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ABSTRACT
This paper describes a method for ship deck estimation using only sensing carried aboard an autonomous rotorcraft:
specifically, sensing is limited to a vision system, an inertial measurement unit and GPS. Using bearings to features on
the ship deck and knowledge of helicopter state provided by the INS/GPS, a state estimator computes estimates of deck
state and covariance. This deck state estimate can then be used to compute a safe, feasible trajectory to landing. This
paper presents an Unscented Kalman Filter based implementation that uses a generic second order kinematic model
driven by zero mean Gaussian noise for the ship deck motion model: while this deck motion model contains significant
unmodeled dynamics it is not specific to a particular ship. Results of Monte Carlo simulations illustrate the utility of
the proposed approach: good estimation results are obtained for stochastic deck motion (with a Pierson-Moskowitz
power spectral density) and a fast ferry ship model.

INTRODUCTION

The use of autonomous vehicles is having a significant oper-
ational impact in both the commercial and military sectors.
However, significant research challenges still remain.

Operations at sea adds a significant level of difficulty to
launch and recovery operations. Not only are the aircraft sub-
ject to environmental disturbance, but the landing deck is now
under the influence of currents and tides as well as the semi-
random motion of waves. In order to safely attempt a landing,
deck state must be estimated to a high degree of accuracy. In
the case of non-specialized ships, where there is no special-
ized equipment on board and little to no communication be-
tween the ship and the helicopter, all sensors, computational
ability, and controlling equipment must be kept onboard the
aircraft.

While there is current capability for autonomous take-off
and landing on ships, there are many restrictions. Northrop
Grumman’s MQ-8B Fire Scout UAV has been used in an op-
erational environment, but take-off and landing has generally
been restricted to fairly calm conditions and the use of a spe-
cially equipped ship. The Landing Period Designator (Ref. 1)
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predicts when deck motion will be small so that a safe land-
ing can be attempted by manned rotorcraft, but application to
unmanned rotorcraft will still require an autonomous landing
system. Tether-based landing systems (Ref. 2), while they can
be effective, require specially equipped ships.

There has been extensive research in the use of vision
systems for autonomous navigation and obstacle avoidance
(Refs. 3–7), relative navigation and landing (Refs. 8–11) and
landing on targets undergoing simple motion (Refs. 12, 13).
Landing on a ship deck is significantly more complex, and
systems involving fused vision, LIDAR, and GPS/INS have
been proposed (Ref. 14).

The purpose of the research described in this paper is de-
velopment of a system to enable autonomous take-off and
landing from a ship deck in conditions exceeding sea state
5. Further, to ensure that the system can be used across a wide
variety of vehicles operating from a wide variety of ships,
sensing will be limited to only those devices that can be car-
ried aboard the helicopter, and communications between ship
and aircraft will be limited to a single message defining ship
nominal heading and speed and current sea state. Specifi-
cally, sensing is limited to a monocular vision system, inertial
measurement unit (IMU) and GPS. It is assumed that the IMU
and GPS can provide helicopter state information and that the
monocular vision system can provide bearing measurements
to a set of features on the landing deck.
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PROBLEM STATEMENT

Landing scenario

The scenario considered here consists of an autonomous heli-
copter landing on a moving ship deck (Figure 1). An on-board
camera obtains measurements to features on the ship deck and
a GPS/INS provides knowledge of helicopter state.

Fig. 1. A schematic depicting the estimation problem at
hand.

The landing deck is undergoing unknown motion in frame
O, an inertial north-east-down (NED) frame. Deck features are
located at known positions bi in frame D, fixed to the deck.
A transformation matrix Td resolves a vector in frame O to
frame D. Sensors (i.e. the camera and GPS/INS) are fixed in
the vehicle’s body frame B. It is further assumed that the cam-
era is located at a known stationary point in the body frame
and that the orientation of the camera with respect to the body
frame is known. Bearings to deck markers are obtained in the
camera frame C. Transformation matrices T and Tcam define
the transformation of a vector from O to B and from B to C,
respectively.

