
The Pennsylvania State University

The Graduate School

LOW-COST WIND SENSING FOR DYNAMIC SOARING UAVS

A Thesis in

Aerospace Engineering

by

John Francis Quindlen

c© 2012 John Francis Quindlen

Submitted in Partial Fulfillment

of the Requirements

for the Degree of

Master of Science

August 2012

The thesis of John Francis Quindlen was reviewed and approved∗ by the following:

Jacob W. Langelaan
Associate Professor of Aerospace Engineering
Thesis Advisor

Mark D. Maughmer
Professor of Aerospace Engineering

George A. Lesieutre
Professor of Aerospace Engineering
Head of the Department of Aerospace Engineering

∗Signatures are on file in the Graduate School.

Abstract

Small uavs have tremendous potential in military and civil applications, but are limited by
their size in payload capacity and flight endurance. Extra batteries or fuel can be added to
increase endurance, but at the expense of mission payload. Autonomous soaring techniques
directly inspired by birds extract energy from the environment and offer the ability to increase
uav endurance without sacrificing payload.

Dynamic soaring exploits naturally-occurring spatial wind gradients to gain energy and has
been used by albatrosses to routinely fly hundreds of miles out at sea. This technique requires
precise knowledge of the wind vector and albatrosses are the only birds capable of it due to
specialized sensory organs in their beak nostrils. A flush air data sensing (FADS) system located
on the nose of a soaring-capable uav operates similar to an albatross beak and measures the
aircraft’s orientation with respect to the wind. The approach aims to create a small, versatile,
low-cost sensing system in comparison to the large, expensive, commercial-grade wind sensors
currently available.

The design of the system was developed from potential flow and panel method models. Flush
pressure ports drilled into the surface of a detachable nosecone feed airspeed, angle of attack,
and angle of sideslip measurements to an Arduino microcontroller acting as a programmable air
data computer. The entire FADS system cost less than $130 to construct and instrument, but
still measures the complete wind vector.

Neural networks are implemented to compute the wind vector. Wind tunnel tests collected
training and validation data for airspeeds from 9 m/s to 27 m/s and aerodynamic angles from -15◦

to +15◦. Five neural networks of 3, 9, 15, 30 and 45 neurons were created for each wind parameter
from the training data. Validation results confirm the more complex networks outperform the
simpler 3, 9, and 15 neuron models, although not by considerably more. Ultimately, a 30 neuron
network model is chosen as it performs just as well as the 45 neuron model, but with a simpler
structure.

Numerous flight tests conducted with a FADS equipped sailplane demonstrate the capability
of the system in real world flight regimes. Pilot-induced longitudinal and lateral-directional ma-
neuvers verified the system’s accuracy in dynamic maneuvers and steady glides. The preliminary
flight test results prove the neural network-based FADS system’s ability to accurately compute
the wind vector for use in dynamic soaring research.

iii

Table of Contents

List of Figures vi

List of Tables viii

Acknowledgments ix

Chapter 1
Introduction 1
1.1 Motivation . 2
1.2 Problem Description . 4
1.3 System Overview . 5
1.4 Related Work . 6

1.4.1 Static Soaring . 7
1.4.2 Gust Soaring . 7
1.4.3 Dynamic Soaring . 7
1.4.4 Flush Air Data Sensing Systems . 8

1.5 Contributions . 9
1.6 Reader’s Guide . 9

Chapter 2
Theoretical Background 11
2.1 Problem Statement . 11
2.2 Surface Pressures in Potential Flow . 13

