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The following paper presents the design and simulation of a system of ground-based
stereo cameras to enable the autonomous tracking of migratory raptors in order to facilitate
the study of their flight patterns. A number of stations consisting of a camera pair and a
processor are set up along the ridge under observation. Each station computes an estimate
of the position and velocity of the birds viewed by its cameras using an Unscented Kalman
Filter. The estimates from each station are transmitted to a master computer that fuses
all the independent estimates and transmits the resulting estimate back to all the stations.
Results of Monte Carlo simulations show the convergence of the estimated error to the
true error for estimates from one or more stations.

I. Introduction

Migration places extreme demands on birds asthey travel long distances.1 The ability to conserve

Figure 1. A satellite image of the Appalachian Moun-
tains in Pennsylvania.

energy through the use of atmospheric lift is
crucial for successful migration. The long ridges
of the Appalachian Mountains in Pennsylvania, as
shown in Figure 1 are a critical migration corridor
for North American raptors and songbirds. Over 150
species use this migration corridor,2 and some ridges
are renowned for local concentrations of hawks and
eagles. An estimated 800 Golden Eagles migrate
through Pennsylvania each year, with many of them
passing by Tussey Mountain (approximately 10km
east of Penn State’s University Park campus). Fac-
tors influencing when and where they stop to feed
are not well understood, and may include internal
conditions such as amount of body fat and exter-
nal conditions such as local weather. By collecting
data on individual behavior in response to internal
and external conditions researchers will be able to
build models of bird behavior and identify critical
habitats along migration routes.

Current methods used for tracking bird migra-
tion involve either teams of human observers sta-
tioned at observation points along the predicted migration route3 or tagging individual birds with a gps
receiver and data transmitter.3,4 The human observers are able to provide a count of bird species, thus
giving a big-picture view of migration, and gps data gives a detailed view of the migration of a single bird.
Cinetheodolites have been used to enable measurements of bird track and speed, but these are expensive
and cumbersome.5
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This paper describes a vision-based system for autonomously tracking birds as they fly past an observation
site along the migratory route. In addition to migration studies, such a system can be used to examine changes
in flight patterns caused by obstructions such as wind turbines. Wind power development and associated wind
turbines are increasing throughout the U.S., and there is great interest in establishing the infrastructure to
use wind as a renewable energy source in Pennsylvania. Wind turbines are often established along mountain
ridges: in Pennsylvania these ridges are also prime migration routes. Biologists have expressed concerns that
wind turbines can result in direct mortality and avoidance behavior along migration routes.6,7

The remainder of this paper is organized as follows: Section II presents previous work in the field of bird
monitoring and tracking; Section III describes the bird tracking problem and the system designed to tackle
it; Section IV presents the design of the estimator used to compute the state of the bird while addressing the
problem of data association and track initiation; Section V tabulates the simulation parameters and presents
the results obtained for a Monte Carlo simulation that uses the stated values.

II. Previous and Related Work

The most popular method for studying hawk migration has been counting of birds by human observers,
followed by trapping and banding.5 Counting is best for monitoring the population but it is not enough

to understand the flight patterns of raptors. Tagging gives additional information about geographic origins
and approximate flight paths but the low recapture rates of banded birds makes it impossible to reliably
answer important questions. Radiotelemetry, radar and visual techniques have provided the best data for the
study of flight patterns but they can be prohibitively expensive.5 In the case of observing the effect of wind
farms on the mortality of migrating hawks, periodic mortality surveys are carried out by teams of observers
at the site specified. The mortality rate is observed by counting carcasses of birds at periodic intervals. The
effect of scavenging by other predators also has to be accounted for in order to avoid the underestimation of
mortality rates. The effects of location, weather and flight behavior on collision possibilities have previously
been analyzed using generalized linear modelling.7 Although a valid concern, previous studies indicate that
avian collision mortality associated with wind plants is much lower than other sources of collision mortality.
Using the annual avian collision mortality estimate of 200-500 million, it is estimated that wind turbines
constitute 0.01 percent to 0.02 percent of the avian collision fatalities.8 The primary reason is the low relative
numbers of wind farms to other man made structures and the fact that many of the wind plants are located
in areas with relatively low bird and raptor use.

An autonomous system to actively monitor the flight paths of raptors can add more insight to the available
information without incurring the cost associated with having human observers and expensive equipment.
Cameras are inexpensive sensors that impart a wealth of information pertaining to color, prominent features,
position and motion of filmed objects. Stereo camera systems also allow triangulation to add depth infor-
mation and provide measurements from various viewing angles to significantly lower uncertainty about the
state of the subject under observation. Stereo vision has been used by Muñoz-Salinas and Auirre to track
moving people using a Kalman filter.9 The unique color information associated with each subject being
tracked has been used by the aforementioned, as well as Bahadori and Iocchi, to perform data association
and maintain the identities of people being tracked.9,10 Color histogram based tracking has been made
popular by Zivkovic and Krose,11 but it is computationally expensive to extract color information in every
frame. Using a Kalman filter for frame to frame tracking and color information over longer time intervals,
to maintain data association, is more viable for real-time applications.

Distributed systems have received increasing attention due to the several advantages that they offer
over centralized systems. These include: lowered computational dependence at any one node; the option of
incorporating any number of measurements or variety of sensors into the tracking process; the ability to cover
large areas of observation. The theory and implementation algorithms of Distributed Sensor Networks(DSN)
for tracking multiple targets is presented by Bar-Shalom and Li.12 Tracking of human subjects and mobile
robots in an indoor smart environment using has been achieved by Karuppiah and Zhu through a distributed
vision system with heterogenous sensors of various processing rates, synchronized and fused to achieve real-
time tracking.13

The following paper has built upon previous tracking methods to simulate the outdoor, long-distance
tracking of raptors using stereo camera systems and distributed processors, implemented using various forms
of the Kalman Filter.
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III. The Bird Tracking Problem

A. Tracking Scenario

The problem considered here is estimating the positions and speeds of birds as they pass the ground-
based observation platforms. For a single bird the vector of states to be estimated includes components

of position xo, yo and zo and velocity ẋo, ẏo and żo expressed in the local ned frame:

xo
b,i =

[
xo

b,i yo
b,i zo

b,i ẋo
b,i ẏo

b,i żo
b,i

]T
(1)

Available measurements are bearings obtained from an array of cameras placed at known positions and
orientation. This is shown schematically in Figure 2.
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Figure 2. Schematic of the bird tracking problem.

The flight path of a bird, b, is shown. The state of the bird, xo
b,i, must be estimated at every instant of

time, i. The coordinates (xoyozo) represent position in global ned coordinate system. The system of sensors
consists of M camera stations. Each station has a stereo system of Mn cameras. Every camera in the system
is considered to have its own local coordinate system, with the x axis pointing outwards from the lens along
the optical axis of the camera and the y and z determined by the pan or tilt of the camera about its origin.
Each camera in the stereo system has its own origin and rotation angles. The coordinates (xcyczc) represent
the position of the bird as seen in the local coordinates of the camera in which it is viewed. Available
measurements are bearings obtained from the array of cameras placed at known positions and orientation.

Computing position estimates from bearing measurements involves trigonometric functions. The tracking
problem is therefore a non-linear one. The Kalman Filter, which is the optimal linear filter, will not be
able to provide a solution within the desirable limits of uncertainty. A tracking method that can produce
fairly accurate estimates despite the non-linearity of the system equations must be employed to achieve
the results required. Tracking closely spaced, distant objects with a limited sensors can be difficult due
to the high degree of uncertainty introduced by Dilution of Precision. Having symmetrically spread out
sensors over large distances can counter this problem since the ambiguity in opposite directions cancel out.
Implementation details, however, dictate that the distance between cameras in a stereo pair, or the baseline,
is not more than a few meters. It is difficult to transmit data to a central station over a large baseline. Having
a short baseline increases the Dilution of Precision (dop), especially when the bird is further away. However,
merely spreading cameras to obtain widely dispersed bearing measurements introduces difficulties related
to transmitting data over long distance. The designed system must therefore address the implementation
issues presented by the terrain of observation site and the limitations of the hardware available to achieve a
sensor distribution that can counter dop to obtain reasonable estimates of the bird state.
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B. System Description

The requirement for a spatially spread out and robust system has been met by designing a Distributed
System which has several processors, each connected to a stereo camera pair, independently tracking the
birds and a central processing unit that fuses all available estimates to compute a more accurate global
estimate of the states.
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Figure 3. Schematic of the Distributed Hierarchical Estimation system.

A set of stations, each consisting of a camera pair, a processor and a two-way communication link form
the components of the distributed system to be employed for estimating the position and velocity of the
birds in view. The cameras are spread out along the ridge with overlapping fields of view to obtain multiple,
simultaneous measurements of a bird. The dop is therefore reduced due to the geometry of the array of
cameras. Although a Sigma Point Kalman Filter may be used to fuse the available measurements at a
central processor to compute one estimate, this approach makes the operation of one processor critical to the
performance of the entire system. Therefore, a hierarchical approach is proposed for this project as shown
in Figure 3, wherein bearings from pairs of cameras are fused using an Unscented Kalman Filter (ukf)14,15

to compute independent estimates at numerous stations. The prediction step is driven by bird kinematics
(Equation 2) and the measurement update step is computed using bearings from the cameras (Equation 19).
Since the state estimates for different birds are uncorrelated a separate ukf is initiated for each bird as it
enters the field of view.

The local estimates are transmitted to a central processor that fuses all available estimates and transmits
a global estimate back to all stations, which is used by each station to correct its prediction for the consequent
time step. Although this approach still relies on the central processor for fusing the estimates, its operation
is no longer critical to the estimation process. The load on the processor and communication link is reduced,
and in the event of their failure, track is still maintained at each station.

C. Models for Measurements and Bird Flight

A constant velocity model will be used to model bird flight. The choice of states results in a linear model
for bird kinematics:

ẋo
b,i =

[
0 I
0 0

]
xo

b,i +

[
0
I

]
v (2)

where I is the 3× 3 identity matrix and v is zero-mean Gaussian random noise.
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Rather than using direct stereo vision techniques for computing range to a target (i.e. computing range
based on disparity between the left and right cameras), the bearing from each camera to every bird is
computed and treated as an independent measurement. The bearings obtained by the cameras at a station
are fused using a Sigma Point Kalman filter. This method has the advantage of being easily scalable to
adding more measurements and adaptable to the number of cameras at the station in which a bird is in
view.

A pinhole camera model defines the projection of a vector onto the image plane as

γ =
f

xc

[
yc

zc

]
(3)

where f is the focal length and xc =
[
xc yc zc

]T
is the vector expressed in the camera frame. The

focal length f can be normalized without loss of generality.
The orientation of the camera frame for camera m, Cm ,with respect to the inertial frame O is assumed

to be known and is given by a rotation matrix Tc
m. Each camera is assumed to have its optical axis

aligned with the camera frame’s x̂c axis and is offset from the origin of the camera frame by a vector

∆xc
m =

[
∆xc

m ∆yc
m ∆zc

m

]T
. A bearing measurement to the ith bird at camera m is therefore

γm,i =
1

xc
m,i

[
yc

m,i

zc
m,i

]
(4)

where  xc
m,i

yc
m,i

zc
m,i

 = Tc
m

 xo
i − xo

yo
i − yo

zo
i − zo

+

 ∆xc
m

∆yc
m

∆zc
m

 (5)

The measurement vector z is formed by concatenating bearings from each of the M cameras in the array:

z =
[

γ1 γ2 . . . γM

]T
(6)

