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Abstract

Volume segmentation of medical image data shows great promise in assisting physi-
cians with diagnosis and treatment. This thesis applies an automated level set
method in 3D for segmenting cerebrospinal fluid and brain tissue regions from CT
scans of hydrocephalic patients. The level set algorithm used in this work is based
on central voxel intensity of source data and mean curvature of the interface. Pa-
rameters of the level set equation are determined based on target region properties
from CT scans and the algorithm is initialized using a signed distance transform
with the standard Euclidean metric. We use the forward Euler method with up-
wind differencing to propagate the solution forward in time which combined with
an imposed stability condition guarantees convergence. The segmentation results
show less than 1% error in cerebrospinal fluid volume and 1.5% in brain tissue
volume in comparison to those obtained via stereo investigator. Robustness of the
level set method is evaluated by a sensitivity analysis of two initialization param-
eters which shows a linear relationship between the perturbation and error.
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Chapter 1
Introduction

1.1 Introduction

This thesis applies an automated level set method for segmenting medical im-

ages based on central voxel intensity of source data and mean curvature of the

interface, i.e. the zero level set. The work focuses on segmenting Computed To-

mography (CT) scan regions in hydrocephalus brain. Results are provided as well

as a Graphical User Interface (GUI) platform. The motivation is to provide an ac-

curate, automated and computationally efficient algorithm to assist physicians in

the diagnosis and treatment of hydrocephalus brain. In principle no modification

to the medical images is required, e.g. file type reformatting, data type casting,

etc, and the algorithm presented herein may be easily reproduced and verified.

Traditionally a manual slice by slice process, brain segmentation, has benefited

from advancements in computing hardware over the last two decades [1]. This has

allowed for an automation that produces accurate results while alleviating undue

pressure from this task. Proposed 3D brain segmentation algorithms therefore have

to account for robustness, accuracy, computational efficiency as well as include an

interactive, user-friendly GUI [1].

Current methods for representing 3D objects rely on use of voxels or a wireframe

mesh. Difficulties linked with using voxels include low-level representation of sur-

faces and computational impediments associated with estimating voxels for concave

objects [1]. Mesh representations on the other hand require assumptions concern-

ing discretization and the topology of objects [1].
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While various techniques currently exist for segmenting 2D images, there are many

benefits to having an accurate algorithm capable of segmenting objects in 3D.

These benefits include the ability to derive topological features including but not

limited to edge tracking of non-contiguous regions within the brain, e.g. abnor-

mal accumulation of cerebrospinal fluid (CSF), as well as provide important clues

necessary for accurate diagnosis-clues which are inherently spatial-temporal. Seg-

menting 3D surfaces instead of contoured areas also provides the added benefit of

volume visualization.

A classic example of CSF present in the brain is given in Figure 1.1 on page 3.

The image shows a 2D CT brain slice of a ten month old hydrocephalic female.

It is clearly visible that CSF areas occupy non-contiguous concave regions. These

areas are normally difficult to segment by conventional algorithms due to splitting

of topologies when considered in higher dimension, i.e. 3D. The desired result of

the segmentation is to accurately identify the areas that are brain and areas that

are CSF.

This thesis will:

• Apply the level set method for an accurate, automated and computationally

efficient segmentation of medical images. In this application, CT scans of

hydrocephalus brain are used and areas of brain and CSF are segmented in

both 2D and 3D.

• Develop an algorithm for computing volume and surface area of segmented

regions in 2D and 3D. These calculations will be compared against a ground

truth data set that has been thoroughly vetted.

• Develop a robust, user-friendly GUI that maximizes automation thus allow-

ing individuals with minimum training to successfully perform segmentation

while achieving high level of accuracy. This process will remove the human

inaccuracies induced due to fatigue and data overload.
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(a) Original Scan (b) CSF Segmentation

(c) Original Scan (d) Brain Segmentation

Figure 1.1: 2D CT scan of hydrocephalic brain with non-contiguous CSF regions.
The CSF regions in this scan are outlined with a red line. Let it be noted with
respect to completeness that CSF regions exist in this image that do not have a
red line as an identifier. The brain tissue in this scan forms one contiguous area
and its boundary is identified with green lines.

1.2 Motivation

1.2.1 CT Imaging

Majority of the research that is currently being done is focused towards normal

adult Magnetic Resonance Imaging (MRI) scans [2]. Accurate segmentation of CT
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scans in medical emergencies remains a vital task since majority of the developing

countries do not have access to MRI technology [2]. In fact, MRI equipment is so

scarce that even in the largest and fastest developing country, China, the ratio of

MRI machines is one per million people, a significant difference from fifty machines

per million people in the United States [3]. This trend repeats, when one looks at

the distribution and sale of medical devices in general throughout the world. Four

fifths of global revenue from medical devices comes from sales in Americas and

Europe [4]. Though, complementary techniques, both CT and MRI scans have

their own strengths and weaknesses. However, the deciding factor in developing

countries is typically the availability and moreover the cost of having an imaging

study performed. The national average price for a CT scan in the United States is

$1,500 less than a MRI scan of the same body part. The cost difference is one of

many benefits of choosing CT instead of MRI scans; several of these key advantages

presented in [5] are listed below:

• CT scans are faster than MRI and allow for a quicker diagnosis.

• CT scans are less sensitive to patient motion during the imaging procedure.

• CT scans are more accepted by claustrophobic as well as very heavy patients.

• CT scans allow for a greater level of detail in the evaluation of cortical bone.

• CT scans provide accurate detection of metal foreign bodies.

• CT scans have higher sensitivity in detecting intra-cranial calcifications.

Medical CT images, in particular brain scans, are generally used in detection of

bleeding, brain damage, skull fracture and sudden onset hydrocephalus [6]. Pa-

tients suffering from any of these symptoms are typically in a dire medical emer-

gency and require fast diagnoses in an emergency setting. Attending physicians

who treat hydrocephalus patients require fast and accurate segmentation results.

1.2.2 Hydrocephalus Brain

The term hydrocephalus implies a condition in which the primary symptom is the

excessive accumulation of cerebrospinal fluid in the brain - a clear fluid that sur-

rounds the brain and the spinal cord [7]. This excessive build up of CSF and the
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subsequent blockage of its outflow in the ventricles and the subarachnoid spaces

leads to an abnormal widening of ventricles which creates harmful pressure in-

side the skull while displacing brain tissue regions. Generally caused from head

trauma, from congenital defects, from an overproduction or an impaired CSF flow,

hydrocephalus brain condition places negative strain on the patient and can have

detrimental long term impacts on physiological and psychological development.

Learning disabilities are all too common in younger patients who develop hydro-

cephalus, especially in patients whose condition is congenital in nature. ”Hydro-

cephalus is accompanied by pathological changes in brain morphology, including

thinning of the cortex, increases in water content, and loss of myelin in the periven-

tricular white matter”[8]. Disruptions in myelin with reductions in thickness of the

cortical mantle, decreased brain mass and thinning of the posterior brain regions

are among long-term consequences of hydrocephalus [9]. The effects of exces-

sive CSF accumulation lead to motion and visual problems, short-term memory

loss, loss of motor functions as well as lead to higher risk of developing epilepsy.

Children suffering from congenital hydrocephalus or hydrocephalus induced from

other medical conditions are at higher risk of developmental problems than adults

with hydrocephalus. Young children, particularly infants, are better suited to deal

with increased CSF buildup and subsequent widening of the ventricles than adults

because the fibrous joints remain separated. Currently, physicians evaluating hy-

drocephalus focus their efforts and studies on the size of ventricles; however, their

goal remains on treatment that would allow for healthy brain development [8]. The

most common form of treatment for hydrocephalus involves the surgical placement

of a cerebral shunt system that diverts the flow of CSF from the central nervous

system so that it may be drained into other body cavities where it can be reab-

sorbed [7]. Clinical studies have shown that brain volume is more directly related

to cognitive function than fluid volume in both hydrocephalic mice and young chil-

dren [10] Accurately estimating brain volume is key in managing hydrocephalus

and ultimately remains a vital quantity in the determining a proper treatment that

would allow for normal brain development [8]. Singer et al. have shown that di-

agnostic CSF removal in patients has favorable and immediate volumetric changes

of global brain tissue [11]. The report also presents a direct relationship between

CSF removal and change in brain volume - change in volume that combined with
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proper rehab would allow patients to overcome developmental problems. Patients

with hydrocephalus and their loved ones tend to focus on the improvement in the

quality of life as a measure of success in the management of hydrocephalus [12]

[8]. Current research is beginning to focus on the importance of brain volume in

establishing the optimal treatment and the role it plays in determining improve-

ment in neurocognitive performance. In this thesis we use five CT data sets from

five different hydrocephalic children with myelomeningocele.

1.2.3 Medical Image Segmentation in 3D

Segmentation of anatomical objects is a vital task in the analysis of medical images.

At present, manual, two-dimensional segmentation continues to be the limiting fac-

tor for emergency diagnoses because accurate, automated and robust segmentation

of three dimensional images remains a widely unsolved task [13] [14]. Furthermore,

segmenting images in 3D, slice-by-slice, using 2D techniques is a laborious process

and requires manual post-processing to connect the 2D images into a continuous

surface. This reconstruction process often leads to inconsistencies which can be

mitigated via a true 3D segmentation method that is more robust and ensures

a globally smooth and coherent surface between slices [15]. Medical CT scans

are typically processed two-dimensionally since they are obtained as a series of

two-dimensional slices, or scans, of an organ or a region in the body. Reorga-

nizing and segmenting the slices in 3D will enable for a practical visualization,

localized pathology, diagnosis and treatment of anatomical objects [16] [14]. Fur-

thermore the added benefit of segmenting in 3D allows physicians to diagnose

and treat anatomical structures by interacting with them via visualization that

is achievable through post segmentation reconstruction. Automated 3D, or vol-

ume, segmentation plays a significant role by facilitating extraction of anatomical

or pathological structures and other regions of interest [17] [18]. Algorithms that

operate on volumetric data provide a more complete and accurate segmentation

than 2D based segmentation algorithms because volume segmentation accounts for

splitting topologies and loculated CSF regions. Also, true 2D segmentation algo-

rithms are limited to the information on the particular slice they operate on, i.e.

no information is used from the slices directly above and below thus limiting the
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algorithm’s ability to segment the desired area. Volume based segmentation algo-

rithms operate on voxels of data from which more information may be extracted

due to the higher dimensionality. In this thesis we utilize scalar image intensity

data obtained via 2-D CT scans of hydrocephalic patients.

1.2.4 The Level Set Method

Medical image segmentation based on the level set method has been extensively

applied to visualization of 3-D anatomical features and boundary tracking of highly

convex object surfaces. Examples of these segmentations include: aortic thrombus

from abdominal and thoracic scans by Nakhjavanlo et al. in [19], brain tumor

and tissue segmentation by Chen in [20], carotid arteries by Ukawatta et al. in

[21] and countless others. A partial differential equation method, forming a sub-

set of active contour models or geometric deformable models, the level set algo-

rithm has been shown to efficiently solve the problem of volume segmentation in

an implicit manner. Deformable models create a compromise between the con-

straints and the shape provided by the input data which resembles a Bayesian

approach to image analysis [22]. The level set does not require any pre-processing

nor post-processing, a hindrance of low-level segmentation methods that comprise

pixel-based clustering, region growing, thresholding, and filter-based edge detection

[15]. Additionally, these low-level techniques can make incorrect assumptions and

generate infeasible boundaries by only considering local information [23]. Region

based segmentation methods resulting in low quality pixel or voxel representations

detract from a detailed analysis and visualization of the finished segmentation [24].

Parametric deformable models that are limited by topological adaptation as well

as differences in the initial model’s and the desired object’s boundaries became

obsolete with the introduction of level set method in 1988 [15]. The level set de-

formable models have the following advantages over parametric models in general

and make them the ideal algorithm of choice for segmenting CSF and brain tissue

regions in hydrocephalic patients:

• Ability to account for topological changes such as splitting and merging of

complex surfaces.
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• Performing stable numerical computations on a Cartesian grid without hav-

ing to parametrize the surface contours.

• Very straightforward extension of the 2-D problem formulation to n-D.

To elucidate the first two bullet points, we note that the level set formulation that

is presented in this thesis is written in an Eulerian frame, i.e. we fix the coordinate

system in the physical domain. This method of describing the front propagation

allows us the following advantages which in turn guarantee the first two bullet

points: Eulerian framework does not require the interface, i.e. the level set to be

simply connected, discrete mesh points do not move which avoid stability problems

that arise in Lagrangian descriptions [25].

1.3 Problem Description

The problem at hand is composed of two different parts: First, to accurately and

efficiently segment out regions of cerebrospinal fluid inside the brain as well as

regions that are brain tissue. Second, to calculate the total volume that comprises

CSF regions and the volume that corresponds to areas that are brain tissue. This

problem is approached in three dimensions and CT scans of hydrocephalic patients

were used as test data. It is assumed that no preprocessing of the data is required

and that minimal user interaction is needed to initialize the segmentation.

1.3.1 Volume Calculation

Calculating brain and intra-brain CSF volumes resolves to a modest volume com-

putation that takes into account the image properties of the CT scan. The problem

becomes one of counting the number of voxels that correspond to a region that is

being segmented. This is the last step in the segmentation process.

1.4 Review of Related Work

The applications of three-dimensional image segmentation are practically unlim-

ited and currently constitute a major problem in medical image analysis. Fur-

thermore, critical volume information from these analyses, particularly in medical
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Figure 1.2: The CSF regions identified with yellow lines are considered to not
be inside the brain and are not segmented. Only CSF regions that are not in
contact with the skull are of interest, i.e. the areas identified with red lines, and
are segmented by the algorithm. The skull boundary is identified with a blue line;
the boundary, in this scan, is one contiguous region that shows to be white in color.

cases in which patients suffer from hydrocephalus, is vital to physicians in diagnos-

ing and administering proper treatment by virtually interacting with anatomical

structures. It is this motivation that drives much of the current research to the

development of fast, accurate and robust methods for solving this problem.

1.4.1 Previous Work

In [1] we explored the use of a particle filter, a Bayesian estimator, for segmenting

arbitrary subsets of <3. The algorithm utilized a Coulomb’s inverse-square law as

the motion model for propagating particles and the standard Euclidean metric of

the gradient vector as the observation which was used to assign particle weights

based on the norm. Performance of the method was tested on computer defined
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geometries and later on CT data obtained from patients with hydrocephalus. The

algorithm showed promise in segmenting computer generated volumes; however,

limitations were observed when applied to the CT data. The complex shape of the

human brain, e.g. CSF regions and brain tissue regions, presented particles with

areas of steep gradients, i.e. high curvature, which induced sample impoverishment

and caused unwanted effects from the motion model.

1.4.2 Image Segmentation in 3-D

Modern science has allowed us to non-invasively map the anatomy of human beings

through use of CT scans and other imaging modalities [17]. Volume segmentation

provides a means of delineating and separating regions of interest that are often

obscured during a regular scan due to highly complex internal anatomy. While

a myriad of segmentation techniques have been proposed in literature, their use

often varies depending on factors such as imaging modality and target region prop-

erties. Though no segmentation method can be applied to all types of data, there

exist generalized techniques that are suitable for variety of sources. There exist

many good papers in literature that provide a thorough overview of segmentation

algorithms [17],[26], [27], [28], [29], [30], [31]. In [29] they categorize algorithms in

two categories, signal and model based as shown in Figure 1.3. In this section we

review algorithms and classify them in the following three categories: structural,

stochastic and hybrid methods. Structural techniques rely on extracted informa-

tion that describes structural properties of the region, stochastic techniques utilize

statistical methods without regard to the structure of the region and are applied to

discrete voxels, hybrid techniques comprise methods that contain characteristics

of both structural and stochastic algorithms.

1.4.2.1 Structural Techniques

Algorithms discussed in this section rely on structural properties of a data set that

is to be segmented. The methods that are reviewed are not all-encompassing and

only cover generalized techniques.

Edge detection methods aim to delineate regions based on image intensity informa-

tion. It was introduced as a 2D method by Canny in 1986 in his ground breaking
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Figure 1.3: An alternative for classifying algorithms based on the amount of shape
information used by the segmentation technique.

MS thesis [32]. By classical definition, an edge is detected when a differential

operator finds the local maximum of the gradient magnitude. Numerous works

have extended this definition to 3D using recursive filters, Sobel operators, surface

interpolation [33], [34], [18]. Advantages of such methods include their ability to

detect edges perfectly in data sets with contrast variance; however, they are highly

susceptible to noise and make it extremely difficult to discern edges based on target

regions [17].

Mathematical morphological theory, a branch of nonlinear processing, provides a

method for image analysis using set transformations which extract shapes and sur-

faces via the concept of structuring elements [17]. This method utilizes translation

invariant operators such as Minkowski sum, dilation, and its dual, erosion, to ex-

tract target regions by treating image data as sets. These techniques remedy the

degraded performance of edge detection algorithms in presence of noise as shown

in [35], [36], [37]; however, careful implementation and monitoring is needed to

prevent undesired segmentation of source data. For example, subsequent applica-
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tions of the erosion operator followed by a dilation can introduce holes and high

frequencies in the segmentation [17]. These operators, unlike morphological open-

ing and morphological closing, do not posses the property of idempotency which is

helpful in establishing a stopping criterion once stability, or a desired segmentation

has been reached [28].

Deformable, or active contour, models comprise techniques in which curves, sur-

faces or solids, defined within the source data domain, deform under internal and

external forces. The purpose of the internal force is to maintain a smooth model

during the deformation, while external forces drive the segmentation towards the

target feature(s) [28]. This method of segmentation gained popularity after its

introduction by Terzopoulos in 1988 and remains a widely studied topic as a fun-

damental tool in computer vision and image processing. In general, these methods

can be subdivided into two categories based on their formulation: parametric and

geometric. Representation of curves and surfaces is done explicitly in parametric

form during deformation by parametric models. This allows for a direct interaction

and shortens computational time [38]. This approach however, poses difficulties

in the splitting and merging of model topologies which is easily handled via use of

geometric deformable models. Geometric methods which are formulated using the

theory of curve evolution and the level set method, operate by implicitly defining

the model as a subset of a higher-dimensional function. Parametric models can

further be subdivided into energy minimizing methods such as snakes and dynamic

systems governed by a functional which evolve over time until forces reach an equi-

librium. Geometric models, of which level set methods are most well known and

studied, have the advantage of separating evolution from the parametrization thus

allowing for topology changes to be handled automatically. One of key advantages

of deformable models is that segmentation boundaries can achieve sub-pixel, or

sub-voxel, accuracy because they are implemented in the continuous domain - a

feature that is highly desirable in medical image segmentation. Their hindrance

remains that at minimum user specified initial models must be initialized in the

source data along with a selection of initial parameters. For further reading on

theory, problem formulation and implementation of deformable models see [23],

[39], [40] and [38]
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1.4.2.2 Stochastic Techniques

Stochastic methods include algorithms that return segmented models based on

statistical analysis only as in [41], [42], [43]. We do not include probabilistic

deformable models in this category. Stochastic techniques include thresholding,

classification and clustering to name a few. Thresholding is the simplest method

in image segmentation that partitions an image into sub-regions based on pixel, or

voxel, intensity. Binarization, using a single threshold, or multi-thresholding, us-

ing multiple thresholds, can be effective in segmenting volumes with high contrast

differentials; however, this method is highly sensitive to noise and inhomogeneities.

This is especially true when working with CT scans where anatomical objects are

displayed with near identical characteristics, i.e. similar Hounsfield unit values

[28]. Classifier methods, forming a subset of patter recognition techniques, at-

tempt to partition a feature space obtained from source data using labels, classes,

that are established a priori [38], [44], [17]. This feature space represents the

co-domain of any function of source data. For example, the arbitrary feature func-

tion could include voxel intensity or the gradient at the voxel. These methods

also require training data that are previously segmented as label references. Key

drawbacks of classifiers include their inability to perform spatial modeling and ex-

tensive user interaction in acquiring training sets [38]. Unlike classifiers, clustering

algorithms comprise unsupervised methods that do not require training data sets.

Clustering is a processes by which objects, voxels, are placed together into groups,

segmented regions, using desired target region properties. Because training data

are not required, clustering algorithms in essence train themselves by iterating be-

tween segmenting the volume and characterizing properties of each class [17]. Like

classifiers, clustering algorithms do not incorporate spatial modeling. Also, they

require an initial segmentation or a set of initialization parameters.

1.4.2.3 Hybrid Techniques

Hybrid techniques include segmentation algorithms that feature properties that

belong to both structural and stochastic methods. There exist many algorithms

that fall into this category due to numerous attempts to combine desirable traits

of two or more segmentation techniques. Two of the best known hybrid methods
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include region growing and the split and merge algorithms. Region growing aims

to group voxels into larger groups based on target region properties. The algo-

rithm is initialized with a set of starting points, or seed voxels, which are grown

by appending neighboring points if they conform to the target region properties

[28]. Disadvantages of this method include a manual insertion of seed points, a

potential for misleading results if connectivity information is not used properly

and sensitivity to noise and partial volume effect which may cause holes and dis-

continuities in the final segmentation [28]. Region splitting and merging provides

an alternative approach to the region growing method. This algorithm modifies

the source data by organizing it into a pyramidal grid structure of regions where

each region is further subdivided into groups of eight [17]. Successive regions are

additionally subdivided into smaller disjoint groups of eight until a homogeneity

criterion is satisfied by each region. Furthermore, any eight regions can also be

merged together into a single larger region based on predefined criteria, typically

by voxel intensity. Split and merge techniques have the benefit of not requiring

any seed points; however, they call for organizing source data into pyramidal grids

and run the potential of creating adjacent regions with identical properties during

the splitting operation.

1.4.3 Segmenting CSF and brain tissue in hydrocephalic

patients

Many of the current techniques in image processing were motivated by the needs

of the medical community. Vast advances in computing technology have also gal-

vanized the development of complex algorithms that could not have been imple-

mented until the last two decades. The problems concerning delination, visu-

alization and registration of anatomical structures remain at the the forefront

of research in medical imaging. Accurately segmenting human anatomy assists

physicians in pre-operative planning, diagnosis and treatment selection phases of

patient care. In patients with hydrocephalus, quantifying cerebrospinal fluid vol-

ume can mean the difference between life and death. Patient responses to current

treatments, shunt implants and endoscopic third ventriculostomy, continue to be

sub-optimal. In order to compensate for this, improvements in therapy protocols
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need to be made by increasing predictive capability of computational models of the

mechanics of hydrocephalic brains [45]. Furthermore, brain tissue volume changes

over long periods of time in patients with chronic hyrdocephalus can provide in-

sight into quality of life development and long term care requirements. In this

section we provide a literature review of brain tissue and CSF segmentation.