2.2.1 Pressure Differentials . 15
2.3 Summary . 16

Chapter 3
Implementation 17
3.1 Omega II Airframe . 17

3.1.1 Static Pressure Measurement . 18
3.2 Hardware . 19

3.2.1 Hardware Selection . 19
3.2.2 Fabrication . 22
3.2.3 System Layout . 25

iv

3.3 Wind Tunnel Tests . 26
3.4 Comparison to Potential Flow . 29
3.5 Sensor Resolution . 31
3.6 Conclusion . 31

Chapter 4
Surface Pressure to Air Data 34
4.1 Air Data Methods . 34

4.1.1 Neural Networks . 35
4.2 Neural Network Training . 36

4.2.1 Training Method . 38
4.3 Results of Wind Tunnel Based Training . 38

4.3.1 Full Operating Range . 39
4.3.2 Cruise Regime . 39
4.3.3 High Angle Deflections . 42
4.3.4 Network Comparison . 44

4.4 Conclusion . 46

Chapter 5
Gliding Flight Tests 48
5.1 Testing Setup . 48

5.1.1 Sensor Integration . 48
5.1.2 Data Packets . 50

5.2 Neural Network Results . 52
5.2.1 Steady Glide . 53
5.2.2 Longitudinal Response . 54
5.2.3 Directional Response . 56

5.3 Conclusion . 57

Chapter 6
Conclusion 58
6.1 Summary of Contributions . 59

6.1.1 Design of Flush Sensing Nosecone . 59
6.1.2 Neural Network Based Air Data Computer 59
6.1.3 Performance Validation Through Glide Tests 60

6.2 Recommendations for Future Work . 60
6.2.1 Sensor Selection . 60
6.2.2 Testing . 60

Bibliography 62

v

List of Figures

1.1 Various wind sensing techniques. 2
1.2 Static soaring techniques. 3
1.3 Dynamic soaring flight path. 4
1.4 Procellariiform bird beaks. 5
1.5 Omega II sailplane. 6

2.1 Body and wind axes definitions. 12
2.2 2-dimensional view of the hemispherical nosecone with a pressure port at location i. 14
2.3 Pressure coefficients over the hemispherical nosecone model. 14
2.4 Hemispherical nosecone with airflow entering at angle α. 15
2.5 Differential pressure measurements for various port locations. 16

3.1 Panel method model of the Omega II . 19
3.2 Static pressure closeup view . 20
3.3 Honeywell differential pressure sensor. 21
3.4 Freescale differential pressure sensor. 22
3.5 Solidworks model . 23
3.6 Internal view of nosecone shell . 24
3.7 Finished nosecone . 25
3.8 System block diagram . 26
3.9 ArduPilot Mega microcontroller . 27
3.10 The aircraft mounted in the wind tunnel. 28
3.11 Comparison of similar results from 52 and 79 cm wings. 29
3.12 Pressure differentials in wind-tunnel measurements versus potential flow predictions. 30
3.13 Pressure differentials normalized with dynamic pressure measurements. 30
3.14 10-bit versus 16-bit analog-to-digital converter mean readings. 32
3.15 10-bit versus 16-bit analog-to-digital converter standard deviation. 32

4.1 The generalized structure of the airspeed neural network. 36
4.2 Performance of the neural networks for the full range of data at 10 m/s. 40
4.3 Performance of the neural networks for the full range of data at 20 m/s. 41
4.4 Performance of the neural networks for a cruise operating range at 10 m/s. . . . 42
4.5 Performance of the neural networks for a cruise operating range at 20 m/s. . . . 43
4.6 Performance of the neural networks for high angle deflections at 10 m/s. 45
4.7 Performance of the neural networks for high angle deflections at 20 m/s. 46

5.1 The proto-board shield mounted to the ArduPilot Mega. 49
5.2 MediaTek GPS receiver mounted to airframe. 50

vi

5.3 Wind vector output from the neural networks for a steady glide flight test. 53
5.4 Wind vector output from the neural networks for a glide excited with elevator

doublets. 55
5.5 Wind vector output from the neural networks for a glide excited with rudder

doublets. 56

vii

List of Tables

1.1 Properties of various Procellariiform species. 4

3.1 Omega II aircraft properties. 18
3.2 Honeywell differential pressure transducer specifications. 21
3.3 Freescale differential pressure transducer specifications. 21
3.4 ArduPilot Mega microcontroller specifications. 26

4.1 The number of parameters stored in each network. 37
4.2 Root-mean-square error of neural network output. 39

viii

Acknowledgments

I would like to thank my family above all for their support and encouragement over the years.
My earliest memories are of my family fostering my childhood interest in airplanes whether it be
my father taking me to all the Reading and Willow Grove airshows, my grandfather meticulously
building me a C-47 model of his aircraft and then rebuilding it after I thought it could fly, or my
parents trusting my 5 year old self with a hammer to nail blocks of wood together and call it an
airplane. I guess this is just an adult continuation of tossing me that hammer.

I am grateful for my advisor, Dr. Jack Langelaan, and his support over the past years. I’m
always blown away by the way he manages to come up with perfect ideas seemingly on a whim.
His ability to successfully balance on the precarious line between too little and too much oversight
is also beyond me. Through his assistance, I’ve grown to become a clearer, more precise and
thorough thinker both in the lab and outside of it.

All the faculty and staff here at Penn State have been tremendously helpful in many ways.
Dr. Maughmer’s advice and assistance over the past 6 years have always given me better insights.
Sometimes he has pointed out the most obvious things that I could not see myself. Dr. Horn’s
inputs and suggestions for neural network training and modeling saved me needless frustration
and improved my results significantly. Rick Auhl’s help in the wind tunnel testing was invaluable.

I would like to thank my labmates for their assistance during the last two years. All of their
support, research advice, homework help, or sympathetic ears have enabled me to finish this
thesis. I will always consider them some of my strongest friends. How they managed to put up
with me is beyond my comprehension.

In the same vein, a big thanks is due to my friends for dealing with me while I’ve completed
my research work. My friends, both here and at home, always have the presence of mind to know
exactly when I’ve reached the critical mass of stress and need a break. Drinks on me.

Lastly, I would like to thank Dr. Langelaan and the Department of Defense National Defense
Science & Engineering Graduate Fellowship Program for providing funding for my research.

ix

Dedication

To my parents and grandparents.

x

Chapter 1
Introduction

This thesis presents a system for computing the wind vector for use in small, soaring-capable

uninhabited aerial vehicles (uavs). The purpose of this research is to develop a sensing technique

to address guidance and control issues associated with dynamic soaring. Dynamic soaring exploits

naturally-occurring wind shear gradients to extract energy from the environment. This method

can be used to gain or maintain energy to extend of the endurance of small uavs, especially for

unpowered gliders. Small uavs are defined as aircraft with wingspans less than 5 meters and a

total mass below 10 kilograms. Dynamic soaring offers enormous potential, but requires precise

knowledge of the wind for successful application.

There are many different techniques for sensing the wind vector from an aircraft. Multi-holed

probe configurations extending into the freestream airflow are frequently used, as are wind vanes

for measuring local wind angles on the aircraft [1]. Probes and vanes are the most common,

but other techniques such as null pressure swiveling heads and trailing cones can be used to

measure wind parameters. Figure 1.1 illustrates some of these different sensing configurations.

These methods are mostly intended for use on manned aircraft or comparably sized uavs and

are therefore large, expensive, and susceptible to damage when compared to a small uav. Flush

sensing systems present another solution without these issues. Flush pressure ports keep the

sensing system internal to the aircraft, or at most to the surface of the airframe. The pressure

measurements taken from the ports can then be coupled with a computational method to calculate

the wind vector.

This thesis will:

• Provide the background for pressure sensing over an aircraft nosecone. Potential flow

equations are used to predict pressure ranges over a nosecone.

• Design and implement a nosecone and sensing system using low-cost Arduino board and

sensor components.

• Present wind tunnel results taken with measurements from the nosecone system.

2

(a) 5 Hole Probe (b) Swivel Point Head [2]

(c) Wind Vane [2] (d) Trailing Cone [1]

Figure 1.1. Various wind sensing techniques.

• Develop a neural network based approach to compute airspeed, angle of attack, and angle

of sideslip. The wind tunnel measurements are normalized and adapted to train networks

for each of the wind parameters.

• Apply the neural networks to flight tests with the aircraft and completed system. The

performance of the networks with the real-world data is presented and discussed.

1.1 Motivation

Small uavs offer tremendous potential applications to both civil and military missions due to their

small footprint. These aircraft are often hand-launchable, difficult to detect, and are generally

low-cost and expendable. They have opened up new applications previously impossible with

large manned aircraft, like urban search and rescue or flight through forests. Due to their small

nature, these uavs are also limited in their useful payloads. After the necessary autopilot and

onboard flight control systems, there is only a tiny fraction of the space available for payload and

batteries or fuel. This lack of fuel limits the endurance of the vehicles to a span of a few minutes

to an hour or two at most. Fuel and battery space can sometimes be added, but at the cost of

payload capacity for sensors, cameras, and other mission equipment.

3

Autonomous soaring techniques can be applied to small uavs to extend their endurance

without sacrificing mission payload. The various soaring methods exploit naturally occurring

air and wind phenomena to extract energy from the environment. These techniques take their

inspiration from nature as they have been successfully demonstrated for thousands of years by

birds.

Static soaring is the most common and widely known technique which utilizes upwards moving

regions of air to gain altitude. Birds and sailplane pilots routinely rely upon thermal soaring

in regions of rising warm air to remain aloft for extended periods of time. A perfect example

can be readily observed on warm days as hawks circle over fields, roads, or parking lots without

ever flapping their wings. In addition to thermal soaring, sailplanes can use ridge soaring to take

advantage of rising air on the windward side of ridges for lift. Certain areas downwind of tall

mountains can be used as a source of lift for mountain wave soaring. All of these methods use

known sources of rising air to gain energy, as illustrated in Figure 1.2.

(a) Thermal Soaring [3] (b) Ridge Soaring [3] (c) Mountain Wave Soaring [3]

Figure 1.2. Static soaring techniques.

A less common energy harvesting technique is gust soaring. Gust soaring methods use tem-

poral gradients from random wind gusts as a source of energy [4]. A gust soaring aircraft must

be able to quickly sense and respond to changes in wind speed and direction indicative of a gust

without prior knowledge. Gust soaring techniques involve rapid changes in pitch rate with the

gust, which make it difficult to implement on manned aircraft; however, birds appear able to

employ gust soaring [5].

Dynamic soaring exploits shear layer gradients to harvest energy from wind. Though it is

commonly used at low altitude shear layers near the surface of the Earth, dynamic soaring can

be used anywhere a spatial wind gradient exists. During dynamic soaring, the bird or aircraft

climbs into the wind, upwards through the gradient, before descending with the tailwind back

through the shear layer with a negative flight path angle. The flight path can be completed as a

continuous oval shape, or traverse across the wind in the manner seen in Figure 1.3.

While the potential of dynamic soaring is clearly understood, it is not as widely used as static

soaring techniques for both aircraft and birds. Pilots of manned aircraft are wary to fly the tight

turns required for dynamic soaring, especially at extremely low altitudes. Very few birds are seen

dynamic soaring either. According to Pennyquick [7], the only birds to demonstrate dynamic

soaring are albatrosses and petrels of the Procellariiform order. With their unconventional flight

technique, these birds routinely fly hundreds of kilometers without flapping their wings, unlike

4

Figure 1.3. Dynamic soaring flight path. The aircraft begins dynamic soaring at point 1 when it climbs
into the direction of the wind. After bursting through the shear layer, the aircraft turns around and
dives back through the layer until it bottoms out at point 2. This process can then be repeated as long
as the shear layer exists. [6]

most birds. The size and weight of some Procellariiform species are listed in Table 1.1. Radio-

controlled aircraft pilots have also successfully demonstrated dynamic soaring in the shear layers

downwind of hills. The success of the R/C pilots proves the feasibility of autonomous dynamic

soaring. This type of energy harvesting method could easily be adapted as a solution to the

limited endurance of small uavs.

Table 1.1. Properties of various Procellariiform species [7].

species mass (kg) span (m) chord (m) area (m2) AR
Wandering Albatross 8.46 3.01 0.197 0.592 15.3

Black-browed Albatross 3.08 2.19 0.162 0.354 13.5
Grey-headed Albatross 3.68 2.18 0.153 0.334 14.2
White-chinned Petrel 1.08 1.41 0.118 0.167 11.9

1.2 Problem Description

Dynamic soaring has obvious potential that makes it desirable for implementation on small uavs.

For autonomous dynamic soaring to successfully work; however, the autopilot requires precise

knowledge of the aircraft’s orientation in relation to the wind. The aircraft must constantly

change lift coefficient, airspeed, and bank angle to perform the necessary maneuvering. This also

requires noticeable amounts of crab angle to keep the aircraft aligned with the wind vector, a

difficult task to perform without knowledge of the wind direction and speed [8].

While many birds employ thermal soaring, very few species are observed dynamic soaring.

5

In fact, out of all the species of birds, only certain species of albatrosses and petrels within the

Procellariiform order are capable of dynamic soaring [9]. Pennyquick [7] proposes that this is due

to a particular adaption that only the Procellariiform order possesses: tubular nostrils. These

special nostrils allow them to measure their exact airspeed from dynamic pressure. The nostrils

on the front of the beak act as pitot tubes for total pressure while sensory glands within their

mouths act as static pressure sensors. The Diomedeidae family of larger birds have two nostrils

on either side their beaks, which Pennyquick concludes are also capable of sensing yaw angles.

These natural adaptations are what enable the Procellariiform species to successfully exploit the

wind gradients. In order for a small aircraft to harvest energy in this manner, it must possess

the same sensing capabilities of the petrels and albatrosses.

(a) Wandering Albatross [10] (b) Giant Petrel [11]

Figure 1.4. Procellariiform bird beaks. The Wandering Albatross displays two nostrils on either side
of the beak while the Giant Petrel has a single large nostril on top of the beak.

1.3 System Overview

The wind sensing system developed in this thesis is meant to be implemented along with a

fully capable autopilot for dynamic soaring research. The sensing system can also be used for

standalone measurements in a piloted R/C aircraft. An aircraft can easily fly without knowledge

of the complete wind vector, but it will not be capable of autonomous dynamic soaring. The wind

vector information provided by the system is intended to become the enabling factor allowing

the flight computer to perform the necessary control decisions.

The aircraft being used for the soaring research is an Omega II 2-meter sailplane with a mass

of 1.2 kilograms. The aircraft was originally built as a motor glider equipped with an electric

motor, although this has been removed. The sailplane is equipped with a V-tail empennage,

with ruddervators for both pitch and yaw control. Roll control is accomplished with outboard

ailerons while inboard flaps are used to slow the airplane for landing. The unmodified aircraft is

shown in Figure 1.5. Additional aircraft parameters are located in Table 3.1.

6

Figure 1.5. Omega II sailplane.

Right in line with the beaks of albatrosses, pressure measurements around the aircraft are

used to determine wind axes and speed. Flush pressure ports located on the nose and fuselage

detect changes in wind speed and direction with differential readings between ports. Flush air

data systems (FADS) minimize the external footprint of the sensing system and protect the

components by keeping everything internal to the airframe. This is especially important for the

Omega II uav because it lands on its belly and rough landings are almost inevitable.

The differential pressure readings from the flush ports are converted to the wind vector using

computational methods. For this research, neural networks are used to calculate airspeed (Va),

angle of attack (α), and angle of sideslip (β). Other methods such as lookup tables or curve

fitting functions could be used, but neural networks are chosen for their ease of use, especially

for complex systems. The output from the neural networks can then be directly used by the

autopilot for dynamic soaring control.

1.4 Related Work

There has been a multitude of research endeavors into autonomous soaring, air data sensing,

and neural network models. Each aspect has seen extensive research within various subfields and

applications. Autonomous soaring has an active research focus and generally breaks down into

three categories corresponding to static, gust, and dynamic soaring.

7

1.4.1 Static Soaring

Thermal, ridge, and mountain wave soaring techniques each have an extensive collection of

literature analyzing feasibility and optimal solutions. Chakrabarty and Langelaan combine these

three soaring methods together and apply them to path planning for energy harvesting with

gliders [12]. The path planning methods utilize regional wind fields measured above central

Pennsylvania to plan autonomous soaring flights incorporating ridge and wave flight.

Flight test results of autonomous static soaring have proven the capabilities of thermals for

energy harvesting. Allen and Lin [13] investigated thermal identification and exploitation with

the Cloud Swift small uav. They recorded multiple flights over 60 minutes in length using

thermal soaring on the uav. Andersson et al. [14, 15] have also flight tested thermal centering

controllers based upon energy estimation. The SBXC glider, the same model as the Cloud Swift,

made numerous flight tests with a switch mode enabled for thermal recognition. Lastly, