribution function of state variables. This distribution

is represented by a set of sigma points, which are used to capture the mean of

the covariance of each state in the state vector. The ukf algorithm is shown in

Figure 2.7. Further implementation of this will be elaborated on in the following

chapter.

2.5 Summary: The Estimation Problem

In order to successfully land on the ship’s deck, the uav must maintain controlled

flight, successfully observe marker motion during controlled flight, estimate deck

motion from these measurements, plan and constantly update a landing path, and

successfully execute that landing path. The focus of this thesis is on observing

markers and then using those bearing measurements to compute a deck state esti-

mate. This requires knowledge of all the vehicle states (assumed) as well as prior

estimates of all the deck states listed in Section 2.1.

It has been detailed that due to unmodeled dynamics associated with deck mo-

tion, filter process noise must be introduced to mitigate poor estimator knowledge

of true deck dynamics. This provides a simplistic, but very general, kinematic

model for the estimator to use when determining deck motion. This noise must be

related to the strength of wave motion affecting the deck (i.e. Pierson-Moskowitz

Spectrum).

All deck state estimates will be found via the vision measurement system. The

modified pinhole model will be implemented as the vision measurement model.

Different modeling techniques for wave motion were introduced. These included

the sinusoidal model, the stochastic model, and the fast ferry ship model.

Due to the wave motion and vision measurement model chosen, estimation must

be performed with a recursive estimator capable of nonlinear estimation (such as

a ukf). The recursive estimator will create an estimation of deck state as well as

an associated covariance.

It is important to repeat here that since all measurement systems are internal

to the vehicle, very little information is shared from the deck to the vehicle, and
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initialize with x̂0 and P0|0.

For tk, k ∈ (1, . . . ,∞) compute sigma points:

Xk−1|k−1 =
[

x̂k−1|k−1 x̂k−1|k−1 + η
√

Pk−1|k−1 x̂k−1|k−1 + η
√

Pk−1|k−1

]

(2.49)
Time update (prediction):

Xk|k−1 = f(Xk−1|k−1,uk−1) (2.50)

x̂k|k−1 = Xk|k−1wm (2.51)

Pk|k−1 =
[
Xk|k−1 − x̂k|k−11

]
Wc

[
Xk|k−1 − x̂k|k−11

]T
+ Q (2.52)

Measurement update (correction):

Zk|k−1 = h(Xk|k−1) (2.53)

ẑk|k−1 = Zk|k−1wm (2.54)

Pzz =
[
Zk|k−1 − ẑk|k−11

]
Wc

[
Zk|k−1 − ẑk|k−11

]T
+ R (2.55)

Pxz =
[
Xk|k−1 − x̂k|k−11

]
Wc

[
Zk|k−1 − ẑk|k−11

]T
(2.56)

K = PxzP
−1
zz (2.57)

x̂k|k = x̂k|k−1 + K(Azk − ẑk|k−1) (2.58)

Pk|k = Pk|k−1 −KPzzK
T (2.59)

There are 2N+1 sigma points, where N is the dimension of the state vector. In
this algorithm η is a weight factor, wm is a vector of weights, Wc is a diagonal
matrix of weights, 1 is a (1× 2N + 1) matrix of ones, Q is process noise and R
is measurement noise. The weight factors are calculated as

η = α
√
N (2.60)

The constant α is a parameter which determines the spread of the sigma points.
Typically 10−4 ≤ α ≤ 1. The weight vector wm and weight matrix Wc are

wm,1 = α2−1
α2 wm,i = 1

2Nα2 (2.61)

Wc,1 = α2−1
α2 + (1− α2 + β) Wm,ii = 1

2Nα2 (2.62)

where i = 2, . . . , (2N+1). The parameter β incorporates prior knowledge of the
distribution of the state vector. For Gaussian distributions β = 2 is optimal [31].

Figure 2.7. Algorithm for Unscented Kalman Filter.

reproduced from Rudolph van der Merwe and Eric Wan, [31]
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the estimated deck model has no resemblance to the true model; this system could

potentially be implemented in many other situations: Underwater vehicles, ground

vehicles, space system rendezvous, and innumerable others.

An implementation of the ukf is given in the following chapter, and computer

simulation results are detailed in Chapter 4.



Chapter 3
Implementation Using a UKF

While the eoms defining true deck motion are detailed in Section 2.2.2, and the

vision measurement model was discussed in Section 2.2.3; These independent sys-

tems of equations must be implemented in an estimator in order to generate the a

current best deck state estimate x̂d. The ukf follows a specific algorithm wherein

a set of sigma (test) points around the previous time steps best estimate are found.

Those test points are then used to find the set of current estimated states with

the lowest possible covariance. Once those new states are found, the state vector

is updated as well as the covariance matrix.

While the algorithm was introduced in Figure 2.7, the steps being taken and

definition of key components of the estimator is performed here. Lengthier dis-

cussions into the merits of the ukf over other estimators (such as the ekf) are

contained in [16, 15, 31].

3.1 Deck State Estimation

As stated in Chapter 2 the state vector to be estimated is

xd = [xd yd zd φd θd ψd ud vd wd pd qd rd]
T (3.1)

Both the process model

ẋd = f(xd,Fd) (3.2)
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and measurement model

z = g(xd,xh) + nc (3.3)

were developed in Chapter 2.

The Unscented Kalman Filter follows a recursive process of prediction followed

by correction. Here the prediction step is driven by the deck kinematic model and

unknown process noise, and a key parameter is the magnitude of process noise that

should be incorporated into the estimator. In this thesis process noise is computed

based on the maximum expected acceleration of the deck. The correction step

is driven by bearing measurements to deck markers combined with knowledge of

helicopter position and orientation.