IV. Estimator Design

A. Non-Linear and Distributed Estimation

The Unscented Kalman Filter (ukf) employs the propagation of particles through the system in order to deal
with its non-linearities.16 The particles used by the ukf are obtained deterministically and not randomly
because the ukf is based on the assumption that the particles distributed through it have a Gaussian
distribution. For an n state estimation, 2n+1 particles, or Sigma Points, are sampled symmetrically about
the mean. These Sigma Points have a distribution with mean and covariance of a random vector x = N (x̂,P).
The set of sigma points is given by:

X =
[

x̄ x̄ + η
√

P x̄− η
√

P
]

(7)

where η is a scale factor that determines the spread of the Sigma Points about the mean and
√

P is
an orthogonal matrix square root of the covariance of the distribution. The Sigma Points are propagated
through the prediction and correction steps of the Kalman Filter and the mean and covariance of these
points give the state estimate, x̂, and the associated covariance, P.

Local estimates are computed at each station using the ukf described above. All local estimates are
transmitted to a global fusion center to compute a more accurate global estimate. It is important to realize
that the estimates from each station are not entirely independent and that they share the same process noise.
The fusing algorithm must account for the shared noise at the processors in order to avoid overconfidence in
the estimated state caused by adding the same information more than once. A global state fusion algorithm
based on the information form of the Kalman Filter is employed, which accounts for the correlation of local
estimates.12,17 The local estimates computed by the ukf are gaussian and retain this distribution despite
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the non-linearity of system equations they are propagated through. A linear gaussian estimation procedure
may therefore be assumed. The fusion equations for hierarchical estimation in a linear gaussian case are
presented in the compilation by Bar-Shalom.12 An unbiased estimate is achieved by subtracting the predicted
estimate and covariance of each station from their corrected values, to account for the correlation between
node estimates, before adding them to the global predictions of covariance and estimates. The notation of
the equations presented below is modified from the source for convenience. The global, a posteriori estimate,
F x̂k|k, and the associated covariance F Pk|k are similarly achieved by fusing the local estimates, Lx̂i,k|k and
the covariance associated with each of them, LPi,k|k as follows12 :

F P−1
k|k = F P−1

k|k−1 +
n∑

i=1

(LP−1
i,k|k −

LP−1
i,k|k−1) (8)

F P−1
k|k

F x̂k|k = F P−1
k|k−1

F x̂k|k−1 +
n∑

i=1

(LP−1
i,k|k

Lx̂i,k|k − LP−1
i,k|k−1

Lx̂i,k|k−1) (9)

The fused covariance and estimates thus obtained are transmitted back to all the stations and updated
to obtain a priori estimated in the next time step.

LPi,k|k−1 = F Pk|k−1 (10)

Lx̂i,k|k−1 = F x̂k|k−1 (11)

Transmitting the fused estimates back to all stations ensures that there is no drift between stations over
time and all stations benefit from the information from all other station at each time step, which leads to
an improved estimate in the next time step.

B. Data association

Data association can be a difficult issue in many tracking problems, especially when attempting to fuse
bearing only data. Although the frequency of bird passage is low enough that in general we can expect only
one bird to be in the field of view, we will address the problem of data association. In addition to allowing
operation when multiple birds are in the field of view, it will also increased robustness to clutter.

The data association is preformed at both camera-to-camera and frame-to-frame levels. Data is associated
between stereo pairs at each station by checking epipolar constraints between images seen in both cameras.18

If the epipolar constraint, given by Equation 12, is satisfied, the camera coordinates xcR
and xcL

correspond
to the same bird . (

xT
cR

T
)
· (dc × xcL

) = 0 (12)

T is the rotation matrix of one camera with respect to the other.
In this particular case, the rotation matrix of each camera is computed with respect to the global coor-

dinate system. The epipolar constraint used is therefore given by Equation 13.

(TLdc + TLTRxcR
− dc)T · (dc × xcL

) = 0 (13)

TL and TR are the rotation matrices for the left and right cameras respectively and dc is the 3d
displacement between the stereo pair.

For frame-to-frame data association, a standard gated nearest neighbor approach is used. Association of
corresponding camera coordinates from one frame to the next is based on the Mahalanobis distance between
the best estimate computed in the previous time step,xi , and the prediction of the state,x̄j , computed from
the motion update of xi:

dij = (xi − x̄j)T P−1
jj (xi − x̄j) (14)

The matrix Pjj is an arbitrary covariance associated with the predicted state x̄j .
It is also possible that significant information to assist in data association will be available from the image

itself (e.g. from an intensity histogram of the pixels identified as belonging to a bird). However, this feature
has not been incorporated yet.
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C. Track Initiation

Track initiation can be a thorny problem, especially when range data is uncertain (which is the case for
short-baseline multiple camera systems). A closely related problem, feature initialization in Simultaneous
Localization and Mapping (slam), has the same difficulties. Feature initialization in bearings-only slam is
especially difficult, and has been the subject of a large amount of research. “Delayed approaches” collect
several bearings over time and fuse them to compute an initial estimate of landmark position.19–21 “Un-
delayed approaches” represent the conical probability distribution associated with a bearing measurement
as a series of Gaussians which are then pruned as more measurements become available.22–24 These are
essentially multiple hypothesis filters. The main issue which these methods attempt to address is ensuring
that the initial landmark position is “Gaussian” enough be incorporated into a Kalman filter (e.g. ekf or
ukf) without causing stability problems.

Here we have used an undelayed approach based on the Particle Filter.25 Since an undelayed approach is
adopted, only one set of measurements is used and there is no time update. Initializing the state of the bird
based on the triangulation of available bearings is a nonlinear problem and will not result in a sufficiently
Gaussian estimate. A copious set of 3D particles that cover all possible locations of the bird, can be processed
by the Particle Filter to compute a Gaussian estimate of the initial position of the bird. The initial set of
particles are simulated along the entire range, Rmin to Rmax, the first available azimuth, ξ , and elevation,
θ to a bird entering the field of view. The 3D position, xp ,of any one particle in this normal distribution is
given as:

xp =

 rpcos(θp)cos(ξp)
rpcos(θp)sin(ξp)

rpsin(θn)

 (15)

where

rp = U(Rmin, Rmax) (16)

θp = N(θ, v2
m) (17)

and

ξp = N(ξ, v2
m) (18)

vm being the measurement noise of the camera from which the bearing is obtained.
The set of particles thus generated have a Gaussian distribution across the conic section of the solid angle

formed by the deviations about the true bearing to the bird, on account of the measurement noise vm. This
is shown schematically in Figure 4.

Each particle has a unique 3D position. The measurement vector, zp, is computed for every particle in
the distribution. It is formed by concatenating bearings from all but one of M cameras in which the bird
is viewed. The bearings used to form the initial probability distribution are not included to avoid the bias
from counting it twice. zp is given as follows:

zp =
[

γ1 γ2 . . . γM−1

]T
(19)

A weighting of the distribution can now be carried out based on how closely the measurement vector,
zp, to each particle matches the actual measurement vector, z, for the M − 1 cameras. The weight of each
particle, wp, is inversely proportional to its exponential distance from the mean in the multivariate normal
distribution of mean z and covariance Σm. wp is computed using the following equation:

wp = exp[−0.5∆T
z Σ−1

m ∆z] (20)

where

∆z = z− zp (21)

and
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Figure 4. Track initiation. Bearings to a bird are treated as rays originating from camera frame origin to the
bird. The uncertainty in the bearing measurement is treated as a zero-mean Gaussian, creating a probability
cone. Each particle in the distribution has a weight associated with it, which is inversely proportional to the
deviation of the bearing to that particle from the measured bearing to the bird. The bird’s initial state is
computed as the weighted mean of particles.

Σm = v2
mI (22)

I being an M − 1×M − 1 identity matrix.
Having computed weights, wp, to each particle, the initial estimated position, x̂p0 and the covariance,

Pp0 associated with this estimate may be computed. For this application, the weighted mean and weighted
covariance of the particle distribution are used for x̂p0 and Pp0 respectively.