1.4.3.1 Cerebrospinal Fluid Segmentation

Segmentation cerebrospinal fluid has important applications in neuro-imaging such

as assisting in the analysis of morphological differences and changes due to disease

severity and neurological disorders [46]. In [47], Tsunoda et al. investigate the

effect of CSF volume measurement in assessing treatment measures of patients

with normal pressure hydrocephalus. Segmentation techniques offer tremendous

advantages over invasive tests such as intracranial pressure measurement, CSF tap

test and RI cisternography. Lack of scientific reporting on accurate measurement

of intraventricular and intracranial CSF volume is limiting the understanding of

the relationship between ventriculomegaly and clinical outcome. Postoperative

analysis of CSF volume changes can provide valuable information in patients with

neurodegenerative disorders as shown in Hodel’s studies [48], [49]. These measures

have become a topic of much study as evidenced in [37], [2], [8], [45]. The impor-

tance of quantifying CSF volume is not limited to patients with hydrocephalus;

individuals who have suffered strokes or have been diagnosed with neurological

diseases such as Alzheimer’s stand to benefit as well [50], [51]. Vast literature

exists which covers segmenting CSF; we only emphasize such importance in indi-

viduals with hydrocephalus and consider particulars of medical research outside of

the scope.

1.4.3.2 Brain Tissue Segmentation

The brain is the most complex organ in human anatomy. Brain tissue segmentation

is essential in study of disorders like Alzheimer’s, [52], and continues to provide us

with the understanding of its processes and functionality. Additionally, segmenta-

tion can also be utilized as a preprocessing step in applications such as voxel-based

morphometry. Detailed reviews of such algorithms is described by Tsang and Gor-
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thi in [53] and[54] respectively. Tsang provides a thorough comparison of the two

most widely used software packages in the neuroimaging community, SPM5 and

version 4 of FMRIB. His analysis uses the latest version of the software, a variety

of independent data sets for benchmark testing and most popular metrics in litera-

ture. Gorthi contributes with a convergence study of energy minimization methods

for Markov Random fields in assessing brain tissue. Continued innovation seeks to

improve on the existing techniques by making algorithms more robust, consistent

and accurate [9], [55], [56].

1.4.4 3-D Level Set Methods

Motivated by the need to track the motion of a front whose speed depends on

local curvature in problems such as crystal growth and flame propagation, the

level set method was first introduced by Osher and Sethian in [57] in 1988. This

theory expanded on previous work by Sethian in [58], [59] which uses an Eulerian

formulation for front propagation. In numerous works since, [60], [61], [62], [63],

[64], [65], [66], Sethian and Osher have added to this technique which continues to

be one of the most studied areas in image processing. The trivial extension from

2D to 3D has allowed researchers to focus on developing faster, more robust and

computationally efficient techniques from the theory of Sethian and Osher without

having to devote effort on extending the geometry [67], [68], [69], [70]. The vast

literature that exists on level set methods is left for review for the more motivated

reader.

1.5 Contributions

The primary contributions of this thesis are described below:

• Accurate three dimensional segmentation of cerebrospinal fluid volume and

brain tissue volume in hydrocephalic patients.

• The development of a generalized GUI application that utilizes a three di-

mensional level set algorithm for segmentation of medical images.
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• Performance verification using five ground truth CT data sets of hydro-

cephalic patients that have been vetted with a stereoscope investigator along

with a sensitivity analysis of level set parameters used to initialize the algo-

rithm.

1.6 Reader’s Guide

The remainder of this thesis is organized in the following manner:

• Chapter 2 defines the problem of segmenting medical images in 3-D, specif-

ically cerebrospinal fluid and brain tissue regions in hydrocephalic patients.

The five CT data sets used in simulations are also presented.

• Chapter 3 describes the governing equations of the 3-D level set method

along with a justification for its use. Level set parameter selection and a

stopping criterion are presented also.

• Chapter 4 describes the framework, computational platform and the results

of the level set simulations. Also presented are results of the sensitivity

analysis of the level set parameters along with a comparison of the simulation

results with ground truth data obtained via stereoscope investigator.

• Chapter 5 concludes this work and offers suggestions for future research.



Chapter 2
Medical Image Segmentation

This chapter provides the necessary equations and methods used in developing the

problem formulation that is used in this thesis. The generalized problem statement

is explained in Section 2.1 and is expanded on mathematically in Section 2.2.

Next, the dimensionality of the problem is followed in Section 2.3. The method

by which the medical data was obtained is given in Section 2.4. Included is an

explanation of the different scales used in viewing the medical images. Particular

difficulties associated with the method of collection that were encountered in this

thesis are given in Section 2.5. The importance of proper initialization is also

explained. This chapter concludes by presenting in Section 2.6 the data sets that

are used in this thesis along with a table of properties.

2.1 Problem Statement

The objective of the current research is to make use of intra-brain CSF volume and

brain tissue volume data to aid in the diagnosis and treatment of hydrocephalus

brain. A 3-D level set algorithm will be used to segment the regions that corre-

spond to intra-brain CSF and brain tissue. This type of segmentation method does

not require any pre nor post-processing, is applicable to different image modalities

- in this case CT, and is highly automated in that it requires only 3 parameters

for initialization.

Thus, the problem at hand is to delineate regions of CSF and brain tissue, in 3-D,

given CT scans of hydrocephalic patients taken in 2-D. At the same time, this
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segmentation must not identify any anatomical features other than the ones that

are desired.

Level Set method involves propagating a zero level set surface through deforma-

tion over a moving front that corresponds to the desired features that are to be

extracted, e.g. regions of CSF and brain tissue. The nature of the deformations

is determined by the problem statement and they often include a forcing function

that uses initialization parameters to propagate the zero level set. The premise of

the segmentation algorithm and parameter determination is introduced now, but

will be discussed in more detail in Chapter 3.

In the context of medical imaging, level set methods assume that properties of

scan data are known a priori and are critical during the initialization phase of the

segmentation. The level set algorithm can then be initiated to trace out desired

regions from the scan data.

2.2 Image Segmentation Problem

In this thesis we use the classical definition of image segmentation as a process

during which an image is partitioned into non-overlapping, constituent regions

which are homogeneous with respect to some characteristic. The ultimate goal

is that by locating objects and boundaries, the image representation would be

changed to provide an easier way for visualizing and communicating information

to the viewer [71]. Pham, Xu and Prince provide a generalized framework for the

classical problem of image segmentation in [26], as well as Pal in [27], and we adopt

this formulation in this thesis.

Let Ω be the domain of an image to be segmented. The problem that remains is

to choose the sets Sk ⊂ Ω whose union is the entire image. The sets then clearly

must satisfy the following condition:

Ω =
N⋃
k=1

Sk (2.1)

The sets, Sk, are chosen, or rather segmented, based on distinct anatomical fea-

tures or pre-determined regions of interest [26]. Each Sk is connected and satisfies

the following property Sk ∩ Sj = ∅ for k 6= j. The sets, Sk, however may be
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grouped in a manner where they form a subset, U , of Ω themselves such that

Sk for k = 1, 2, 5, 7, 11 corresponds to a particular anatomical feature. In this

case, the subset, U , could represent areas of loculated intra-brain CSF. This as-

signment of designation to each region is a process known as labeling and is usually

a trivial step in medical imaging because it is done by a trained technician or a

physician [26]. An example of a partial decomposition of an image into sets is

given in Figure 2.1 on page 20. The subset U of Ω that is outlined in red traces

out regions that correspond to image features which form a spiral pattern.

In this thesis we emphasize the distinction between segmentation and feature de-

tection. Though the two processes are closely related, the key difference is that

feature detection deals with establishing a presence of an image property while

segmentation assumes that the property is known a priori [18] [72]. Further-

more, segmentation focuses on precisely locating regions of the image that possess

the property of interest. Feature detection methods, e.g. edge, texture, make

assumptions that are too elementary for identifying anatomical structures in med-

ical imaging. For example assuming that the edge gradient is stronger than noise,

that edge direction and edge strength varies slowly along the edge is too simple to

accurately detect object boundaries [18].

Figure 2.1: The spiral pattern in the image on the left is chosen for segmentation.
The red regions, or sets, in the image on the right show the final segmentation of
the spiral pattern.
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2.3 Dimensionality

The motivation for 3-D medical image segmentation was given in section 1.2.3 and

its relation to the problem statement is discussed in this section. The term dimen-

sionality refers to the image domain, 2-D or 3-D, that the segmentation method

operates in. While the 3-D level set method incorporates image intensity along

with spatial information, i.e. gradient, obtained from the voxel data, segmentation

methods that solely utilize intensity information are independent of the image do-

main [26]. In this thesis we organize 2-D CT scans into a 3-D representation by

stacking the scans in a 3-D matrix with respect to the order in which the scans

were taken.

2.4 Modality

In this thesis we apply a segmentation algorithm to medical images obtained via

X-ray computed tomography procedure. Though the level set method presented

in this thesis is applicable to other modalities, e.g. MRI, ultrasound, PET, etc,

we specifically focus our efforts on CT scans as motivated in section 1.2.1. While

producing images at resolutions equal to or better than MRI, CT scanning also

reduces issues inherent to projection radiography techniques [26].

A procedure that combines computer processed X-ray slices to produce tomo-

graphic images of anatomical objects, CT scans are well suited for quick exam-

inations of individuals who have suffered internal injuries, for detecting tumors,

calcifications, edema and many other underlying conditions. Figure 2.2 on page

23 shows a CT scan of a hydrocephalic patient. The pixel contrast range in the

image has been rescaled in order to better visualize the CSF and brain tissue that

is present in the image. Pixels in images produced via CT are displayed in terms

of relative radiodensity. Radiodensity refers to an object’s ability to block the

passage of electromagnetic radiation, in this case X-ray, through itself. Pixels are

displayed according to the mean attenuation of the tissue; the values ranges from

−1024 to +3071 on the Hounsfield scale. The Hounsfield unit (HU) scale is a

linear transformation, equation 2.2, of the original attenuation coefficient into one

where radiodensities of distilled water and air at standard atmospheric conditions,
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temperature and pressure, are defined as 0 and −1000 HU respectively [73].

HU = 1000× µX − µwater

µwater

(2.2)

Due to the wide dynamic range of the HU scale it is impossible to visualize all of the

anatomical features without modifying the grayscale of the image [74]. Suppose

a CT scan with a dynamic range of over 2000 HU needs to be compressed to

the range of a display device, 0 to 255 for an 8-bit, then the resulting image and

its grayscale become so compressed that almost no intensity variation remains.

CT scans typically contain normalized units of measurement, contrast or pixel

intensities and in order to account for the wide HU range a modified grayscale

given in equation 2.3 is used when writing CT scan data to digital image files [74].

In the equation, L and W refer to the display window level and display window

width and Imax is the maximum intensity of the display device. Figure 2.2 shows

the mapping of the original intensity scale between the specified bounds to the full

scale of the display device.

pw(x, y) =


0, p(x, y) ≤ L− W

2

p(x,y)−(L−W
2 )

W
Imax, L− W

2
< p(x, y) ≤ L+ W

2

Imax, p(x, y) > L+ W
2

(2.3)

When it is desired to convert from this modified grayscale to the HU scale a

linear transformation, based on CT machine settings, must be applied to the data

to obtain the corresponding HU values. Equation 2.4 on page 22 gives the

relationship between the HU and the modified grayscale.

HU = m×RS +RI (2.4)

The conversion values RS and RI are referred to as Rescale Slope and

Rescale Intercept respectively and are stored as image properties in the digital

CT scan.

Table 2.1 on page gives HU values of common anatomical regions of interest

(ROI) in CT imaging [73]. These values are approximate and though CT scans

generally retain their quality, they are susceptible to degrading artifacts which
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Figure 2.2: Mapping from HU scale to modified grayscale. (a) Hydrocephalic brain
viewed under the full dynamic range of the image (2030 HU). (b) Hydrocephalic
brain shown with a window width, W = 138 and window level, L = 89.

include shading, beam hardening and partial volume averaging.

Table 2.1: Hounsfield unit value of common organic substances

Substance Hounsfield Unit

Air −1000

Fat −100 to − 50

Water 0

CSF 15

Blood +30 to + 45

Grey Matter +37 to + 45

White Matter +20 to + 30

Bone > +700
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2.5 Shading Artifact and Partial Volume Effect

In this thesis we emphasize the absence of any pre-processing of CT scans during

the segmentation. This section introduces several key artifacts that are often

encountered in CT imaging and serves to justify the use of level set algorithm as

well as the importance of solving this problem without previously minimizing any

induced artifacts. The term artifact refers to any systematic discrepancy between

the CT HU value in the reconstructed image and the true attenuation coefficient

of the object [75]. We include the effects of partial volume averaging (PVA) in this

discussion for completeness and recognize that PVA can be a contributing cause of

image artifacts rather than an artifact in itself. When compared to conventional

radiography, CT images are inherently more prone to artifacts due to the number

of independent detector measurements required for reconstruction of an image [74].

The origins of image artifacts are generally based on principles of physics, patient

behavior, technological limitations or technological misuse.

Shading artifacts typically occur during scans when materials such as metal or

bone, obscure X-rays that are passing through as well as in the neighborhood of

objects with high contrast. These artifacts which may present as either bright

or dark areas, can cause unpredictable CT HU value shifts that may lead to a

misdiagnosis. Figure 2.3 shows an example of an image containing a shading

artifact. This CT slice was taken near the base of the skull - an area with bone

and soft tissue regions where most shading artifacts occur.

Figure 2.4 on page 26 shows the same CT slice with the full dynamic HU range

as well as the modified grayscale, W = 138 L = 89. As one can see, the shading

artifact can not be identified with a naked eye in either of the two images. This

is a huge problem that can effectively render an automated segmentation level

completely useless.

The recognition and avoidance of artifacts in medical imaging is an extensive and

well developed field of research. In this thesis we focus our efforts on minimizing the

effects of such artifacts on the segmentation process by clever use of initialization

parameters. Because we do not pre-process our image to treat the artifacts we

consider any in-depth discussion out of the scope of this study. For further readings

see citehsieh, [75], [76], [77].
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Figure 2.3: Example of a CT scan with shading artifact. The image shown has a
window width, W = 7 and window level, L = 35.S

Partial volume averaging (PVA) or partial volume effect causes CT numbers that

are representative of the average attenuation of anatomical features within an

image. This occurs when a dense object protrudes into the scanning plane of the

CT machine and interferes with oncoming X-ray beams. Due to the divergence of

the X-ray beam profile in the normal direction of the scanning plane, the magnitude

of PVA becomes angularly dependent with respect to the location of the intrusive
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Figure 2.4: Mapping from HU scale to modified grayscale. (a) Hydrocephalic brain
viewed under the full dynamic range of the image (2364 HU). (b) Hydrocephalic
brain shown with a window width, W = 138 and window level, L = 89.

object as shown in Figure 2.5 from [74] on page 26. Also, the likelihood of PVA

occurring during a scan increases as CT scan slice thickness gets larger [74] [75].

This issue may obviously be mitigated by using a thin acquisition section width;

however, doing so increases the presence of photon noise and the radiation dose

that the patient is exposed to [74].

Figure 2.5: Example of cause of partial volume averaging. The projection data set
contains inconsistencies due to the object that is located off the iso-center line.

Figure 2.6 on page 27 shows a slice with partial volume averaging of the intra-

brain cerebrospinal fluid and the surrounding brain tissue. This example shows
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the severity of the problem that can be caused by PVA. Delineating intra-brain

CSF regions in this image becomes difficult if not impossible for a computer based

segmentation technique without intervention from a human observer.

Figure 2.6: Example of partial volume effect in a hydrocephalic brain scan shown
with a window width, W = 138 and window level, L = 89.
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2.6 CT Data

The five CT data sets that are used in this thesis have been de-identified and

labeled in accordance with the protocols approved by the Institutional Review

Board of Penn State University. These de-identifed data sets were provided to

us in DICOM format for use in validating the level set segmentation algorithm.

In Table 2.2 on page 28 we summarize the properties of the DICOM images.

Columns labeled Resolution and Thickness refer to the dimensions of the CT

slices in the horizontal and vertical plane respectively. The column labeled Pixel

Spacing refers to the dimension of the pixel in the horizontal plane. Uniform Pixel

Spacing was used during the CT procedure for all of the data sets for purpose of

preserving the aspect ratio of the anatomical features. Columns labeled RI and

RS were discussed in Section 2.4 and their relation to the HU scale is given in

Equation 2.4 on page 22.

Table 2.2: CT data set properties

Data Set Slices Resolution Thickness Pixel Spacing RI RS

18 20 512x512 8 0.4296875 +1 -1024

19 16 512x512 8 0.3984375 +1 -1024

21 27 512x512 5 0.37109375 +1 -1024

27 25 512x512 5 0.3515625 +1 -1024

28 26 512x512 8 0.359375 +1 -1024

2.7 Level Sets for 2D Segmentation

In this section we will give three simple examples of segmenting objects in 2D. The

equations for the 2D level set that are used in this segmentation are presented in

A.1 on page 82. Because of the trivial extension from 2D to higher dimensions,

the 3D level set equations will be derived in Chapter 3 in full. This section serves
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to give the reader a basic overview of how the level set operates from initialization

to end using without presenting any of the mathematical foundation.

In the first example, four squares are segmented using the 2D level set. The image

in Figure 2.7 was computer generated. We begin the segmentation by initilizing

the level set parameters. The regions we choose for segmentation are the four

squares in the image. Figure 2.8 shows the initialization mask that was used for

the level set. The circular mask was used for simplicity and any arbitrary shape

would have sufficed. Figure 2.9 shows the progression of the level set through 1200

iterations from initialization to the complete segmentation. Figure 2.10 shows the

completed segmentation of the four squares. This examples forces the algorithm

to segment ”sharp” corners, or areas that would otherwise be considered points of

singularity due to the nature of the derivative at such locations. The level set is

able to navigate the ”sharp” turns without difficulty.

The second example shows a segmentation of two computer generated circle ap-

proximations. This example tests the level set algorithm’s ability to delineate

between the edge boundary and its surroundings which have been transformed us-

ing a standard Gaussian blur filter. The second circle has been created by blurring

the edge boundary of the first one. The algorithm’s goal is to accurately trace the

edge of the original circle within the blurred area. This will test how well the algo-

rithm performs in areas that suffer from partial volume averaging and other image

defects. Figure 2.11a on page 34 show the original computer generated circle as

well as a copy of the circle with a Gaussian blur filter applied to its edges. The

finished segmentation shows that the level set algorithm was able to accurately

trace out the edge of the circle that was concealed under a Gaussian blur. This

example is replicated in 3D in Chapter 3.

In the last example, we present a segmentation of a normal mouse brain. The

mouse brain data was provided courtesy of Dr. Steven Schiff, Director of Penn

State Center for Neural Engineering. The original data was provided as a bitmap

image file sized 256x320. The data was modified by padding the horizontal dimen-

sion with rows of zeros so that each image would be 320x320 pixels in size. This

was done in order to simplify the level set algorithm and the vectorized code that

was designed to operate on ”square” matrices. The mouse data contained 90 CT

slices, each 0.20 millimeters in thickness. The slices are numbered in ascending
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Figure 2.7: Example of a simple geometrical feature to be segmented in 2D. The
image is 250x250 pixels and each square is 50x50 pixels.

order with the first slice starting at the base of the skull. Figures 2.12 on page 34

and 3.4 on page 41 correspond to the 28th and 40th slice respectively and show

the segmentation results with a side-by-side comparison of the original image on

the left. In this example we test the algorithm’s ability to trace out complex ge-

ometries and its general capability of segmenting near human like brain anatomy.

In figure 3.4 the scan shows regions of the brain that contain several loculated

CSF regions within the brain tissue.

These three examples show the capabilities of the level set in 2D and the degree of

accuracy of the finished segmentations. The 2D algorithm was also used to tune
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Figure 2.8: The four squares to be segmented are shown in white in the image on
the left for clarity. The border between the white and black areas on the right is
the mask used to initialize the level set method. A circular mask was picked at
random and any arbitrary shape could be used instead.

the parameters of the level set that were later used in the 3D algorithm. This

procedure will be discussed in further detail in the next chapter. The primary

goal of this section was to establish and test the ability of the level set to segment

regions of ”high” difficulty which will be encountered while delineating CSF regions

and areas of brain tissue in 3D.

2.8 Summary

This chapter established the primary equations, models and methods that will

be employed elsewhere in this thesis. In this chapter we defined the problem

statement, the methodology and the primary difficulties that were faced during

the segmentation process. The CT data sets that were used are presented in

this chapter along with their properties. Section 2.7 introduced the capabilities

of the level set algorithm in 2D by presenting three example problems and the

finished segmentations. Comments are made regarding the level set method and

the initialization procedure that will be followed in Chapters 3 and 4 where the

problem solution and the simulation results are presented respectively.
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(a) 1 iteration (b) 200 iterations

(c) 500 iterations (d) 700 iterations

(e) 900 iterations (f) 1200 iterations

Figure 2.9: In 2.9a the yellow line shows the initial mask in the image on the left.
The conical surface on the right in all the images is the 3D implicit surface that is
being manipulated by the level set. The implicit surface and its importance will
be discussed in further detail in Chapter 3. In 2.9e the level set has extracted
the desired features; however, the algorithm is not complete until the stopping
criterion is triggered in 2.9f.
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Figure 2.10: The difference in the thickness of the yellow lines (segmentation
boundaries) is due to the conversion from one picture format to a LaTeX friendly
version. The level set algorithm successfully segmented the edges of the squares in
each of the four cases.
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(a) Original image to be segmented. (b) Finished segmentation.

Figure 2.11: The image on the left shows a circle and a copy of it with a Gaussian
blur applied. On the right, the finished segmentation is shown of both circles. The
level set algorithm successfully tracked the edge of the circle that was transformed
under a Gaussian kernel.

(a) Original image to be segmented. (b) Finished segmentation.

Figure 2.12: The 28th CT slice is shown on the left with a finished segmentation
of the brain tissue next to it. This slice shows the algorithm accurately tracing
out both concave and convex regions without any discrepancy.
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(a) Original image to be segmented. (b) Finished segmentation.

Figure 2.13: The 41st CT slice is shown on the left with a finished segmentation
of the brain tissue and CSF regions on the right.



Chapter 3
Application of a 3D Level Set

Method

We start this chapter with a discussion on implicit surfaces. The compact

and the expanded forms of the general level set equation for image segmen-

tation that are used in this work are introduced along with an explanation

of each parameter. The concept of a signed distance transform used to ini-

tialize the algorithm provides an understanding of the relationship between

implicit surface definition and the level set. A numerical scheme for evolving

the level set forward in time based on the sign of the spatial derivative is

discussed as well as the stability of the algorithm. Equations for the differ-

ence of normals method are provided for calculating the mean curvature of

the interface. We close the chapter with an example volume segmentation

and introduce a definition for the stopping criterion used to determine when

to stop evolving the interface.

3.1 Introduction

Suppose that the real line is divided into three distinct sets using the points x = −1

and x = 1. And using these points, we further define three separate subdomains as

(−∞,−1), (−1, 1) and (1,∞). Let us refer to Ω− = (−1, 1) as the inside partition

of the domain and Ω+ = (−∞,−1)∪(1,∞) as the outside partition of the domain.

The border, ∂Ω, between the inside and the outside is made up of the two points
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∂Ω = {−1, 1} and is referred to as the interface. In <3 the inside and outside

regions are one-dimensional objects, however the interface is zero-dimensional. In

general, for subdomains that are n-dimensional the interface will always be of

dimension n-1, or it’s said to have codimension one.

In order to have an explicit interface representation, one simply lists the points

that belong to the interface, e.g. ∂Ω = −1, 1. On the other hand, an implict

representation describes the interface as an isocontour of some function φ(x). For

example, the zero isocontour of φ(x) = x2 − 1 is the set of all points such that

φ(x) = 0. This set contains only two points, ∂Ω = {−1, 1}. This illustration can

be visualized in Figure 3.1 from [60]. Note that the zero isocontour is used to

represent the lower dimensional interface; however, it should be said that there

is nothing significant about φ(x) = 0. This was chosen arbitrarily and is used

in general due to the well known fact that two different functions φ and φ̂ have

identical properties up to a scalar translation for some a ∈ <3.

Extending this concept to two spatial dimensions implies that the interface is a

curve that separates <2 into multiple subdomains of nonzero area. Let it be noted

that we limit our interface curves to those that are closed for purposes of clarity,

i.e. we need to be able to discern between interior and exterior regions without

ambiguity. Figure 3.2 from [60] shows the zero isocontour and the interior and

exterior regions of φ(x) = x2 + y2 = 1. The zero isocontour in this example is a

unit circle defined by ∂Ω = {~x||~x| = 1}.
This concept of implicit surface representation is easily extended to 3D where

the interface is a surface that separates <3 into nonzero volumes. This is vital to

understanding dynamic implicit surfaces and their relation to the level set method.

In two dimensions, explicit interface definition can be tedious but not impossible

since all one needs to do is specify all the points that lie on the curve. For the

example in Figure 3.2, the interface can be defined as ∂Ω = {~x||~x| = 1}. This

becomes an impossible task in three dimensions and two dimensions when one

begins to consider that complicated two-dimensional curves do not have simple

analytical descriptions [60].
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Figure 3.1: Implicit function φ(x) = x2− 1 defining the regions Ω− and Ω+ as well
as the boundary ∂Ω .

3.2 Extending Level Sets to 3D

The level set method evolves a contour (in two dimensions) or a surface (in three

dimensions) implicitly by manipulating a higher dimensional function called the

level set function φ(x, t) [70]. This contour or a surface is analogous to the interface

we discussed in 2.7 and corresponds to the zero level set Γ(x, t) = {φ(x, t) = 0}.
The case for using the level set method was made in 1.2.4 and one of the most

important traits is evidenced in Figure 3.3. Here it can be seen that topological

changes, e.g. merging and splitting of contours are done implicitly and without

detriment to the stability of the algorithm. Originally introduced by Osher and

Sethian in [57], the level set method has become widely used across many fields

such as image processing, computer graphics and computational fluid dynamics.
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Figure 3.2: Implicit function φ(x) = x2 + y2 − 1 defining the regions Ω− and Ω+

as well as the boundary ∂Ω .

The level set methods add to the implicit surface construct by introducing dynam-

ics to the system. This idea was motivated by the Hamilton-Jacobi approach to

the numerical solutions of a time-dependent equation for a changing implicit sur-

face [60]. The evolution or rather deformation of this implicit surface is controlled

by a level set equation - which takes the form of a basic convection equation. The

implict surface is deformed in an externally generated ”velocity” field. The general

form of the level set equation is given in Equation 3.1. The solution to this partial

differential equation is computed iteratively.

∂φ

∂t
= −|∇φ| · F (3.1)

In Equation 3.1, F is the forcing function, or the ”velocity” term that is used to

evolve the implicit surface over time. F can take many forms and is dependent
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Figure 3.3: The evolving surface can be seen on the bottom along with the zero
level set interface on the top which splits as the surfaces deforms.

on the nature of the problem. By carefully making our choice of F, we can guide

the level set towards a desired segmentation based upon our problem formulation

[70]. In attempting to avoid problems with instabilities, deformation of surface

elements and having to account for topological repair of interfaces, φ is used to

represent both the itnerface and to evolve the interface [60]. The level set equation

in this paper is used under the assumption that the velocity term, F is defined on

the entire implicit surface and not just the zero level set for purposes of simplicity

when we define the term on the Cartesian grid. This term as stated above is

chosen based upon the problem statement. For example, when the zero level set

represents the interface between two different fluids, the velocity term is calculated

using the two-phase Navier-Stokes equations [60].

3.3 Image Segmentation using Level Sets

In image processing applications, F is usually constructed using the pixel intensity

and curvature information from the data set. Not including the curvature term

would create contour leaking across anatomical boundaries because there would

be no force to smoothen high curvature areas. When the implicit surface evolves

across anatomical objects, the curvature term imposes a ”smooth” condition on

the surface based upon the geometry of the segmentation and the initial parame-
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ters. Segmenting objects in general is often difficult, especially for those with high

curvature regions because in order to compensate for such features, the curvature

term has to be set to a low value [70]. This illustrates the opposite extreme of not

including a curvature term altogether in the forcing function, F.

(a) Example of contour leaking α = 1. (b) Ideal segmentation without leaking α =
0.5.

Figure 3.4: This example shows how contour leaking presents itself in the segmen-
tation when the curvature term is set to 0, i.e. when α = 1.

In this work we adopt the forcing term, F, developed in [78], [22], [79] and [70] which

is dependent solely on data and curvature functions with a weighting parameter

between the two. This is a typical formulation used in segmenting volume image

data with level sets. Equation 3.2 shows the expanded form of the level set

equation introduced in 3.1.

∂φ

∂t
= −|∇φ|

[
αD(I) + (1− α)∇ · ∇φ

|∇φ|

]
(3.2)

In 3.2 the data function D(I) forces the implicit surface to expand or contract

towards target features in the source data, I, while the mean curvature term

∇ · (∇φ/|∇φ|) keeps the level set function smooth. We introduce a weighting

parameter, α ∈ [0, 1], that controls the smoothness of the implicit surface and

therefore the interface. Using a combination of a data-fitting speed function and

a curvature term is essential to applying level sets to volume segmentation [79].
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Majority of level set data terms, D, from literature reduce to well known algorithms

such as flood fill or edge detection when the free parameter α = 1 [79]. This data

function acts as the primary force that evolves the implict surface over the iteration

time span. In making a choice for this D we require a model that will expand or

contract based on the pixel intensity of the source data. In this work we adopt a

well known speed function used by Lefohn, Whitaker and Cates in [79] and [80]

which is shown below in Equation 3.3 and plotted in Figure 3.5 on page 42.

D(I) = ε− |I − T | (3.3)

This speed function depends only on the central intensity value, T , of the input,

or source, data I and the intensity deviation, ε around T . This means that the

implicit surface as well as the interface contour will expand if a pixel, in 2D, or a

voxel, in 3D, has an intensity value within the T±ε range, otherwise it will contract

to exclude said pixel or voxel. Using this gradual forcing function implies that the

effects of D subside as the as the implict surface approaches the boundaries of

regions whose central intensity values lie within the T ± ε range [79].

Figure 3.5: The speed function model based on image intensity causes the implict
surface to expand and contract based on the initialization parameters, T and ε.

To control this algorithm, a user is only required to specify three parameters, T ,

ε and α along with an initial mask which will be discussed in section ??. This
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mask can take any geometry; however, it must belong to the same n-dimensional

space from which the source data is sampled, e.g. a square mask for 2D images or

a spherical mask for volume data. The level set stops once it has been determined

that φ has converged or after a certain number of iterations. We employ a stopping

criterion for the level set algorithm that is discussed in section 3.8.

3.4 Signed Distance Transforms

In section 3.1 we defined the implicit functions with φ(x) ≤ 0 in the interior

region Ω−, φ(x) ≥ 0 in the exterior region Ω+ and φ(x) = 0 on the boundary ∂Ω,

or the interface. In this section we discuss the signed distance function, a subset

of implicit functions, and its role in the level set algorithm. In this paper we use

the standard definition of the signed distance function (SDT) requiring it to be

positive on the interior, negative on the exterior and zero on the boundary as well

as the having its gradient satisfy the eikonal equation, i.e. |∇φ| = 1.

The SDT assigns a numerical value for every pixel, or voxel, within a binary image

containing one or more objects which represents the infimum, or minimum distance

if the metric space is Euclidean, between the the said pixel and the one closest to

the boundary of the object(s) [70]. In this work we will restrict ourselves to working

over <3 and thus the mathematical definition of the distance function will take the

form given below in Equation 3.4.

d(r, S) = min|r − S| for all r ∈ <3 (3.4)

The eikonal equation is true only in the general sense since it does not hold for

points that are equidistant from at least two points on the interface. This causes

the distance function to have a singularity point at the interface where d = 0 is a

local minimum [79]. This, however, does not cause issues in general because the

monotonic nature of the SDT across the interface allows it to be differentiated

with greater confidence.

The SDT used in this algorithm comes from Matlab’s bwdist function which com-

putes the Euclidean distance transform of the binary image. This allows us to

assign distance values as positive for pixels, or voxels, outside of the implicit sur-
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Figure 3.6: In the figure on the left we show an arbitrary initial mask, a square, in
red. The signed distance transform of the mask is shown on the right along with
the zero level set φ(x) = 0.

face and negative for those that are located inside. The distance values obtained

via the bwdist function represent the Euclidean distance; however, other common

metrics could be used instead such as the Chebyshev distance or the Manhattan

distance.

The SDT is used to transform an initial mask in order to initialize the level set

equation as well as to reinitialize it after a select number of iterations in order to

retain a constant gradient magnitude. This is chosen carefully because if reini-

tialization occurs after a low number of iterations then the level set will simply

oscillate in place, comparable to being stuck in a minimum; however, if the number

of iterations is too high then the risk of numerical instabilities occurring increases

[80]. The level set algorithm thus requires two sets of data: an initial mask and

source data, which contains the regions that will be segmented.

In section 2.7 we used φ(x) = x2−1 as an implicit representation of ∂Ω = {−1, 1}.
The equivalent SDT representation of the same points is φ(x) = |x|−1 and is shown

below in Figure 3.7.

The SDT φ(x) = |x| − 1 has the same ∂Ω, Ω−, and ∂Ω+ as the implicit function

φ(x) = x2 − 1 including the additional eikonal condition ∇φ(x) = 1 ∀ x 6= 0. At

x = 0 the derivative is undefined; however, on the Cartesian grid this kink get

numerically ”smeared” out and the derivative will have a finite value [60].
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Figure 3.7: The signed distance transform function φ(x) = |x| − 1 is shown which
is a representation of the implict function φ(x) = x2 − 1.

3.5 Upwind Differencing

In equation 3.1, once φ and F are are defined at every grid point we can begin

to apply a numerical scheme to evolve φ forward in time thus moving the implicit

surface and the interface. Let us represent a point in time, tn, and let φn = φ(tn)

define values of φ at that point. In order to update φ, we first have to find new

values at every grid point after some time increment, δt has elapsed. Using this

notion we define new values of φ by φn+1 = φ(tn+1) where tn+1 = tn + δt.

Using this notion we employ a first-order accurate method for time discretization

of the level set equation using the forward Euler method from [60] given below in

equation 3.5.

φt+∆t − φt

∆t
+ F t · ∇φt = 0 (3.5)

Here φt represents the current values of φ at time t, F t represents the forcing func-

tion at time t, and ∇φt represents the values of the gradient of φ at time t. Great

care must be taken in general when numerically discretizing partial differential
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equations such as this one, especially with regard to the spatial derivatives of φ

as in this case. Consider the expanded form of equation 3.6 below where u, v w

represent directional components of the velocity term F along the traditional axes.

φt+∆t − φt

∆t
+ utφt

x + vtφt
y + wtφt

z = 0 (3.6)

For simplicity, let us consider the one dimensional formulation of equation 3.7 at

an arbirary point xi

φt+∆t − φt

∆t
+ uti(φx)ti = 0 (3.7)

where (φx)i is the spatial derivative of φ at the point xi. Using the method of

characteristics tell us whether to employ the forward or the backwards differencing

technique for propagating φ based on the sign of ui at the point xi. For example,

if ui > 0 the values of φ are moving from left to right, we have to look to the

left of xi to determine the correct value of φ at the end of the time step which

requires backwards differencing. The opposite is true if ui < 0 in which case

forward differencing should be used to correctly approximate the value of φx. This

method of choosing how to approximate the spatial derivatives based on the sign

of ui is known as upwind differencing, or upwinding.

We know that by combining the forward Euler method with the upwind differenc-

ing scheme we have a consistent finite difference approximation to the level set

equation 3.1. This in turn guarantees us convergence, along with an imposition

of a stability condition, in accordance to the Lax-Richtmyer equivalence theorem

which states that a finite difference approximation to a linear partial differential

equation is convergent [60]. Comments on the stability condition that is enforced

will be made in section 3.7.

Extending this notion of upwinding to three dimensions and assuming an isotropic

resolution from [81], [57], [64],[25] and [79] gives us the derivatives below that are

required to propagate the level set equation. Di, D
+
i and D−

i terms are used to

abbreviate the second-order central, forward and backwards difference techniques

respectively [70].

Dx = (φi+1,j,k − φi−1,j,k)/2 D+
x = φi+1,j,k − φi,j,k D−

x = φi,j,k − φi−1,j,k
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Dy = (φi,j+1,k − φi,j−1,k)/2 D+
y = φi,j+1,k − φi,j,k D−

y = φi,j,k − φi,j−1,k

Dz = (φi,j,k+1 − φi,j,k−1)/2 D+
z = φi,j,k+1 − φi,j,k D−

z = φi,j,k − φi,j,k−1

(3.8)

∇φ is approximated using the upwind scheme.

∇φmax =



√
max(D+

x , 0)2 + max(−D−
x , 0)2

√
max(D+

y , 0)2 + max(−D−
y , 0)2

√
max(D+

z , 0)2 + max(−D−
z , 0)2


(3.9)

∇φmin =



√
min(D+

x , 0)2 + min(−D−
x , 0)2

√
min(D+

y , 0)2 + min(−D−
y , 0)2

√
min(D+

z , 0)2 + min(−D−
z , 0)2


(3.10)

Finally, depending on whether Fi,j,k > 0 or Fi,j,k < 0, ∇φ is

∇φ =

{
||∇φmax||2 if Fi,j,k > 0

||∇φmin||2 if Fi,j,k < 0
(3.11)

φ(t+ ∆t) = φ(t) + ∆tF |∇φ| (3.12)

3.6 Curvature

The mean curvature of the interface is defined as the divergence of the normal

vector ~N below in equation 3.13

κ = ∇ · ~N (3.13)
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so that κ > 0 for convex regions, κ < 0 for concave regions and κ = 0 over a

plane. Though finite differencing could be used to compute the derivatives of the

components of the normal vector, ~N , it is generally easier to do so based on the

values of the current level set derivatives as shown below.

D+y
x = (φi+1,j+1,k − φi−1,j+1,k)/2 D−y

x = (φi+1,j−1,k − φi−1,j−1,k)/2

D+z
x = (φi+1,j,k+1 − φi−1,j,k+1)/2 D−z

x = (φi+1,j,k−1 − φi−1,j,k−1)/2

D+x
y = (φi+1,j+1,k − φi+1,j−1,k)/2 D−x

y = (φi−1,j+1,k − φi−1,j−1,k)/2

D+z
y = (φi,j+1,k+1 − φi,j−1,k+1)/2 D−z

y = (φi,j+1,k−1 − φi,j−1,k−1)/2

D+x
z = (φi+1,j,k+1 − φi+1,j,k−1)/2 D−x

z = (φi−1,j,k+1 − φi−1,j,k−1)/2

D+y
z = (φi,j+1,k+1 − φi,j+1,k−1)/2 D−y

z = (φi,j−1,k+1 − φi,j−1,k−1)/2

(3.14)

With the difference of normals method from [79] and [82], we compute curvature

using the derivatives from above and the two normals n+ and n−.

n+ =



D+
x√

(D+
x )2+

(
D+x
y +Dy

2

)2

+

(
D+x
z +Dz

2

)2

D+
y√

(D+
y )2+

(
D

+y
x +Dx

2

)2

+

(
D

+y
z +Dz

2

)2

D+
z√

(D+
z )2+

(
D+z
y +Dx

2

)2

+

(
D+z
y +Dy

2

)2


(3.15)

n− =



D−
x√

(D−
x )2+

(
D−x
y +Dy

2

)2

+

(
D−x
z +Dz

2

)2

D−
y√

(D−
y )2+

(
D

−y
x +Dx

2

)2

+

(
D

−y
z +Dz

2

)2

D−
z√

(D−
z )2+

(
D−z
y +Dx

2

)2

+

(
D−z
y +Dy

2

)2


(3.16)

Using n+ and n− to compute divergence, mean curvature is finally computed as

shown below.
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H =
1

2
∇ · ∇φ
|∇φ|

=
1

2
((n+

x − n−
x ) + (n+

y − n−
y ) + (n+

z − n−
z )) (3.17)

3.7 Stability

Because we know that our solution is both consistent and stable, thereby guar-

anteeing its convergence, we can allow certain ”kinks” in our algorithm because

these errors will not be amplified as the solution is advanced forward numerically.

The stability condition we use in the level set algorithm stems from the Courant-

Friedreichs-Lewy (CFL) position which states that numerical waves should prop-

agate at least as fast as the physical waves, i.e. ∆x/∆t > |u| [60]. With a simple

manipulation, we obtain the CFL time step restriction of

∆t <
∆x

max {|u|}
(3.18)

where max {|u|} is chosen as the largest value over the interface. This stability

condition can be enforced by choosing a CFL number α such that 0 < α < 1.

∆t

(
max {|u|}

∆x

)
= α (3.19)

3.8 Stopping Criterion

The level set algorithm employs an automatic stopping criterion, δ, which termi-

nates the segmentation algorithm. This δ was designed as a simple condition which

is given below in equation 3.20.

δ =

∣∣∣∣(Vi − Vi−500

1000

)∣∣∣∣ < 1 (3.20)

Here Vi is used to represent the segmented volume at the ith iteration and we

are further restricting that φ is evolved for a minimum of 500 iterations before

δ is checked for the first time. This ensures that any circumstances during the

incipient stage of the segmentation do not falsely trigger the stopping criterion

because the volume quantity changes radically as the forcing function deforms the
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implicit surfaces severely during the initial few hundred iterations as can be seen

in Figure 3.8.

Figure 3.8: This figure shows CSF volume versus iteration for data set 27. The
stopping criterion, δ is activated at iteration 1974; however, an extended iteration
axis is shown to emphasize the accuracy of the stopping criterion.

The stopping criterion was chosen experimentally and provides a good trade off

between accuracy and computational time since δ ensures that a volume change

of less than one cubic centimeter occurs over 500 iterations.

3.9 Volume Segmentation Example

In this section we will show a simple example of a volume segmentation using

the level set method. This will serve to aid in understanding of how the level set

functions and bridge the gap between the equations that were presented earlier

in this chapter and the process of segmenting CSF and brain tissue that will be

described in section 3.10.

The example begins with creating a sphere approximation in Matlab of radius,

r = 45.5. The sphere as it shall be referred to from here on is shown in Figure 3.9.

We initialize the level set with a cube mask of size 50x50x50 and set the following

parameters: T = 1, because the sphere was created using a logical statement,

ε = 0.02, because only the non-zero voxels were contained by the sphere, α = 0.5,
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because even though the sphere should ideally be the smoothest object - it was

only a computer generated approximation. The stopping criterion was turned off

during this simulation because the algorithm was noticed to have converged within

300 iterations.

Figure 3.9: The figure on the left shows a computer generated sphere approxima-
tion of radius, r = 45.5, and an image of its projection onto a 2D plane on the
right.

The finished segmentation results are provided below in Figures 3.10 and 3.11.

Using the equation for the volume of a sphere we calculate the volume of the

computer generated sphere to be 394569 voxels. Given that the sphere is merely

an approximation, the actual number of voxels was calculated to be 407597 within

the computer generated construct. The segmented result was 395327 voxels in size

which translates to a 3% error when compared to the actual number of voxels in

the computer generated sphere and 0.19% error in comparison to the theoretical

volume.

3.10 CSF and Brain Tissue Segmentation

In this section we will cover the process for segmenting CT brain scans in 3D. The

anonymized data is loaded into Matlab and arranged in a 3D array in ascending

order starting with the scan corresponding to the base of the patient’s head. Data
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Figure 3.10: The image shows the generated sphere (red) and the segmented result
(green) with the top half cut away for purposes of clarity. The errors between the
segmented result and the source data can be seen in regions where the green and
red areas intersect.

properties such as image size, pixel spacing, etc. were given in Table 2.2 on page

28. We segmented five different data sets of patients with hydocephalus.

The algorithm initialization parameters T , α and ε were chosen in the following

manner. Central voxel intensity, T , was obtained through a series of data sam-

ples using Matlab’s imtool GUI. Voxel intensities were obtained on three different

planes, X − Y , for each of the data sets for both the CSF and brain tissue. The

planes chosen for this sampling correspond to the quarter, half, and three-quarter

locations on the vertical axis, Z, for all of the data sets. On each plane, ten voxels

total were chosen, five for CSF and five for brain tissue, corresponding to known

regions of CSF and brain tissue. The voxel samples were then averaged amongst

the three planes to obtain a central voxel intensity value, T , that was used to ini-

tialize the level set method. Voxel intensity deviation, ε was calculated based on
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Figure 3.11: Aerial view, X − Y plane, is shown in this image. When this view is
projected to 2D, the area corresponding to the source data is 6621 voxels in size.
The segmented area comprises 6505 voxels which represents a 1.75% error.

the difference between the CSF and brain tissue central intensities, Tcsf , Tbt for a

particular data set. The free parameter α = 0.5 was used for all of the simulations

because it provided a balance between the speed function and curvature. Table

3.1 on page 54 shows the initial parameters for the data sets. The differences in

the initialization parameters, T , ε, for the five data sets result from variations in

CT machine settings during the calibration procedure [83]. Slight variance exists

between the five data sets which can be attributed to a number of factors such as:

poor maintenance and irregular calibration, the data sets were not all produced

using the same CT scanner and inconsistent tissue attenuation amongst patients.
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Sensitivity analysis in section 4.4 was preformed to address this issue.

This method of choosing initialization parameters, T and ε, is validated with sta-

tistical analysis. Consider that the speed function model we used is analogous to a

one-dimensional, two-class statistical classifier. Following the argument presented

in [79] it becomes clear that generating a mean and a variance from a region of

points to initialize T and ε is not only logical, but justified.

Table 3.1: Initialization parameters

Source Tcsf εcsf Tbt εbt α

18 1030 10 1077 37 0.5

19 1030 10 1070 30 0.5

21 1031 11 1070 30 0.5

27 1027 7 1060 20 0.5

28 1033 9 1055 18.5 0.5

The initial mask that was used for segmenting CSF and brain tissue for all of the

data sets was a rectangular prism with dimensions 200x200x15 because all of the

data sets had the same dimensions along the x and y axes and typically contained

20 or more slices per data set. Sections 3.10.1 and 3.10.2 discuss the target

regions and desired properties associated with segmenting CSF and brain tissue

respectively.

3.10.1 Segmenting Cerebrospinal Fluid

In hydrocephalic patients one often encounters loculated CSF volumes. Figure 1.2

on page 9 gives an example of such a patient. The problem of segmenting CSF

volumes in this thesis is restricted to delineating CSF that are not in contact with

the skull. The only regions of CSF that are of interest are those that are within

the brain and examples of such regions can be seen in Figure 1.2 on page 9. An

example of a scan in which loculated regions are present within the brain is shown

in Figure 3.12 on page 55. The areas identified as CSF in the scan are the only
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CSF regions that are of interest and are sought to be segmented. Intra-brain fluid

is important in diagnosis and treatment of hydrocephalus as well as determining

quality of life and predicting brain development [2]. Because non intra-brain fluid

is present in the images, i.e. fluid that is touching the skull, this makes the problem

of accurately segmenting intra-brain fluid regions inherently difficult.

Figure 3.12: The four loculated regions of CSF that are not in contact with the
skull are of interest, i.e. the areas identified with red lines, and are segmented by
the algorithm. The skull boundary is identified with a blue line; the boundary, in
this scan, is one contiguous region that shows to be white in color.
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3.10.2 Segmenting Brain Tissue

Brain tissue volume is becoming more important in determining healthy brain

treatment and cognitive development as referenced in subsection 1.2.2. Figure

3.13 on page 57 shows an example of a hydrocephalus brain. The problem at

hand is to accurately trace out region(s) that are brain tissue. The difficulties

associated with this task include non brain tissue areas in the lower part of the

brain that have the same CT contrast values as brain tissue, protruding brain

tissue in patients whose fontal bones have not fused together and presence of brain

tissue inside CSF regions.
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Figure 3.13: The brain tissue is identified with green lines and forms one contiguous
area. The skull boundary is identified with a blue line; the boundary, in this scan,
is one contiguous region that shows to be white in color.



Chapter 4
Results

4.1 Introduction

In this chapter we provide the results of the level set simulations for 5 different data

sets. Volume segmentations of both CSF and brain tissue are included also. The

results are compared against the ground truth values obtained via stereo investi-

gator are provided courtesy of Dr. Steven Schiff, Director of Penn State Center

for Neural Engineering. A sensitivity analysis is also included for the initialization

parameters for one of the data sets. We conclude this chapter with a discussion of

the segmentation results.

4.2 Computation Environment

The level set algorithm was developed in the Matlab R2010b environment; however,

due to computing restrictions such as processing power and available physical

memory, the computations were run on the Penn State Lion-X Series Clusters,

specifically XI, XF and XJ clusters. These were chosen based upon observations

of the period of time that elapsed while each batch job waited in queue to begin

running. For each non-interactive batch job, or simulation, the following cluster

parameters were used: 1 node consisting of 4 processors and 4GB of physical

memory per process. Details on the Lion-X Cluster environment are not provided

here and are considered to be outside the scope of this work.



59

4.3 CSF and Brain Tissue Volume Results

Complete CSF and brain tissue results are provided for each slice only for data

set 21 in 4.3.1 on page 59. Data set 21 was chosen because we have worked

with it the most throughout this thesis during the algorithm development and

testing phases. The results for the remaining four data sets as well as data set

21 are summarized in Table 4.1 below. Subscripts LS and SI refer to the level

set segmentation and the ground truth value obtain by the stereo investigator

respectively. Stereo investigator is a tool used in stereology which allows a user to

segment medical images by hand thus providing an accurate and unbiased area or

volume for a desired target region. Typically, these devices combine a microscope

and a computer with preloaded software that displays the image data using various

options, filters and magnification levels. Percent error was calculated in the last

column instead of percent difference because we consider the stereo investigator

results to be exact.

Table 4.1: CSF and brain tissue volumes

Data Set
BrainLS

(cm3)
FluidLS
(cm3)

BrainSI

(cm3)
FluidSI
(cm3)

ErrorBrain

(%)
ErrorFluid

(%)

18 1176.31 352.56 1151.20 349.40 2.18 0.90

19 682.63 823.41 693.25 830.00 1.53 0.79

21 1164.89 898.53 1145.00 806.00 1.74 0.82

27 961.73 71.56 961.63 70.63 0.01 1.32

28 753.84 335.58 744.38 338.18 1.27 0.77

4.3.1 Data Set 21

The results shown in Figure 4.1 on page 63 correspond to the zero level set

interface of the brain tissue and CSF respectively for source data set 21. The

surface interfaces shown in this figure suffer from poor resolution in the Z axis,
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i.e. large slice thickness during CT scans, which gives the isosurfaces a ”stepped”

appearance.

Figure 4.2 on page 64 shows the CSF and brain tissue segmentations nested

together. Volume visualization such as this can provide physicians additional in-

formation that will assist in diagnosing patients as discussed in [84] and [85].

Another way of visualizing the finished segmentation is by projecting the zero level

set of the interface, φ = 0, onto the 2D plane that corresponds to each CT slice.

Again, the slices are numbered in ascending order starting at the base of the skull.

The projections for the brain tissue and CSF segmentations are given in Figures

4.-2 on page 69 and 4.-6 on page 74 respectively.

4.4 Sensitivity Analysis

In this section we present the results of the sensitivity analysis. We tested the

level set algorithm by simulating perturbations to the initial parameters, T and

ε. The initial parameters were perturbed in the following manner: central voxel

intensity, T , was offset by 0.5%, 1% and 1.5% from the original values of 1030 and

1077 for CSF and brain tissue respectively; intensity deviation, ε, was offset by

5%, 10% and 15% from the original values of 10 and 37 for CSF and brain tissue

respectively. The percent offsets were determined based on the contrast intensity

histogram and visual observations using Figure 4.-5 on page 75. The results are

provided in Tables 4.2 and 4.3 below.

Table 4.2: Volumes for ε sensitivity analysis for data set 18

0% 5% 10% 15%

CSF 898.53 910.24 915.47 926.54

Brain T issue 1164.89 1221.53 1261.16 1332.10

Errorcsf 0.82 0.47 1.05 2.27

Errorbt 1.74 6.68 10.14 16.34
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Table 4.3: Volumes for T sensitivity analysis for data set 18

0% 0.5% 1% 1.5%

CSF 898.53 913.23 927.51 941.68

Brain T issue 1164.89 1198.92 1130.14 975.595

Errorcsf 0.82 0.80 2.37 3.994

Errorbt 1.74 4.71 1.30 15.79

The sensitivity analysis performs as expected for the voxel intensity deviation

parameter ε. Our hypothesis was that the volumes would increase with the degree

of perturbation for both CSF and brain tissue. The same hypothesis does not hold

for the central voxel intensity parameter, T , at least not for brain tissue. One

explanation for this could be that the segmented region boundary between the

outter edge of the brain tissue and the skull moves outwards, i.e. the interface

expands, after the first perturbation. Then, the subsequent perturbations in T

cause the segmented area to shrink because the interface between the brain tissue

and the skull expands slower than the interface between the brain tissue and the

CSF contained within, i.e. a smaller volume is segmented instead. There is roughly

an increase of 1% error for every perturbation when segmenting CSF and 5%

for brain tissue. This analysis was done to simulate effects of having untrained

individuals perform the initialization part of the level set algorithm.

4.5 Discussion

This chapter presented the results of the level set simulations for CSF and brain

tissue in five individuals with hydrocephalus. These results were compared to

ground truth CSF and brain tissue volumes obtained via stereo investigator. The

percent errors between our results and the stereo investigator show that the level

set algorithm is an accurate and reliable method for determining CSF and brain

tissue volumes. The level set method is however limited by the forcing function

that we employ and thereby is unable to differentiate between regions with same
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central voxel intensity as desired target regions. The inaccuracies stemming from

this are further inflated by image artifacts such as streaking and partial volume

averaging that appear in all the data sets in CT scans closest to the base of the

skull.
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Figure 4.1: Top image shows various crevasses within the brain tissue where pock-
ets of fluid and other non tissue regions exist. The brain tissue has a total volume
of 682.63 cm3. In the bottom image a region of loculated CSF can be seen between
the two large, connected ”hemispheres” of CSF. The fluid has a total volume of
823.41 cm3.
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Figure 4.2: In the top image, regions of brain tissue, red, can be seen within the
fluid volume in blue. In the lower image, the brain tissue has been set transparent
in order to visualize the CSF region within. This highlights the severity of the
conditions that some patients suffering from extreme hydrocephalus endure.
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(iii) Z = 1 (iv) Z = 2

(v) Z = 3 (vi) Z = 4

(vii) Z = 5 (viii) Z = 6
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(ix) Z = 7 (x) Z = 8

(xi) Z = 9 (xii) Z = 10

(xiii) Z = 11 (xiv) Z = 12
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(xv) Z = 13 (xvi) Z = 14

(xvii) Z = 15 (xviii) Z = 16

(xix) Z = 17 (xx) Z = 18
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(xxi) Z = 19 (xxii) Z = 20

(xxiii) Z = 21 (xxiv) Z = 22

(xxv) Z = 23 (xxvi) Z = 24
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(xxvii) Z = 25 (xxviii) Z = 26

(xxix) Z = 27

Figure 4.-2: Viewing the completed segmentation as a series of projections gives
a better insight as to the difficulties the level set algorithm has with tracing out
areas of the brain. As seen in the lower slices, particulary Figures 4.2iii- 4.2vii
the level set has difficulty of separating non-brain tissue areas that have the same
central pixel intensity range, T ± ε. This is due to the streak effect being present
in these scans as well as neighboring tissue with similar Hounsfield unit value as
brain matter.
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(xxx) Z = 1 (xxxi) Z = 2

(xxxii) Z = 3 (xxxiii) Z = 4

(xxxiv) Z = 5 (xxxv) Z = 6
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(xxxvi) Z = 7 (xxxvii) Z = 8

(xxxviii) Z = 9 (xxxix) Z = 10

(xl) Z = 11 (xli) Z = 12
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(xlii) Z = 13 (xliii) Z = 14

(xliv) Z = 15 (xlv) Z = 16

(xlvi) Z = 17 (xlvii) Z = 18
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(xlviii) Z = 19 (xlix) Z = 20

(l) Z = 21 (li) Z = 22

(lii) Z = 23 (liii) Z = 24
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(liv) Z = 25 (lv) Z = 26

(lvi) Z = 27

Figure 4.-6: The level set successfully delineated regions of CSF as seen in the
images above. The volume was calculated to be 823.41 cm3 which corresponds to
less than 1% error with respect to 830 cm3 obtained via the stereo investigator.
The level set has difficulty with areas near the base of the skull as evidenced
previously in the brain tissue segmentation. Again, this is due to the streak effect
being present in the scan data as well as area misclassification. Segmented areas
of small, archipelago-like regions in 4.-3xl- 4.-4xlvii are due to voxels intensities
that are not in T ± ε range.
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Figure 4.-5: A contrast intensity histogram is shown in the two images above for
data set 18. The sensitivity analysis that was done for initial parameters, T , ε, in
this section was based off the values in the non-normalized distribution range of
this plot for each CT slice. The percent perturbations to T and ε were determined
by examining the distribution range at the quarter, half and three-quarter slice
locations in the data set.