The problem at hand is to estimate the state of the deck:

xd = [xd yd zd φd θd ψd ud vd wd pd qd rd ]
T (1)

given knowledge of helicopter state

xh = [xh yh zh φh θh ψh uh vh wh]
T (2)

and bearings to deck markers. Here x, y, z denote position in
the inertial frame, φ , θ , ψ denote orientation with respect to
the inertial frame, u, v, w denote velocities and p, q, r denote
body-axis angular rates. In the case of the ship deck, veloc-
ities are expressed in the inertial frame O; in the case of the
helicopter, velocities are expressed in the vehicle body frame
B.

This deck state information can then be used by a plan-
ning and control algorithm to compute (and fly) a safe path to
landing on the deck.

There are two sources of nonlinearity in the deck state
estimation problem. The most significant is in the measure-
ments of bearing to deck markers: the vision system projects
the three dimensional world onto the two dimensional image
plane. Second is the nonlinearity of the deck’s rotational mo-
tion. Because of the nonlinearity of the measurement model,
the path flown during approach can have a significant impact
on the accuracy of deck state estimation. However, planning
this path to maximize knowledge gained is not the focus of
this paper.

System description

The block diagram in Figure 2 shows a system that uses the
given sensors to perform autonomous landing.

vehicle	

dynamics	
flight	


control	

trajectory	

planner	


deck state	

estimation	


GPS	

INS	


vision	

system	


deck	

markers	


external	

disturbances	


Fig. 2. Landing system top-level block diagram.

Helicopter state state information is fused with bearings to
deck markers to compute an estimate of ship deck state in an
estimator. The trajectory planner uses the deck state estimate
to compute a safe, feasible trajectory to landing, and a flight
control system follows the trajectory.

Given the limited sensing available and the unknown wave
states driving ship deck motion, the problem at hand is to ob-
tain enough information about the deck state to permit a safe
landing. That is, the problem is to compute an estimate x̂d and
associated covariance P of the deck state xd using a process
model

ẋd = f (xd ,u) (3)

and measurement model

z = g(xh,xd) (4)

Here u represents inputs and disturbances to the ship deck
and z represents measurements from the vision system sen-
sors.

Sensor and system models

Deck Kinematic Model To keep the deck motion model
general across a wide variety of ships and boats a second order
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kinematic model driven by zero-mean Gaussian noise is used.
This is a constant acceleration model (in fact, it assumes that
average acceleration is zero), and clearly there will be signifi-
cant unmodeled dynamics (acceleration of a ship deck driven
by wave motion is not constant, although it is zero mean over
a long enough time window). However, the ease of imple-
mentation and broad applicability of this model makes it an
attractive choice.

Both deck position and velocity are expressed in the iner-
tial frame, so that

ẋd = ud (5)
ẏd = vd (6)
żd = wd (7)

Body angular rates can be expressed as Euler angle rates
by

φ̇d = pd +qd sinφd tanθd + rd cosφd tanθd (8)
θ̇d = qd cosφd− rd sinφd (9)

ψ̇d = qd
sinφd

cosθd
+ rd

cosφd

cosθd
(10)

Deck acceleration and angular acceleration are driven by
unknown forcing functions

u̇d = Fdu (11)
v̇d = Fdv (12)
ẇd = Fdw (13)
ṗd = Fdp (14)
q̇d = Fdq (15)
ṙd = Fdr (16)

Ultimately, deck motion is forced by waves acting upon
the ship. To avoid a specific ship model, here the forcing term

Fd =
[
Fdu Fdv Fdw Fdp Fdq Fdr

]T (17)

is assumed be zero-mean Gaussian random noise:

Fd ∼N (0,Q) (18)

The covariance Q of this forcing term must be large
enough to “cover” the unmodeled dynamics. It will be deter-
mined based on sea state. The actual value of the covariance
of Q is described in a later section.

Vision Model The camera is located at a known position ∆s
from the helicopter center of gravity with a known rotation
Tcam with respect to the vehicle body frame. The camera’s
x-axis is the optical axis, so that camera y and z axes lie in the
image plane.

For a vector s expressed in the camera frame, the pinhole
projection model defines that vector’s projection onto the im-
age plane:

z =
f
sx

[
sy
sz

]
(19)

where f is the focal length and sx, sy, and sz denote the com-
ponents of the vector expressed in the camera frame.