3.1.1 Prediction Step

The deck kinematics developed from Equation 2.10 to Equation 2.21 can be written

compactly as

ẋd = f(xd) +

[
06

I6

]
Fd (3.4)

where 06 is a 6×6 matrix of zeros, I6 is a 6×6 identity matrix, and Fd ∼ N (0,Q).

In discrete form one can write

xd,k+1 = f(xd,k) + vk (3.5)

and one must determine the statistics of vk. To do so, consider the equations of

deck motion for small angular displacements, which can be obtained from Equa-

tion 2.10 to Equation 2.21 as

ẋd =

[
06 I6

06 06

]
xd +

[
06

I6

]
Fd (3.6)

Using a zero-order hold to discretize the equations of motion gives

xd,k+1 =

[
I6 ∆tI6

06 I6

]
xd,k +

[
∆t2

2
I6

∆tI6

]
Fd (3.7)
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Thus vk ∼ N (0, Q̄) with

Q̄ =

[
∆t2

2
I6

∆tI6

]
Q
[

∆t2

2
I6 ∆tI6

]
(3.8)

Finally, it is assumed that Q is diagonal (i.e. the process noise that models

wave acceleration is uncorrelated in each of its components), so that

Q =




σ2
u 0 0 0 0 0

0 σ2
v 0 0 0 0

0 0 σ2
w 0 0 0

0 0 0 σ2
p 0 0

0 0 0 0 σ2
q 0

0 0 0 0 0 σ2
r




(3.9)

The choice of σ(·), expected standard deviation of acceleration for the given

component, is important. If it is too small then the modeled deck kinematics will

have overly strong confidence in the (incorrect) assumption of constant accelera-

tion. If it is too large the modeled deck kinematics will have such high uncertainty

that they will not play a role in deck state estimation. Recall that for sinusoidal

deck motion

Fd(·)(t) = −A(·)ω
2
(·) sin (ω(·)t+ ϕ(·)) (3.10)

Thus the peak expected acceleration is A(·)ω
2
(·). Both wave amplitude and

frequency depend on sea state, and these are not constant values for any given sea

state. Table 2.2 gives expected mean magnitudes and variances for sea states 1,

5, and 7. However, merely choosing the expected wave amplitude and mean wave

frequency for a given sea state and computing expected acceleration will result in

a conservative prediction of wave excitation. By choosing

σ(·) =
(
Anom(·) + 3σA

) (
ωnom(·) + 3σω

)2
(3.11)

will ensure that a broad range of possible amplitudes and frequencies for a partic-

ular sea state are covered.

Combined with the deck kinematics, Q̄ is used in the prediction step of the
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ukf algorithm given in Figure 2.7.

3.1.2 Vision Update

Measurements from the camera are used in the measurement update step of the

ukf. The modified pinhole projection model of Section 2.2.3 is written compactly

as

zcam = g(xd,xh) + nc (3.12)

It is assumed that measurement noise nc is zero-mean Gaussian and that noise

is uncorrelated across bearings, so that

nc ∼ N (0,R) (3.13)

with

R = σ2
camI (3.14)

3.1.3 Choice of Deck States

When simulating a system, it is important to choose the best set of states in order

to fully describe the motion. One wants just enough states to fulfill the eoms,

but not too many states that computations become too intensive such that real-

time applications become impossible. The only set of chosen states are the deck

states needed for state estimation and prediction since uav states are given by a

gps/ins. Recall the pertinent states needed from Table 2.1. These states have

been determined to be the minimum spanning set to accomplish all the tasks laid

out in this thesis. If the mission goals or problem statement were to be altered then

the deck states may be altered as well. However the ukf algorithm is indifferent

to the set of states being estimated, so long as the process model and kinematics

from Chapter 2 are updated accordingly. It is also important to note that with

the current set of states, the system is able to run faster than real time.
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3.2 Data Association

Data association is a critical component of the deck state estimator. Failure to

correctly associate measured bearings with the corresponding marker will almost

certainly lead to divergence of the deck state estimator.

Data association is an example of an assignment problem. This class of prob-

lems has been extensively studied in the computer science literature and in robotics

applications (especially problems related to simultaneous localization and map-

ping, or slam) [19, 20, 4].

In this research, data association is computed by comparing the pixel location

of a marker in the current image frame with pixel locations of markers in the

previous frame. Close matches are assumed to come from the same marker. In

this case “close” is computed as the Mahalonobis Distance:

dnm = (zn − zm)T P−1
mm (zn − zm) (3.15)

Here zm is the expected pixel location of a marker from the previous frame

in the current frame and zn is the measured pixel location of a marker in the

current frame. The matrix Pmm represents the uncertainty of the expected marker

position. The quantity dnm thus represents the distance (scaled by uncertainty)

between a measured marker location and the expected marker location.

This distance is computed for all possible combinations, leading to an n ×m
distance matrix:

D =




d11 d12 · · · d1m

d21 d22 · · · d2m

...
...

dn1 · · · · · · dnm




(3.16)

The problem now is to compute the assignments that minimize the overall cost.

One approach is to begin with the top row and assign the markers in turn based

on minimum distance. This “greedy” approach is brittle, however, and may lead

to incorrect assignment in cases of ambiguity (i.e. similar distances for several

possible assignments).

A better approach is to minimize the total cost. In large assignment problems

(with tens or hundreds of markers) it can quickly become computationally pro-
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hibitive to brute force this problem (i.e. compute cost of all possible assignments,

choose the lowest net cost).

However, the Munkres method [14] can be used to quickly find the optimal

data association based on the Mahalonobis distances. The Munkres algorithm is

traditionally used to determine a best job-agent placement, but with some minor

alterations, the algorithm works equally well correlating lights from frame to frame.