In order to form a complete estimate of the initial state, x̂0, and its covariance, P0, ned components of
the bird’s velocity also need to be estimated. Having adopted an undelayed approach for initialization, it is
not possible to observe the dynamics of the bird. However, since the range of the velocity of the bird is a
lot more limited than that of position, arbitrary flight speeds are picked for the velocity components of the
state vector based on documentation provided by Kerlinger,5 part of which is shown in Table 1. Note that
best glide is defined by the maximum lift to drag ratio achieved by the bird.5 A reasonable covariance is
also selected based on the range of values observed and the estimated velocity vector and covariance matrix
are concatenated with x̂p0 and Pp0 to obtain x̂0 and P0. The speed in the West-East direction is initialized
higher than the other components of velocity since it is assumed that the birds are flying East. These initial
values are bounded and gaussian estimates of the initial position and can be used in gaussian filters like the
ukf without risking divergence.

Note that the track initialization as described above is only carried out when a bird is first viewed by any
one of the cameras in the distributed system. If a bird is initialized on being viewed by one set of stations,
consequent stations can initialize their track, once the same bird comes into view, with the fused global
estimate transmitted to them.

V. Simulation Results

This section discusses the results obtained to asses the tracking of the true bird position using the
methods described above. A Monte-Carlo simulation consisting of a number of varying flight paths is

run to test various aspects of the estimation process. The simulation is initiated with the bird at any point
along the edge of the Field of View (fov) of the first camera in the array of stations. The distance of the
bird from the camera array is set up to be between 10 to 100 times the baseline of the stereo pairs, d, in the
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Table 1. Summary of Aerodynamic Performance of Raptors

Species Air Speed at Sink Rate at Cruising Speed
Best Glide (mps) Best Glide (mps) (mps)

Sharp-shinned Hawk 10.5 1.2 22.5
Broad-winged Hawk 11.6 1.1 24.2

Lanner Falcon 10-14 1.0 -
Red-Tailed Hawk 14.5 1.6 23.9

Osprey 11 0.9 24.9
Black Vulture 13.9 1.2 16.8

White-backed Vulture 13.5 1.1 16-20+
Andean Condor NA NA 15.0

system. The simulation is carried out with M = 2 camera stations, each consisting of Mn = 2 cameras. The
simulation parameters used for the results presented are listed in Table 2.

Table 2. Simulation Parameters

Number of Runs 100
Number of Stations 2

Distance between Stations 800 meters
Cameras per station 2

Distance between Cameras 14.14 meters
Distance of Birds from Stations 150 to 1500 meters

The initialization of the bird involves making use of the first set of information to formulate a viable
initial estimate of the bird. It is a heuristic process that depends on the strategic formulation of an initial set
of particles and using a weighting procedure to compute initial estimate and the covariance associated with
it. Since the uncertainty along the bearing is higher than that across, the uncertainty ellipse obtained from
the initialization step is skinny and has a high condition number. Intuitively, an ill conditioned covariance
can cause the estimator to diverge exponentially. Figure 5 shows a scatter plot of the true error at the final
time step of the run that the estimator converges to vs. the condition number of the covariance associated
with the initial estimate at the first time step. Note that condition number is either on the order of 105

or 102 which can be attributed to the distance of the bird from the station at the time of initialization.
Contrary to intuition, the eventual error in the estimate at the final time step does not exceed 5 meters for
the highest of condition numbers at the time of initialization. This indicates that even with ill conditioned
initial estimates the ukf still converges to a reasonably accurate estimate.

The path of a bird flying through the field of view for five different runs is shown in Figure 6. It can
be seen that the estimated position of the bird closely matches the true position and the covariance ellipse
reduces with time. Initially, the ellipse is strongly elongated along the bearing from the camera to the bird:
this is caused by the relatively small baseline between the cameras which causes dilution of precision along
the bearing. A closer view of the bird at a later time is shown in Figure 6. The uncertainty ellipse seen here
is well conditioned and less than 2 meters wide.
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Figure 5. Monte Carlo simulation results of initialization parameters.

To assess estimate consistency we compare the mean of the estimated error variance (i.e.
√

Tr(P)) with
the mean of the 2-norm of the estimate error (i.e.

√
(x− x̂)T (x− x̂)). Monte-Carlo results for a 100 run

simulation are presented in the remaining section. Results in Figure 7 show the performance of a centralized
system with one estimate and covariance computed from measurements from all stations. Results in Figure 7
show the performance of the proposed distributed system that fuses independent estimates from all stations
to compute a global estimate and covariance of the bird’s state at each time step.

The vertical axis shows true and estimated error on a logarithmic scale. The horizontal axis shows
time normalized with respect to the total time a bird was within the field of view of both cameras. The
true and predicted errors match each other consistently through the entire time that the birds are in view.
The estimate error dips sharply when the birds come into view at both stations and the number of available
measurements or estimates double. Note that the results obtained by using a distributed system are identical
to those obtained by the centralized system. Also, recall that the bird’s velocity is assumed to vary by a
random walk, and this uncertainty propagates into the position estimate. The average uncertainty in bird
position once seen at two stations is 1 meter: note that the uncertainty in an individual bird’s position will
depend strongly on its distance from the cameras and the number of cameras where the bird is in view.

Data association is computed to determine the relation between the measurements obtained from the
camera and the state estimates being computed by the tracking system. Data association is carried out
between stereo camera pairs and from frame to frame. In a simulated system, which already has an inherent
order to the measurements, bearing measurements are shuffled to test the performance of the data association
procedure.

To assess estimate consistency we compare the mean of the estimated error variance,
√

Tr(P), with the
mean of the 2-norm of the estimate error,

√
(x− x̂)T (x− x̂). Results in Figure 8 compare the performance of

a system with explicitly computed data association to that of a system where the order of the measurements
remains unchanged, and data association is inherent. It can be seen that the result in both cases is identical.
Hence the data association procedure fulfills its task of relating measurement of bearings to the bird with
the state estimate associated with it.
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Figure 6. Tracking performance, projected onto the plane z=0. Green dashed lines show field of view of
the cameras, blue + show true bird positions, red dotted ellipsoids show 3-sigma position covariance and are
centered on the estimated bird position.The lower plot shows the true and estimated positions of the bird
and the associated uncertainty, at a later time in the flight path of the bird, after having obtained bearing
measurements from both stations.
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(a) Distributed System
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(b) Centralized System

Figure 7. Monte Carlo simulation results for a distributed and centralized systems. The dashed red lines show
the maximum and minimum values of the 2-norm of the true estimate error, the dashed blue line shows the
mean value of the 2-norm of the true estimate error and the solid blue line is the mean value of the estimated
error variance.
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(a) Inherent Association
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(b) Computed Association

Figure 8. Monte Carlo simulation results for systems with inherent and computed data association. The
dashed red lines show the maximum and minimum values of the 2-norm of the true estimate error, the dashed
blue line shows the mean value of the 2-norm of the true estimate error and the solid blue line is the mean
value of the estimated error variance.
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VI. Conclusion

Adistributed system with stereo cameras for sensors was used to solve the inherently non-linear and
noise ridden problem of tracking multiple objects at long distances using bearing measurements. The

simulation of the system, which accounts for noise in the process as well as the sensors, and has realistic
estimates of bird positions, flight speed and possible camera positions, shows that it is possible to track
migratory raptors using this approach with a fair amount of accuracy. Further, the computation time of this
tracking system is fast enough to allow it to track multiple birds in real-time. This is essential to the success
of this procedure in studying the migratory paths of birds. The problems of data association as well as
initialization have been addressed and favorable results have been obtained for the ad hoc approach adopted
for the initialization problem and the association of the measurement to the state estimate it pertains to.
Future work involves the field testing of the proposed system. The use of color data for the purpose of data
association or even species recognition would greatly improve the performance of the system and make the
application more versatile. To create a truly autonomous system to study the behavioral patters of migratory
species, learning algorithms like Hidden Markov Models could also be implemented to allow this system to
track, recognize as well as learn the migratory patterns of various avian species.
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