The pinhole projection model becomes ill conditioned for
vectors that are nearly perpendicular to the optical axis. A
modified pinhole model computes bearings (azimuth and de-
pression angle: here a positive angle is down with respect to
the camera’s optical axis) as the arctangent of the pinhole pro-
jection. For the ith deck marker the vision model gi is

zi =

 arctan
(

si,y
si,x

)
arctan

(
si,z
si,x

) +nc (20)

The measurement is corrupted by zero-mean Gaussian ran-
dom noise nc. The vector si represents the vector to the ith

marker, expressed in the camera frame:

si = Tcam

T

 xi− xh
yi− yh
zi− zh

−∆s

 (21)

where xi = [xi yi zi]
T is the position of the ith marker in the

inertial frame. The position of a deck marker in the inertial
frame is dependent on the deck position, deck orientation and
the position of the marker in the deck frame:

xi =

 xd
yd
zd

+T−1
d bi (22)

where bi is the location of the ith marker in the deck frame
(assumed known).

Modeling Ship Deck Motion

Ship deck motion can be very complex: in essence it is the dy-
namics of the ship driven by wave motion. Ship motion mod-
eling is not the focus of this paper, (and the deck model used
in the estimator does not assume a specific motion model) but
a brief discussion is warranted to give confidence in the deck
state estimation results.

The simplest model of deck motion is perhaps six degree of
freedom rigid body motion with independent sinusoidal forc-
ing in each degree of freedom, so that

Fd(·)(t) =−A(·)ω
2
(·) sin(ω(·)t +ϕ(·)) (23)

Here A is the wave amplitude, ω is the frequency, and ϕ is
phase. (·) denotes a particular degree of freedom (u, v, w, p,
q, r).

Integrating this forcing term twice gives simple sinusoidal
motion for each degree of freedom with amplitude A, fre-
quency ω and phase ϕ . Note that amplitude, frequency, and
phase can be specified independently for each degree of free-
dom.

While this motion may “look” realistic when viewed as
an animation, it is still regular, highly periodic motion. It is
useful for basic testing of estimator performance, but a more
realistic model of deck motion will give more confidence in
performance.
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Stochastic Method While something like a sinusoidal wave
gives motion that “looks” realistic, in practice that function
gives very regular motion. True ship motion is far less regular,
with significant changes in motion amplitude from one wave
to the next.

To model this more complex motion a sum-of-sinusoids is
used, so that (Ref. 15):

Fd(·)(t) =
N∑

k=1

−A(·),kω
2
(·),k sin(ω(·),kt +ϕ(·),k) (24)

Choosing random, uniformly distributed values of ϕ(·),k
will give a wave shape that appears random. The problem
now is making an appropriate choice of amplitudes A(·),k and
frequencies ω(·),k: these can be computed after a particular
wave power spectrum has been defined.

The Pierson-Moskowitz spectrum (Ref. 16) is an empiri-
cally derived power spectrum that defines wave energy as a
function of frequency for a fully developed sea. The power
spectral density is

SPM(ω) =
0.78
ω5 exp(

−3.11
ω4h2

1/3
) (25)

Here h1/3 is the mean wave height, which is defined based
on sea state. The frequency for peak power density is

ω0 = 1.26h−0.5
1/3 (26)

Sea state is a numerical designation ranging from 0 (glassy
calm) to 9 (wave heights exceed fourteen meters) that defines
wave height. Table 1 gives parameters for sea states 1, 5, and
7; Figure 3 shows the Pierson-Moskowitz amplitude spectrum
for those sea states.

Table 1. Sea state, mean wind speed and Pierson-
Moskowitz parameters

Seastate windspeed h1/3 ωnom ωmin – ωmax
(kt) (m) (rad/s) (rad/s)

1 7 1 3.14 1.8 – 6.28
5 23 2.5 1.05 0.57 – 1.8
7 43 6.5 0.526 0.3 – 0.97

To represent a wave condition that has the Pierson-
Moskowitz spectral density, amplitudes for a set of frequen-
cies ωk and associated bandwidths ∆ωk are computed as

Ak =
√

2SPM(ωk)∆ωk (27)

Now an appropriate range of frequencies must be selected.
Figure 3 shows that wave amplitude is near zero for frequen-
cies less than one quarter the peak frequency and greater
than 4 times the peak frequency. To obtain good resolution
over this frequency range, one-third octave bands in the range[

ω0
4 , 4ω0

]
are used. Band frequency limits and bandwidth are

given in Table 2.
Figure 4 shows a wave for sea state 5 generated using this

approach.
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Fig. 3. Pierson-Moskowitz amplitude spectrum for Sea
State 1, 5, and 7

Fast Ferry Ship Model Ship motion is wave motion modu-
lated by ship dynamics. The two previous deck motion mod-
els do not include ship dynamics, thus a model of direct ship
motion is useful to assess estimator performance.

In (Ref. 17) Hess defines a motion model for a TMV 114
fast ferry. This ship is 113.5m in length, has beam 16.5m and
displacement 700 metric tonnes (Figure 5).

Table 2. One-third octave band frequencies in terms of ω0

Center Lower Upper Bandwidth
0.25ω0 0.2227ω0 0.2806ω0 0.0579ω0

0.315ω0 0.2806ω0 0.3536ω0 0.0729ω0
0.397ω0 0.3536ω0 0.4455ω0 0.0919ω0

0.5ω0 0.4455ω0 0.5612ω0 0.1158ω0
0.63ω0 0.5612ω0 0.7071ω0 0.1459ω0

0.794ω0 0.7071ω0 0.8909ω0 0.1838ω0
ω0 0.8909ω0 1.123ω0 0.2316ω0

1.26ω0 1.123ω0 1.414ω0 0.2918ω0
1.587ω0 1.414ω0 1.782ω0 0.3676ω0

2ω0 1.782ω0 2.245ω0 0.4631ω0
2.52ω0 2.245ω0 2.828ω0 0.5835ω0

3.175ω0 2.828ω0 3.564ω0 0.9263ω0
4ω0 3.564ω0 4.489ω0 1.167ω0
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Fig. 4. Sample wave amplitude generated using 1/3 octave
band Pierson-Moskowitz spectrum (sea state 5).

Fig. 5. TMV 114 fast ferry (Ref. 17).

Hess defines the EOMs for the ferry as:

y = 6.6sinφ (28)
z = 57.11sinθ +13.2sin2 0.5φ +0.2172sin0.4t (29)

+0.4174sin0.5t +0.3592sin0.6t +0.2227sin0.7t

φ = 0.021sin0.46t +0.0431sin0.54t (30)
+0.290sin0.62t +0.022sin0.67t

θ = 0.005sin0.46t +0.00964sin0.58t (31)
+0.00725sin0.7t +0.00845sin0.82t

The x position, and yaw angle are not as simply defined.
For this research, x position and yaw angle wave forces were
left to be determined by the stochastic model, while the other
four wave forces use this ferry wave model.

ESTIMATOR DESIGN

Unscented Kalman Filter

The unscented Kalman Filter (UKF) is a non-linear Kalman fil-
ter that propagates an uncertain state through nonlinear equa-
tions using a discrete set of points (sigma points). The esti-
mate mean and covariance are then recovered from the prop-
agated sigma points. This approach is accurate to at least

second order: in contrast, and Extended Kalman Filter (EKF)
is only accurate to first order (and has similar computational
complexity). Details of the UKF can be found in (Ref. 18);
an application to vision-based state estimation can be found
in (Ref. 4).

The UKF follows the familiar recursive process of predic-
tion (time update) followed by correction (vision update).

Time update The deck kinematics developed earlier can be
written compactly as

ẋd = f (xd)+

[
06
I6

]
Fd (32)

where Fd ∼N (0,Q). In discrete form one can write

xd,k+1 = f (xd,k)+vk (33)

and one must determine the statistics of vk. To do so, consider
the equations of deck motion for small angular displacements,
which can be obtained from Equations 2.10 to 2.21 as

ẋd =

[
06 I6
06 06

]
xd +

[
06
I6

]
Fd (34)

where 06 and I6 are 6× 6 zero and identity matrices, respec-
tively. Using a zero-order hold to discretize the equations of
motion over a time step ∆t gives

xd,k+1 =

[
I6 ∆tI6
06 I6

]
+

[
∆t2

2 I6
∆tI6

]
Fd (35)

Thus vk ∼N (0,Q̄) with

Q̄ =

[
∆t2

2 I6
∆tI6

]
Q
[

∆t2

2 I6 ∆tI6

]
(36)

Finally, it is assumed that Q is diagonal (i.e. the process
noise that models wave acceleration is uncorrelated in each of
its components), so that

Q =



σ2
u 0 0 0 0 0

0 σ2
v 0 0 0 0

0 0 σ2
w 0 0 0

0 0 0 σ2
p 0 0

0 0 0 0 σ2
q 0

0 0 0 0 0 σ2
r

 (37)

Here σ(·) represents the standard deviation of expected ac-
celeration in that component. Recall that for sinusoidal deck
motion

Fd(·)(t) =−A(·)ω
2
(·) sin(ω(·)t +ϕ(·)) (38)

and peak expected acceleration is thus A(·)ω
2
(·). Both wave

amplitude and frequency depend on sea state, and these may
vary somewhat: Table 3 gives expected ranges for sea states 1,
5, and 7. Merely choosing the expected wave amplitude and
frequency for a particular sea state and computing expected
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acceleration will thus result in under-predicting wave excita-
tion; choosing

σ(·) =
(

Anom
(·) +3σA

)(
ω

nom
(·) +3σω

)2
(39)

will both ensure that a broad range of possible amplitudes and
frequencies for a particular sea state is covered.

Vision update The vision update step is driven by the cam-
era measurement model of Equation 20. It is assumed that
the intrinsic camera parameters are known via calibration and
that the remaining uncertainty in camera measurements can
be adequately described by zero-mean Gaussian noise.

Data Association

Data association is a critical component of the deck state es-
timator. Failure to correctly associate measured bearings with
the corresponding marker will almost certainly lead to diver-
gence of the deck state estimator.

Data association is an example of an assignment problem.
This class of problems has been extensively studied in the
computer science literature and in robotics applications (espe-
cially problems related to simultaneous localization and map-
ping, or SLAM) (Refs. 19–21).

In this research, data association is computed by compar-
ing the pixel location of a marker in the current image frame
with pixel locations of markers in the previous frame. Close
matches are assumed to come from the same marker. In this
case “close” is computed as the Mahalonobis Distance:

dnm = (zn− zm)
T P−1

mm (zn− zm) (40)

Here zm is the expected pixel location of a marker from
the previous frame in the current frame and zn is the mea-
sured pixel location of a marker in the current frame. The
matrix Pmm represents the uncertainty of the expected marker
position. The quantity dnm thus represents the distance (scaled
by uncertainty) between a measured marker location and the
expected marker location.

This distance is computed for all possible combinations,
leading to an n×m distance matrix:

D =


d11 d12 · · · d1m
d21 d22 · · · d2m

...
...

dn1 · · · · · · dnm

 (41)

The problem now is to compute the assignments that min-
imize the overall cost. One approach is to begin with the top
row and assign the markers in turn based on minimum dis-
tance. This “greedy” approach is brittle, however, and may
lead to incorrect assignment in cases of ambiguity (i.e. simi-
lar distances for several possible assignments).

A better approach is to minimize the total cost. In large
assignment problems (with tens or hundreds of markers) it

can quickly become computationally prohibitive to brute force
this problem (i.e. compute cost of all possible assignments,
choose the lowest net cost). Here the Munkres Algorithm
(Ref. 22) is used to compute the minimum-cost data associ-
ation.

Deck Estimate Initialization

It is assumed that a single message giving ship speed and
heading and sea state is transmitted to the helicopter at the
beginning of the approach to the deck. Since no information
about deck height, roll, or pitch is given these states are ini-
tialized to zero with some associated covariance, so that

x̂d,0 = [0 0 0 0 0 ψ0 u0 v0 0 0 0 0]T (42)

The initial covariance is assumed to be diagonal, with mag-
nitudes of the individual components dependent on sea state.
For each component of the state the standard deviation is set
to the root mean square value of the expected amplitude of
motion, so that

P0(·) =
1
2

A2
(·) (43)

for x, y, z, φ , θ , ψ and

P0(·) =
1
2

A2
(·)ω

2
(·) (44)

for u, v, w, p, q, r. Expected amplitudes and frequencies for
sea states 1, 5, and 7 are given in Table 3. Data in Table 3
were computed from (Ref. 23).

SIMULATION RESULTS

Monte Carlo simulations are used to assess performance of the
deck state estimator. Each Monte Carlo simulation consists of
fifty runs with random seas generated for each run. Results
for both the stochastic wave model and the fast ferry model
are presented: for the stochastic model sea states 1, 5 and
7 are examined. The fast ferry model from (Ref. 17) is for
moderate seas (sea state 4).

The ship is traveling at a nominal speed of 3 m/s (5.8 kts).
The helicopter begins from a point 250 meters behind and 100
meters above the ship, and it travels at a constant speed of
14.5 m/s (28 kts) in a straight line towards the ship deck. The
simulation starts at time zero and ends at t = 20 seconds, when
the helicopter is approximately 15 meters behind and 8 meters
above the ship deck.

Helicopter Kinematics

Since the focus here is on estimation (and not flight control or
path planning) a kinematic model is used for the helicopter.
The state vector is given in Equation 2 and control inputs are

uh = [ ph qh rh Tx Ty Tz ]
T (45)

It is thus implicitly assumed that an on-board flight con-
troller can follow angular rate commands and can compute
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Table 3. Wave data for sea states 1, 5, 7
component mean Amp. Amp. Variance mean Period Period Variance

Seastate 1
x 0.2 m 0.1 m2 5 sec 1 sec2

y 0.2 m 0.1 m2 5 sec 1 sec2

z 0.5 m 0.2 m2 5 sec 1 sec2

φ 4◦ 2◦
2

5 sec 1 sec2

θ 1◦ 1◦
2

5 sec 1 sec2

ψ 1◦ 1◦
2

5 sec 1 sec2

Seastate 5
x 1 m 0.5 m2 12 sec 3 sec2

y 1 m 0.5 m2 12 sec 3 sec2

z 2.5 m 1 m2 12 sec 3 sec2

φ 12◦ 3◦
2

12 sec 3 sec2

θ 5◦ 2◦
2

12 sec 3 sec2

ψ 3◦ 1◦
2

12 sec 3 sec2

Seastate 7
x 2.6 m 1.3 m2 17 sec 4 sec2

y 2.6 m 1.3 m2 17 sec 4 sec2

z 6.5 m 2.5 m2 17 sec 4 sec2

φ 35◦ 9◦
2

17 sec 4 sec2

θ 12◦ 3◦
2

17 sec 4 sec2

ψ 4◦ 3◦
2

17 sec 4 sec2

(within constraints) the desired magnitude and direction of the
net thrust vector. Equations of motion for small angles are

ẋh = u(cosψh)− vh(sinψh) (46)
+wh(θh cosψh +φh sinψh)

ẏh = uh(sinψh)− vh(cosψh) (47)
+wh(θh sinψh−φh cosψh)

żh = (−θh)uh +(φh)vh +wh (48)
φ̇h = ph− (θh)rh (49)
θ̇h = qh− (φh)rh (50)
ψ̇h = (φh)qh− rh (51)
u̇h = −(whqh− vhrh)+Tx/m−gθh (52)
v̇h = −(uhrh−wh ph)+Ty/m+gφh (53)
ẇh = −(vh ph−uhqh)+Tz/m+g (54)

For constant speed flight along a specified flight path angle
(a steady state condition) the required control inputs can be
computed. Similarly, control inputs to follow a desired flight
path (for example, to maximize information gained about the
landing deck during approach) can also be computed.

Sea state conditions

For each run a new random sea condition was generated using
the statistics of Table 3 for amplitude and frequency and a
random set of phases. The sum-of-sinusoids of Equation 24
was then used to generate the sea conditions.

UKF parameters

Filter process noise is computed using Equations (36, 37, 39).
Camera measurement noise has standard deviation 1◦.

Helicopter state is assumed to be known with precision.
In practice, knowledge of angles will be limited to a standard
deviation of 1◦ to 2◦, but this uncertainty can be included in
the camera bearing measurement uncertainty. Noise in the
helicopter position estimate will have a much smaller effect
than angular uncertainty.

Pierson-Moskowitz Wave Model Results

Results of a representative run of deck state estimation for
sea state 5 are shown in Figure 6 and Figure 7. Plots show
true deck state, estimated deck state and 2σ bounds. True
states are generally within ±σ of estimated states, indicating
a generally consistent estimate. The errors in state estimates
become progressively smaller as the helicopter approaches the
deck: this occurs because deck state is continuously updated
as measurements are received and because the effect of noise
in bearing measurements on computed deck state is smaller at
short range. By the end of the simulation (when the helicopter
is close to the deck): the error in deck position estimate is 0.43
meters; the error in deck orientation estimate is 0.5 degrees;
the error in deck velocity estimate is 0.4 m/s; and the error in
deck angular rate is 5.6 degrees per second.

Results of Monte Carlo simulations for sea states 1, 5, and
7 are given in Figure 8 through Figure 12. The true error
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(shown in grey and as a blue line) remains bounded through-
out the simulation and gets smaller as the deck is approached.
The mean estimated variance (shown as a red dashed line)
is somewhat smaller than the mean true variance, indicating
that the estimator is slightly over-confident in its computation
of states. However, errors (especially deck position error) is
small.

Sea state affects both true error variance and the estimated
error variance, with higher sea states resulting in higher vari-
ance. This is to be expected: at higher sea states the distur-
bance acting on the deck is significantly greater than at lower
sea states.

Examining components of the estimator variance shows
that the greatest contributor to total error is in the velocity
and angular rate states. Note that there is no measurement of
deck velocity, which leads to this larger error. The availability
of a deck velocity measurement (for example, via optical flow
or tau-dot) should improve this considerably.

Fast Ferry Ship Model Results

Results of a representative run of deck state estimation using
the fast ferry model are shown in Figure 13 and Figure 14.
Again plots show true deck state, estimated deck state and 2σ

bounds. As with the Pierson-Moskowitz model, the estimator
tracks true states very well, with errors generally well within
2σ bounds. By the end of the simulation (when the helicopter
is close to the deck): the error in deck position estimate is 0.24
meters; the error in deck orientation estimate is 0.7 degrees;
the error in deck velocity estimate is 0.2 m/s; and the error in
deck angular rate is 2.4 degrees per second.

Results of Monte Carlo simulations are given in Figure 15.
Results are qualitatively similar to the sea state 5 results of
the Pierson-Moskowitz model, with errors bounded and be-
coming smaller as the helicopter approaches the deck.

CONCLUSION

This paper has described a vision-based deck state estimation
system applicable to the problem of autonomous (or aided)
landing of a rotorcraft on a ship deck in moderate to rough
seas. All sensing is carried on board the helicopter, and only
a single message containing ship nominal heading and speed
and sea state is sent to the helicopter at the beginning of the
approach phase. The estimator assumes a second order kine-
matic model for the deck, with the intention of applicability
across a wide variety of ships and boats.

Results of Monte Carlo simulations using a Pierson-
Moskowitz wave model in sea states 1, 5, and 7 show that
the estimator is able to produce generally consistent estimates
of deck state (i.e. computed variance is a reasonable predic-
tion of true error variance). The estimator is somewhat over-
confident in its estimates (the computed variance is slightly
lower than the true variance): some tuning of estimator pa-
rameters should improve this.

Monte Carlo simulations using a fast ferry ship model
in moderate seas (approximately sea state 4) are also pre-
sented. Results are similar to those obtained using the
Pierson-Moskowitz spectrum for ship deck motion.

The use of a second order kinematic model results in sig-
nificant unmodeled dynamics, but there is significant advan-
tage in the generality of the resulting estimator to variations
of both sea state and deck motion dynamics.
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Fig. 6. Representative run position and orientation estimation for Pierson-Moskowitz wave model. True state shown in
blue, estimate shown in red, ±2σ bounds shown as dashed lines.
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Fig. 7. Representative run velocity and angular rate estimation for Pierson-Moskowitz wave model. True state shown in
blue, estimate shown in red, ±2σ bounds shown as dashed lines.)
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Fig. 9. Estimator position error for Pierson-Moskowitz waves for sea states 1, 5, 7 (from 50 run Monte Carlo simulation).
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Fig. 11. Estimator velocity error for Pierson-Moskowitz waves for sea states 1, 5, 7 (from 50 run Monte Carlo simulation).
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Fig. 12. Estimator angular rate error for Pierson-Moskowitz waves for sea states 1, 5, 7 (from 50 run Monte Carlo
simulation). The grey region shows max/min bounds of true error, blue line shows mean true error, red dashed line
shows estimated variance in angular rate estimates.
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Fig. 13. Representative run position and orientation estimation for fast ferry ship model. True state shown in blue,
estimate shown in red, ±2σ bounds shown as dashed lines.
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Fig. 14. Representative run velocity and angular rate estimation for fast ferry ship model. True state shown in blue,
estimate shown in red, ±2σ bounds shown as dashed lines.
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