The Munkres method was published by mathematician Harold Kuhn, but based

on the works of earlier mathematicians Dénes Kőnig, Jenő Egerváry, and finally

James Munkres [14].

The positives of this method is that it is robust, magnitude indifferent, and

works when a light may enter or leave the field of view. This is a big positive,

since the data association can continue uninhibited when the number of markers

in view changes. However, deck state estimation requires a minimum of three

markers in view, but to improve performance and observability four markers were

used in this thesis.

3.3 Deck Estimate Initialization

In Chapter 2 the kinematics of deck motion were described in depth. The ukf

uses the previous estimate and incoming measurements to provide a best estimate

and associated covariance. An important aspect of this process that hasn’t been

detailed is how the estimated states are initially computed.

It is assumed that the only a priori information of deck state or outside condi-

tions comes from a single message sent from the ship: providing the uav with a

nominal ship speed, heading, and sea state. Without any other information about

deck position or orientation the rest of the states are initialized to zero. Therefore,

the initial estimated deck state is defined as,

x̂d,0 = [0 0 0 0 0 ψ0 u0 v0 0 0 0 0 0]T

Along with the initial deck estimate, an initial deck covariance is computed.

This is assumed to be diagonal (uncorrelated), with the magnitude of each compo-

nent dependent on sea state. For each component of the deck state, the standard
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deviation is set to equal the root mean square value of the expected amplitude due

to wave motion. For position and orientation states

P0(·) =
A2
nom,(·)

2
(3.17)

and for velocity and angular rate states

P0(·) =
A2
nom,(·)ω

2
nom,(·)

2
(3.18)

Expected amplitudes and frequencies for all sea states simulated in this thesis

will be defined in Section 4.2.1, which describes simulation conditions.



Chapter 4
Estimator Simulation Results

This chapter details the results of simulations of six degree of freedom deck state

estimation. These simulations provide the opportunity to prove that the estimator

and data association techniques are both accurate as well as robust enough to be

used across a range of sea conditions and external environments.

Simulation results are utilized to show that the estimator is capable of deck

state estimation in terms of accuracy, precision, and consistency. Results for a

representative run with a standard sea state show that the system is accurate.

Presenting representative run results for a variety of wave motion models shows

that the system is precise. Finally, using Monte Carlo simulations can show the

consistency of the system working in various sea states or wave conditions. In

addition, showing these results for all three wave motion models proves the that

the estimator need not rely on a specific wave motion model in order to estimate

deck states.

4.1 Helicopter Kinematics

Since the focus here is on estimation (and not flight control or path planning) a

kinematic model is used for the helicopter. Recall from Chapter 2 the vehicle state

vector:

xh = [xh yh zh φh θh ψh uh vh wh]
T



40

The vehicle also has control vector:

uh = [ph qh rh Tx Ty Tz]
T

Where uh represents the vehicle control vector. [Tx Ty Tz] represents the thrust

vector components in the x, y, and z directions. Thus it is implicitly assumed that

an on-board controller could follow angular rate commands and could compute

a desired magnitude and direction of the net thrust vector (within constraints).

eoms using small angle approximations found to be:

ẋh = u(cosψh)− vh(sinψh) + wh(θh cosψh + φh sinψh) (4.1)

ẏh = uh(sinψh)− vh(cosψh) + wh(θh sinψh − φh cosψh) (4.2)

żh = (−θh)uh + (φh)vh + wh (4.3)

φ̇h = ph − (θh)rh (4.4)

θ̇h = qh − (φh)rh (4.5)

ψ̇h = (φh)qh − rh (4.6)

u̇h = −(whqh − vhrh) + Tx/m− gθh (4.7)

v̇h = −(uhrh − whph) + Ty/m+ gφh (4.8)

ẇh = −(vhph − uhqh) + Tz/m+ g (4.9)

In the vehicle acceleration equations, g represents gravitational acceleration at

the Earth’s surface. [Tx Ty Tz] represent components of the aerodynamic forces

and thrust vector.

Now the vehicle kinematic design is fully outlined, simulation conditions can

be shown.

4.2 Simulation Conditions

The ship is traveling at a nominal speed of 3 m/s (5.8 kts). The helicopter begins

from a point 250 meters behind and 100 meters above the ship, and it travels at a

constant speed of 14.5 m/s (28 kts) in a straight line towards the ship deck. The

simulation starts at time zero and ends at t = 20 seconds, when the helicopter is



41

−250 −200 −150 −100 −50 0 50 100

−20

0

20

40

60

80

100

X Position (m)

Z
 P

os
iti

on
 (

m
)

t=10s

t=20s

t=0s

t=0s t=10s t=20s

Figure 4.1. A two dimensional schematic of vehicle approach and deck position change
vs. time

uav positions are denoted by star, deck marker positions are denoted by circles.
Labels correspond to time since start of the simulation. Deck motion due to waves

is exaggerated for this schematic.

approximately 15 meters behind and 8 meters above the ship deck.

The four deck markers were arranged in a square pattern on the deck surface

around the origin of the deck body frame. This square had a baseline of 20 meters,

and one marker was located in each of the corners.

A schematic of the specific simulation conditions is shown in Figure 4.1

4.2.1 Sea State Conditions

The simulation used a given sea state to generate sea conditions for the deck to

be subject to. For each run a new random sea condition was generated using

the statistics in Table 4.1. For each of the six degrees of freedom undergoing

wave forces, a mean wave amplitude and frequency are given as well as associated

covariances. This covariance information is used to randomize the wave properties

for each degree of freedom for each run. For the sinusoidal model these are the

properties used to determine and randomize wave motion.

For the stochastic model the mean wave amplitude generated was used as the

peak wave height (h1/3). From this a power spectrum could be generated, a peak

frequency could be found, and then the proper set of bandwidth frequencies could
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then be computed.

Table 4.1. Wave State Simulation Information for Sea states 1, 5, 7

Component Mean Amp. Amp. Variance Mean Period Period Variance

Sea state 1
x 0.2 m 0.1 m2 5 sec 1 sec2

y 0.2 m 0.1 m2 5 sec 1 sec2

z 0.5 m 0.2 m2 5 sec 1 sec2

φ 4◦ 2◦
2

5 sec 1 sec2

θ 1◦ 1◦
2

5 sec 1 sec2

ψ 1◦ 1◦
2

5 sec 1 sec2

Sea state 5
x 1 m 0.5 m2 12 sec 3 sec2

y 1 m 0.5 m2 12 sec 3 sec2

z 2.5 m 1 m2 12 sec 3 sec2

φ 12◦ 3◦
2

12 sec 3 sec2

θ 5◦ 2◦
2

12 sec 3 sec2

ψ 3◦ 1◦
2

12 sec 3 sec2

Sea state 7
x 2.6 m 1.3 m2 17 sec 4 sec2

y 2.6 m 1.3 m2 17 sec 4 sec2

z 6.5 m 2.5 m2 17 sec 4 sec2

φ 35◦ 9◦
2

17 sec 4 sec2

θ 12◦ 3◦
2

17 sec 4 sec2

ψ 4◦ 3◦
2

17 sec 4 sec2

4.2.2 UKF Parameters

With the given sea state and wave properties for a particular run, filter process

noise magnitude was computed using Equation 3.11. From Equation 3.14, camera

noise covariance (σ2
cam), was chosen to equal ( π

180
radians)2.

It is important to reiterate that vehicle states are assumed to be known with

a high level of precision. In reality, accuracy in the determination of helicopter

orientation will be limited to a standard deviation of approximately 1◦ to 2◦.

However, this uncertainty can be included in the camera bearing measurement

uncertainty. Noise in the uav position estimate will have a much smaller impact

on performance than attitude uncertainty.
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Performances for both the representative run at sea state 5, and various Monte

Carlo simulations will be presented for the sinusoidal wave model and stochastic

wave model. For each of these models representative run analysis will be done first

(Section 4.3.1, Section 4.4.1), followed by Monte Carlo result analysis (Section 4.3.2

,Section 4.4.2). While representative run analysis is only performed for sea state

5, Monte Carlo analysis was performed for sea states 1, 5, and 7.

The fast ferry ship model is only valid for moderate wave motion, equivalent to

sea state 4. Representative run analysis (Section 4.5.1) and Monte Carlo analysis

(Section 4.5.2) for this model was done for that sea state only.

4.3 Sinusoidal Wave Motion Model

4.3.1 Representative Run Analysis (Sinusoidal Wave

Model)

Figure 4.2 and Figure 4.3 shows all true deck states versus the estimated deck

states for a representative run at sea state 5. Included in these plots are the ±2σ

boundaries on the estimate.

Figure 4.2(a) shows deck positions are estimated and tracked closely. By the

end of the simulation (20 seconds), the estimate and truth are nearly identical;

with only a 0.369 meter error at the end of this run. Also the estimator has a

high confidence in the knowledge of these states, since the covariance continually

converges during the simulation. Attitude estimation in (Figure 4.2(b)) shows

similar behavior, with an error of only 0.571◦. The estimator is able to closely

follow the sinusoidal model, and keep the estimate close to truth.

Analysis of deck velocity and rotation rate estimation, Figure 4.3(a) and Fig-

ure 4.3(b) does show adequate estimation. While these estimates are not as ac-

curate as the positions and orientations, they are still well within the covariance

bounds. The velocity error has magnitude 0.126 meters per second and there is

an angular rate error of 0.93◦ per second. While the estimator doesn’t track these

states as precisely, it is clear that the general behavior of these states is captured.

Also it is evident that the estimator is aware that the knowledge of these states is

not perfect, which is shown by the covariance bounds hardly converging with the
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Figure 4.2. Representative Run Position and Orientation Estimation (Sinusoidal Wave
Model)

Representative run position and orientation estimation using the sinusoidal wave
model. True state shown in blue, estimated state is shown in red, ±2σ bounds are

shown as dashed lines.
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length of observation.

With the estimator shown to estimate deck states to an acceptable accuracy,

and also have good knowledge of the uncertainty in the estimates, attention can

be turned to a visual representation of how the estimator is performing with time.

Using the known estimated deck state x̂d and deck state covariance Pd, spatial

covariance of marker positions can be computed. This marker covariance is not

used for any further computation, but does provide a strong visual depiction of

estimator behavior by showing the uncertainty of determined marker positions.

Figure 4.4 displays how the three standard deviation error ellipsoids for each

of the four markers evolves over time. Also included in each plot is the true deck

outline (in blue) and estimated deck outline (in red). This figure shows the error

ellipsoids, deck state, and deck estimate at times of 0, 4, 8, 12, 16, and 20 seconds.

This figure shows some how the system expects errors in the spatial estimation

of marker position initialize and evolve with time. Initially it is evident that

the estimator believes there is more error in the z direction than the other two

position states. This is expected, since z wave magnitude is the largest, and thus

the covariance on z position is the largest of the position states. By 4 seconds

in the estimator appears to have better knowledge of z position, and x position

appears to be the dominant error. One can observe the ellipsoids elongating along

the x axis.

This covariance growth is caused by the vision measurement noise model used.

Since constant Gaussian noise was used on all bearing measurements, the noise

has a larger effect on position estimation at further distances than when the uav

is closer to the deck. This is evidenced by the fact that as the vehicle continues to

approach, the error ellipsoids consistently shrink in all directions. By the end of

the simulation, the estimate and truth are hard to distinguish from one another,

and the error ellipsoids just barely envelope the dots representing the markers.

This concludes the representative run analysis for the sinusoidal model.
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Figure 4.3. Representative Run Velocity and Angular Rate Estimation (Sinusoidal
Wave Model)

Representative run position and orientation estimation using the sinusoidal wave
model. True state shown in blue, estimated state is shown in red, ±2σ bounds are

shown as dashed lines.
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Figure 4.4. Analysis of Deck Marker Error Ellipsoids (Sinusoidal Wave Model)

This plot shows the 3σ error ellipsoids for each individual deck marker. Plots are
shown for 6 times within the simulation (t=0, 4, 8, 12, 16, 20 seconds). The red

box corresponds to estimated deck position, and the blue box is the true deck
position. Open dots represent the estimated marker positons, while filled dots
represent true marker positions. Each marker is colored seperately in order to

more easily identify them individually between plot.
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4.3.2 Monte Carlo Simulation Results (Sinusoidal Wave

Model)

When analyzing Monte Carlo results, the idea is not to analyze data on a run by

run basis, but to look at the overarching characteristic behaviors of the system.

It is possible to characterize the basic properties of the system by looking at the

average result from many runs. By looking at data across many simulations wave

randomization and noise become less prominent in the results. One can also show

the maximum and minimum outliers for that set of runs. For Monte Carlo simula-

tions, overall error characteristics will be examined, as well as error characteristics

for all the state groups (position, orientation, velocity, angular rates).

The way to read all the plots pertaining to Monte Carlo results are as a time

history of true mean error (blue), bounded by the maximum and minimum error

(gray area). This is compared against the mean estimated error (red).

Figure 4.5 shows how the true and estimated error of the total deck state evolves

with time, for various sea states. There is a definite correlation in performance to

sea state. The estimator initially is cautious about the estimate when far away,

but as the approach continues the true error becomes comparable to the estimated

error. This is because at larger distances measurement noise has a larger effect on

the deck estimate, so it takes some time until the uav gets close enough to the deck

for the estimator to overcome the noise. It is important to note that as sea state

increases, the estimator does show a trend in becoming slightly overconfident in

the overall error estimation. This is to be expected: as sea state increases so does

the magnitude of the disturbances acting upon the deck, and thus the unmodeled

dynamics have a larger effect on estimation accuracy.

The same analysis performed for overall deck state error behavior can now

be extended to each group of states. With this analysis estimator behavior with

respect to given state group can be inspected, and the errors involved will have

real physical meanings.

Figure 4.6 shows position error behavior versus sea state. These plots look

very similar to the total error plots, and indeed the position states are the largest

magnitude set of states, and thus tend to drive behavior of the estimator. With

each sea state the estimator is able to overcome the initial large error from mea-
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Figure 4.5. Total Deck State Estimation Error vs. Sea state (Sinusoidal Wave Model)

Estimator total error for sea states 1, 5, 7. The grey region shows maximum and
minimum bounds of true error. The blue line shows mean true error, and the red

dashed line shows estimated total variance (i.e.
√

TrP).
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surement noise, and accurately estimate error by approximately halfway through

the simulation. Similarly to the total error plot, the estimator does show some

overconfidence in the position estimation for all sea states. However, these errors

are small.

Attitude estimation was shown to be very strong in the representative run, and

Figure 4.7 shows that error estimation for these states is accurate as well. For sea

states 1 and 5 the estimated error quickly closes in on truth, and remains on top

of it through the end of the simulation. There is almost no overconfidence in the

attitude estimation for sea states up to 5. Sea state 7 does not fare quite as well;

consistently the estimator is overconfident of the accuracy of the estimation. While

this error is small, approximately 2◦ in magnitude, it is persistent for a majority

of the simulation.

Velocity estimations, from Figure 4.8, show very strong knowledge in the ve-

locity error at lower sea states. Both sea states 1 and 5 start with a significant

difference betweent the true and estimated error. However, the estimator over-

comes this difference and both sea states have well known velocity errors by the

end of simulation. At higher sea states, like the attitude estimation, the estimator

overconfidently estimated deck velocity.

Rotation rate estimation (Figure 4.9) appears to be the most difficult set of

states for the estimator to get a grasp of uncertainty in. While the estimator does

succeed at sea state 1, sea states 5 and 7 again exhibit overconfidence in the esti-

mate. Again though these errors are small, with the estimator only overconfident

by 3◦ per second.
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Figure 4.6. Position State Estimation Error vs. Sea state (Sinusoidal Wave Model)

Estimator position error for sea states 1, 5, 7. The grey region shows maximum
and minimum bounds of true error. The blue line shows mean true error, and the

red dashed line shows estimated total variance (i.e.
√

TrP).
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Figure 4.7. Orientation State Estimation Error vs. Sea state (Sinusoidal Wave Model)

Estimator attitude error for sea states 1, 5, 7. The grey region shows maximum
and minimum bounds of true error. The blue line shows mean true error, and the

red dashed line shows estimated total variance (i.e.
√

TrP).
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Figure 4.8. Velocity State Estimation Error vs. Sea state (Sinusoidal Wave Model)

Estimator velocity error for sea states 1, 5, 7. The grey region shows maximum
and minimum bounds of true error. The blue line shows mean true error, and the

red dashed line shows estimated total variance (i.e.
√

TrP).
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Figure 4.9. Angular Rate State Estimation Error vs. Sea state (Sinusoidal Wave
Model)

Estimator angular rate error for sea states 1, 5, 7. The grey region shows
maximum and minimum bounds of true error. The blue line shows mean true

error, and the red dashed line shows estimated total variance (i.e.
√

TrP).
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4.4 Stochastic Wave Motion Model

4.4.1 Representative Run Analysis (Stochastic Wave

Model)

With analysis of estimator behaviors for the sinusoidal model complete, the results

of the estimator performance with respect to the more complex stochastic wave

motion model can be shown. The same plots for the sinusoidal model will be shown

here for the stochastic results.

Figure 4.10 shows the results of position and orientation estimation for the

deck undergoing stochastic wave motion. While the motion in both sets of states

is certainly more random, the estimator is able to handle this type of wave motion.

All positions are accurately tracked, and attitudes estimates nearly lie on the truth.

The position is known to within 0.425 meters of accuracy. It is evident that the

estimator has strong knowledge of the attitude estimates as well. By the end of

the simulation the error on these states is just 0.518◦. As previously seen in the

sinusoidal representative run results the covariance bounds on all six of these states

continuously shrink as the observation time increases.

Figure 4.11 shows that the stochastic model simulation results exhibit a sim-

ilar loss of accuracy in velocity and angular rate estimation when compared to

positions or attitudes. It appears the more random wave motion of the stochastic

model proves more challenging for the estimator to track. Velocities are estimated

adequately (0.403 meters per second error), and a majority of the motion is cap-

tured within the standard deviation boundaries. Attitude rate estimation appears

to be the toughest state to track. While the estimator does seem to get a mean

value for each rotation rate, it is not able to track the high frequency motion that

defines these states. The final error on attitude rates is 5.98◦ per second. However,

even with the overall error the estimator does appear to keep large enough uncer-

tainty boundaries on these states, and a majority of the error is captured within

them.

Keeping consistent with the sinusoidal model, an analysis of Figure 4.12 shows

how the estimate of ellipsoid positions changes over the length of the simulation.

The estimator again initializes with a large estimate in the z direction. All four
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Figure 4.10. Representative Run Position and Orientation Estimation (Stochastic
Wave Model)

Representative run position and orientation estimation using the stochastic wave
model. True state shown in blue, estimated state is shown in red, ±2σ bounds are

shown as dashed lines.
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Figure 4.11. Representative Run Velocity and Angular Rate Estimation
(Stochastic Wave Model)

Representative run position and orientation estimation using the stochastic wave
model. True state shown in blue, estimated state is shown in red, ±2σ bounds are

shown as dashed lines.
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markers have identical error ellipsoids since they are all equidistant from the deck

centroid, and no measurements have yet been taken.

Once again the ellipsoids elongate in the x direction while shrinking in the y

and z directions. By 12 seconds the deck has a strong confidence in the spatial

estimates, and by the end of the simulation, the estimate and truth are nearly

identical.
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(a)

Figure 4.12. Analysis of Deck Marker Error Ellipsoids (Stochastic Wave Model)

This plot shows the 3σ error ellipsoids for each individual deck marker. Plots are
shown for 6 times within the simulation (t=0, 4, 8, 12, 16, 20 seconds). The red

box corresponds to estimated deck position, and the blue box is the true deck
position. Open dots represent the estimated marker positons, while filled dots
represent true marker positions. Each marker is colored seperately in order to

more easily identify them individually between plot.
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4.4.2 Monte Carlo Simulation Results (Stochastic Wave

Model)

Results of total state error tracking for the stochastic wave model show similar

behavior to the sinusoidal model. Figure 4.13 depicts that as the wave disturbance

magnitude grows, the estimator becomes overconfident in the estimate; letting the

estimated error magnitude fall below the true error magnitude.

Examination of components of the total error can illuminate how confident the

estimator is in the measurement of each set of states. Figure 4.14 through Fig-

ure 4.17 depict the error characteristics of each subgroup of deck states. Positions

again are shown to be the driving states of the system, appearing very similar to

total error characteristics. Both position and attitude estimation appear to show

slight overconfidence tendencies as sea state increases. However, performance in er-

ror estimation of these states is nearly indistinguishable from the sinusoidal model.

Velocity error estimation shows more significant accuracy degradation versus

sea state than what was seen from the sinusoidal model. While sea state 1 error

is still accounted for properly, sea state 5 and 7 show visible overconfidence in

the deck velocity measurements. Angular rate estimation also behaved similar to

velocity: with increasing sea state leading to increasing overconfidence.
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Figure 4.13. Total Deck State Estimation Error vs. Sea state (Stochastic Wave Model)

Estimator total error for sea states 1, 5, 7. The grey region shows maximum and
minimum bounds of true error. The blue line shows mean true error, and the red

dashed line shows estimated total variance (i.e.
√

TrP).
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Figure 4.14. Position State Estimation Error vs. Sea state (Stochastic Wave Model)

Estimator position error for sea states 1, 5, 7. The grey region shows maximum
and minimum bounds of true error. The blue line shows mean true error, and the

red dashed line shows estimated total variance (i.e.
√

TrP).
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Figure 4.15. Orientation State Estimation Error vs. Sea state (Stochastic Wave Model)

Estimator attitude error for sea states 1, 5, 7. The grey region shows maximum
and minimum bounds of true error. The blue line shows mean true error, and the

red dashed line shows estimated total variance (i.e.
√

TrP).
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Figure 4.16. Velocity State Estimation Error vs. Sea state (Stochastic Wave Model)

Estimator velocity error for sea states 1, 5, 7. The grey region shows maximum
and minimum bounds of true error. The blue line shows mean true error, and the

red dashed line shows estimated total variance (i.e.
√

TrP).
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Figure 4.17. Angular Rate State Estimation Error vs. Sea state (Stochastic Wave
Model)

Estimator angular rate error for sea states 1, 5, 7. The grey region shows
maximum and minimum bounds of true error. The blue line shows mean true

error, and the red dashed line shows estimated total variance (i.e.
√

TrP).
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4.5 Ferry Ship Motion Model

4.5.1 Representative Run Analysis (Fast Ferry Ship

Model)

With the estimator shown to be able to estimate moderate wave motion for the

previous two wave motion models, it is still important to attempt estimation using

a model that was developed for ship motion specifically in order to further gain

confidence in the results shown here.

Figure 4.18 shows the estimator again performing with accuracy when estimat-

ing ship deck position and orientation. This is consistent with the results from the

other motion models. Final position error is 0.239 meters and final attitude error

totals 0.682◦.

Figure 4.19 shows the velocity and angular rate estimation of ship deck state

versus time. The estimator does appear to lose accuracy in the velocity estimates,

but only the vertical velocity estimates show data slightly outside of the covariance

bounds. Attitude estimation is similar: while accuracy is diminished overall, the

general motion is captured, and only yaw rate seems to escape the covariance

bounds. Even with this diminished performance overall errors are small, totaling

0.201 meters per second for velocity and 0.682◦ per second for angular rate.
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Figure 4.18. Representative Run Position and Orientation Estimation
(Fast Ferry Ship Model)

Representative run position and orientation estimation using the fast ferry ship
model. True state shown in blue, estimated state is shown in red, ±2σ bounds are

shown as dashed lines.
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Figure 4.19. Representative Run Velocity and Angular Rate Estimation (Fast Ferry
Ship Model)

Representative run position and orientation estimation using the fast ferry ship
model. True state shown in blue, estimated state is shown in red, ±2σ bounds are

shown as dashed lines.
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4.5.2 Monte Carlo Simulation Results (Fast Ferry Ship

Model)

Figure 4.20 shows the total error estimation characteristics, as well as the error

for each subset of deck states. Recall that this ship motion model is only de-

scribed for “moderate wave motion” (sea state 4), and thus Monte Carlo results

can only be shown for this sea state. Analysis of the overall estimation error shows

a slight overconfidence by the estimator in the estimate at the end of the simu-

lation. Figure 4.20(d) shows that this is caused by the velocity estimation error.

All other state group errors are estimated to high precision, with no noticeable

overconfidence from the estimator.

4.6 Summary

This chapter has presented several types of results involving estimation of ship

deck motion undergoing several wave motion models and varying sea states.

1. Results from a deck undergoing a representative run with moderate wave

motion were discussed. The average operation of the estimator in these

conditions was shown. Results were gathered using two independent wave

motion models as well as the ferry ship motion model.

• The estimator was shown to perform accurately enough to operate in sea

state conditions that other current autonomous landing systems would

fail in.

• Position and attitude state estimates are very accurately estimated for

both motion models as well as the ship model.

• Velocities and angular rates, while estimated adequately, were not

tracked as precisely as the other deck states.

2. Estimator consistency was found versus varying sea states via results of

Monte Carlo simulations.

• The estimator was shown to consistently estimate positions to a high

level of accuracy across sea states.
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Figure 4.20. Deck State Estimation Error vs. Sea state (Fast Ferry Ship Model)

Estimator errors for sea state 4. The grey region shows maximum and minimum
bounds of true error. The blue line shows mean true error, and the red dashed

line shows estimated total variance (i.e.
√

TrP).
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• The estimator was shown to have overconfidence in attitude estimation

accuracy that correlated to increasing sea state, but this overconfidence

was small.

• Deck velocities and rotation rates were shown to suffer from the same

overconfidence issue. This is to be expected; since the deck has no

measurement of deck velocity or rotation rates directly.



Chapter 5
Conclusion

This thesis was motivated by a lack of a generalized solution for an autonomous

ship-board landing system. For manned aircraft, landing at sea can be a daunting

challenge. To extend this capability to autonomous rotorcraft, especially smaller

ones with limited capabilities, can only greatly increase the difficulty. Providing a

simple, self-contained solution to this problem would greatly benefit military, civil-

ian, and commercial use of these vehicles. Emergency operations, life threatening

situations, and many other extreme theatres of operation could use autonomous

vehicle capabilities to continuously provide support, supplies, or other aid.

While some solutions to this problem, such as Landing Period Designators and

tether-based landing systems, do exist, they require specialized systems to enable

landing operations. These systems can be expensive, faulty, and/or require extra

crew maintenance to operate. In addition, the use of these systems limits uav

operation exclusively to ships outfitted with this technology.

This thesis envisions a self-contained system that requires as little alteration of

the landing site as possible. The presented estimator only required that the ship

transmit a single message defining sea state, ship heading and ship speed. The

estimator assumes a 2nd order kinematic model for deck motion. This is done with

the intention to make this solution applicable across as wide a variety of ships and

boats as possible. While the use of this second order kinematic model does result

in some significant unmodeled dynamics, there is a significant advantage in the

robustness of the resulting estimator to changes in deck motion dynamics; either

from varying sea states or wave motion modeling techniques.
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The goal of this research is to eventually provide a total system capable of:

communication, observation, estimation, uav control, and integrity monitoring.

The research of this thesis has focused on the observation and estimation segments

of the system. The individual contributions of this thesis are outlined in the

following section. A solution with the capacity to accomplish all of these objectives

has not been tested here, and much further research would need to be conducted to

achieve total system capability. The necessary continued research to achieve these

goals and to potentially improve overall performance is detailed in Section 5.2.

5.1 Summary of Contributions

5.1.1 Framework for Integrated Control and Navigation

An initial design for a framework which would facilitate integrated control and

navigation of a small autonomous vtol vehicle has been formed. The vehicle

simulated only contained an imu, gps/ins, and low-cost commercially available

vision measurement system. The solution presented addresses technical difficulties

associated with deck state estimation using this sensor suite.

5.1.2 Estimator Design

An estimator utilizing an Unscented Kalman Filter was developed as a central piece

of the control and navigation framework. The deck state vector is estimated using

a known vehicle state and bearing measurements to fiducial, identical markers on

the deck. Data association was performed based on a minimum cost correlation

approach using the Munkres algorithm. The estimator computes an estimate of

deck state (position, orientation, velocity, angular rate) and associated covariance.

The deck state estimate can then be used by a landing trajectory planner.

5.1.3 Performance Verification: MATLAB Simulation

Both representative run and Monte Carlo simulations of a uav approaching a mov-

ing deck display the capabilities of the estimator designed in this thesis. These

analyses were performed for three distinct wave motion models (sinusoidal, stochas-
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tic, and ferry), and the estimator was shown to perform adequately independent of

which model was used. Monte Carlo simulations showed a small mean error when

compared to overall wave influences for a variety of sea states. Only velocities and

angular rates had less than ideal estimation characteristics; and these errors were

small in magnitude and only occurred at higher sea states.

Representative run testing allowed for in depth performance into the actual

expected performance of this estimator in sea state 5 conditions. State tracking

for positions and attitudes was shown to be strong regardless of wave motion model.

Knowledge of these states was good, as covariance bounds for the representative

runs of these states converged significantly over the observation. Velocities and

angular rates showed weaker, but still adequate, performance. However, this is to

be expected, as the system has no way currently of measuring information about

deck velocity and rotation rates.

The strength of performance was shown to hardly depend on the wave motion

model used; as the more randomized motion of the stochastic model did not prove

to be too complicated to estimate.

Overall this system is robust and capable of accurately estimating all deck states

up to sea state 5, regardless of the deck motion model used. While position and

attitude estimation at sea state 7 was accurate, velocity and attitude rate estimates

did see degradation in results. While performance was not poor enough to consider

this sea state a limit; this degradation could be mitigated by attempting to measure

information about deck velocities, possibly via optical flow or some other method.

While performance of the system could be improved by specializing the esti-

mator to a specific deck motion model or sea state, the results shown here indicate

that performance of this generic model is more than adequate. The small gains

in performance from a more specialized model are most likely outweighed by the

broad applicability of the current system.
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5.2 Recommendations for Future Work

5.2.1 Improved Marker Constellations

To this point all testing has been performed with markers placed on the corners

of a square deck. Results of various marker orientations and outlines can be done

in an attempt to enhance performance. Possibly setting up multiple marker ar-

rays for different distances could help long distance and near landing estimation.

Attaching markers to ship superstructure or on other parts of the ship may help

with observability and improve performance of the estimation. Use of asymmetric

marker outlines can be used as a stepping stone to far more varied, difficult landing

setups, possibly culminating in unknown marker orientation testing.

5.2.2 More Accurate Wave Motion Models

Results from Chapter 4 have shown the performance of this estimator against sev-

eral varied and complex wave and ship motion models, and for several different

sea states. However, ship motion modeling is an ever-changing field as the types

of ships, and accuracy of measurements evolves. As new motion models are de-

veloped, they should be tested against this estimator in order to confirm that its

performance is at least adequate.

5.2.3 Improved Vision Information Processing

Future testing and use of physical cameras can lead to many potential issues with

measuring marker bearings. As the complexity of the measurement model in-

creases, updates to the vision measurement model must be performed. Potentially

other information may be gleaned from the incoming data in order to perform

faster, higher fidelity estimation. This may include utilizing vision interpretation

properties like optical flow, or τ̇ (measuring optical flow of two points in frame

relative to one another), which are techniques used by skilled flyers like birds and

insects.

In addition, implementing more realistic (and possibly complex) measurement

noise models can be done. This can further improve the realism of estimator

performance. With this further complexity added to the vision system, it may be
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deemed necessary to try and improve performance by including multiple cameras,

or variable lenses for long and short range operation. This type of testing will be

necessary before actual implementation, and would need to be done ensuring that

the robustness and operation on small uavs would not be compromised.

5.2.4 Observation Method

Another aspect of the simulation that could potentially be improved upon to yield

better performance would be analysis of the observation method. For this thesis

observation was performed as the vehicle descended and approached the deck from

behind along a specified flight path angle. By incorporating more relative motion

between the vehicle and deck, observability may increase, and this could lead to a

faster decrease in state covariance as well as a better overall estimate of ship deck

state. This approach path could include some sort of three-dimensional slalom,

circling of the deck, or other complex motion. In order to accomplish this type

of control, a more complex vehicle model would be needed. More analysis would

be needed to determine the best possible approach for a given sea state and wave

modeling technique; and whether the addition of a more complicated controller

could cause any problems within the system.

5.2.5 Integrity Monitoring

Currently, there is no integrity monitoring taking place in the loop of simulation.

All integrity analysis was performed manually after the completion of simulation.

For a real autonomous system, this would need to be included in the control

loop. This type of monitoring would insure that a collision was not imminent,

and that the estimate of deck state was converging. This can all be accomplished

through monitoring of the deck state estimate and covariance as they are currently

formulated.

5.2.6 Further Hardware Testing

Much work has been put into a hardware system capable of real-time estimation

of deck states using a single Chameleon 2 camera developed by Point Grey. This
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system would be tested in a motion capture lab utilizing Cortex, motion capture

software developed by Motion Analysis Corporation. The external motion capture

software would be used in place of an internal ins/gps system in order to provide

vehicle states, and also would be used to determine true deck states for post-

experiment results analysis.

Unfortunately networking problems between a machine running the motion

capture software and another computer attempting to listen to the data being

streamed out caused this research to be incomplete and left out of the thesis.

Hopefully, this work can be continued. A successful real-time connection between

the motion analysis software and an external computer running the simulation code

detailed here could lead to a scale hardware setup where deck states are estimated

accurately in real time.
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