Chapter 5
Conclusions

Segmentation of anatomical objects is a critical task in the analysis of medical

image data. Furthermore, volume segmentation of medical images has great po-

tential in assisting physicians with making the correct diagnosis and administering

proper treatment. Also, accurate segmentation is vital in the planning stages of

surgical procedures where it’s used as both a quantifier and visualization tool.

In this thesis we prioritize segmenting cerebrospinal fluid and brain tissue in pa-

tients with hydrocephalus. The data was provided courtesy of Dr. Steven Schiff,

Director of Penn Center for Neural Engineering. Because CT scans offer many

advantages over MRI machines, 1.2.1, and the general lack of availability of MRI

technology in developing countries, we focus our efforts on delineating CT images

1.2. This thesis describes a method for segmenting medical image data via three

dimensional level set algorithm. The complex nature, i.e. topological changes due

to loculated regions, associated with segmenting in 3D make this an especially dif-

ficult problem. The approach is based on the popular level set method which is a

subset of geometric deformable model techniques in image analysis. The structure

of this approach, i.e. an Eulerian formulation, solves many of the encountered

problems that other methods are unable to overcome. Additionally, the algorithm

of choice is propagated forward in time in such a manner so that both stability

and convergence are guaranteed from sections 3.5 and 3.7. The level set al-

gorithm was developed in Matlab and the computations were performed on the

Penn State Lino-X Series Clusters due to limited processing power and available

physical memory. The algorithm was tested on five data sets and the segmented
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CSF and brain tissue volumes were compared to the ground truth data obtained

via stereo investigator. Errors of less than 1% were observed for CSF and 1.5%

for brain tissue. A complete set of segmented images, CSF and brain tissue, is

provided in section 4.3.1. Robustness of the initial parameters was demonstrated

using a sensitivity analysis in section 4.4. Graceful behavior was observed for the

CSF volume segmentation: 4% error with a 1.5% disturbance in T , 2.27% error

with a 15% disturbance in ε. Brain tissue segmentations were more error prone

to disturbances in both parameters: 15.79% error with a 1.5% disturbance in T ,

16.34% error with a 15% disturbance in ε. This showed that the algorithm was

highly reliable in reporting CSF volumes while brain tissue segmentations could

be made more consistent with future research into the initialization phase.

5.1 Summary of Contributions

5.1.1 Method for Segmenting CSF and Brain Tissue in 3D

The level set architecture was selected due to its advantages over other methods

that were reviewed in sections 1.4 and 1.2.4. Mainly, the level set was chosen

based on its ability to handle topological changes such as splitting and merging

of surfaces, the ease of performing stable numerical computations on a Cartesian

grid without the need to parametrize surface contours and the trivial extension of

the 2-D problem to n-D. This method was further automated by only requiring

two parameters and a seed surface for initialization. The parameters are chosen

by examining contrast intensity histograms for each data sets and choosing groups

of voxels that represent the desired target region at three different locations as

describe in section 3.10.

5.1.2 Results Verification

Five different data sets were segmented for both CSF and brain tissue. Volume

calculations obtained from the segmented results were compare to the ground truth

values. It was demonstrated that the algorithm was highly successful in delineating

both regions within the CT scans for all of the data sets. These results further
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validate our choice of the level set method and demonstrate its vast capabilities in

image segmentation for a variety of applications both in and outside of medicine.

5.1.3 Demonstration of Parameter Robustness

An automated level set algorithm is of limited usefulness if initialization parameters

do not demonstrate robustness to image artifacts such as noise, shading and partial

volume effect. There are also many other factors that affect the end result of

which user induced error in choosing initial parameters is of most significance.

For this reason, we performed a sensitivity study in which perturbations to initial

parameters were made to view the effect on the segmented volumes. It is shown

that even relatively large changes in both parameters do not noticeably affect the

CSF volume segmentation; however, any change in either parameter significantly

alters the brain tissue segmentation.

5.2 Recommendations for Future Research

5.2.1 Speed Function

The speed function, D, we use in this thesis is adopted from the work of Lefohn,

Whitaker and Cates in [79]. The model is based on a central voxel intensity

and intensity deviation. We choose this based on the simplicity of the scalar

speed function and did not expermient with other models from literature. Future

work could examine the effect of changing the speed function formulation using

previously established models, [86], [78], [87], [88], [89], [38], or by defining a new

approach. Caselles in [86] and Mallad et al. in [78] proposed a model which

couples curve evolution with image data and has shown promise in segmenting

images with good contrast. This was improved in [87], [88] with the use of an

energy minimization in the definition of the speed function which allowed the

contour to ”pull” back if a segmentation boundary had been crossed. Siddiqi

further expanded on their formulation in [89] which addressed the problem of

passing through boundary gaps. Elsa et al., [31], describe use of speed functions

with regularizers which add prior information during the segmentation and aid in

preventing errors when the speed function is defined solely in terms of intensity.
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5.2.2 Discretization

In this thesis we use a first-order forward Euler method with upwind differencing

to propagate the level set. This can be improved by using a more accurate approx-

imation for derivatives of φ. The idea of upwinding still remains a critical part in

deciding which derivative will be used; however, we focus our effort to improving

the derivative itself. In [90], Harten et al. introduced the notion of essentially

non-oscillatory (ENO) polynomial interpolation of data for the numerical solution

of hyperbolic conservation laws. The basis of the theory was to compute numerical

flux functions using smooth polynomial interpolation [60]. Shu and Osher later im-

proved on the numerical implementation in [91] and [92], in which numerical flux

functions were created from a divided difference table of the pointwise data [60].

This method was extended to Hamilton-Jacobi equations by Osher and Sethian in

[57] which allows for extension of the first-order accurate upwind differencing to

higher-order spatial accuracy. This Hamilton-Jacobi ENO provides us the the abil-

ity to discretize spatial terms in Equation 3.1 to fifth-order accuracy as opposed

to the forward Euler method we use that is only first-order accurate. Temporal

discretization can most of the time be satisfied using the forward Euler method be-

cause temporal truncation errors induce less instability in the solution than spatial

errors. In [93] Min compares the forward Euler, second order Runge-Kutta and a

Gauss-Seidel iteration of the forward Euler as temporal discretization methods. In

[91] Shu and Osher proposed total variation diminishing Runge-Kutta methods to

decrease temporal truncation errors via method of lines which assumes that spatial

and temporal discretization are independent.

5.2.3 Accuracy Metrics and Sensitivity Analysis

Segmentation algorithms, moreover algorithms in general, require a systematic

evaluation to fully understand its strengths, limitations and potential applications

[80]. In this thesis we analyze the performance of the level set algorithm by com-

paring its results to the ground truth volume segmentations performed via stereo

investigator. In general, performance evaluation is a difficult task because a prede-

fined, standard set of metrics does not exist for all algorithms and applications. In

[94], Udupa et al. argue for a performance metric based on accuracy, precision and
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computational efficiency. A comparison of the segmented region’s and the ground

truth region’s overlap via distance metric, e.g. Hausdorff or root mean square,

could provide further insight into the accuracy of the algorithm. Other means of

characterizing overlap include similarity measures such as cardinality of the inter-

section and the total correct fraction [80]. In this thesis we tested the sensitivity of

the two initialization parameters on the segmented volumes. More complex stud-

ies could be performed to determine the most efficient method of selecting initial

parameters and whether the process can be fully automated. In [95], Liasis and

Stavrou present a method for optimizing the initialization in segmenting satellite

images via k-mean classifier.

5.2.4 GPU-based Level Set

Choosing the method for implementing the level set algorithm can be a difficult

process. As with most computer programing challenges, there are many trade offs

one has to consider. These include the programing complexity, computational ef-

ficiency and visualization capabilities. We chose the Matlab environment in this

thesis because of its ease of implementation for the level set and extensive graphics

options. The level set architecture also allows for parallelization which increases

processing capabilities. Future work could focus on rewriting the algorithm to

take advantage of Matlab’s parallel processing toolbox. Furthermore, using gen-

eral purpose computation on graphics processing units (GPU) instead of the central

processing unit would drastically reduce the segmentation time [79], [70]. Lefohn

et al. in [79] present a GPU based algorithm for solving and visualizing level

set solutions at interactive rates and report a reduction in computation time of

more than an order of magnitude when compared to a CPU architecture. In [70],

Mostofi developed a 3D shared memory optimization of the level set algorithm

programmed using the compute unified device architecture on a NVIDIA GPU.

Segmentations obtained using this implementation were achieved at least two or-

ders of magnitude faster than with a Matlab environment. Cates et al. also have

shown that implementing a 3D level set via GPU has significant advantages over

a CPU environment using an innovative mapping for GPU memory management

[80]. Also, they describe how the interactive rates level set algorithm allows for user
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immediate feedback which provides for free parameter tunning and shape control

of the model in real time.



Appendix A
Supplemental Materials

A.1 2D Level Set Equations

∂φ

∂t
= −|∇φ|

[
αD(I) + (1− α)∇ · ∇φ

|∇φ|

]
(A.1)

Dx = (φi+1,j − φi−1,j)/2 D+
x = φi+1,j − φi,j D−

x = φi,j − φi−1,j

Dy = (φi,j+1 − φi,j−1)/2 D+
y = φi,j+1 − φi,j D−

y = φi,j − φi,j−1

(A.2)

∇φmax =



√
max(D+

x , 0)2 + max(−D−
x , 0)2

√
max(D+

y , 0)2 + max(−D−
y , 0)2

 (A.3)

∇φmin =



√
min(D+

x , 0)2 + min(−D−
x , 0)2

√
min(D+

y , 0)2 + min(−D−
y , 0)2

 (A.4)
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∇φ =

{
||∇φmax||2 if Fi,j > 0

||∇φmin||2 if Fi,j < 0
(A.5)

D+y
x = (φi+1,j+1,k − φi−1,j+1,k)/2 D−y

x = (φi+1,j−1,k − φi−1,j−1,k)/2

D+x
y = (φi+1,j+1,k − φi+1,j−1,k)/2 D−x

y = (φi−1,j+1,k − φi−1,j−1,k)/2

(A.6)

n+ =



D+
x√

(D+
x )2+

(
D+x
y +Dy

2

)2

D+
y√

(D+
y )2+

(
D

+y
x +Dx

2

)2

 (A.7)

n− =



D−
x√

(D−
x )2+

(
D−x
y +Dy

2

)2

D−
y√

(D−
y )2+

(
D

−y
x +Dx

2

)2

 (A.8)

H =
1

2
∇ · ∇φ
|∇φ|

=
1

2
((n+

x − n−
x ) + (n+

y − n−
y ))) (A.9)
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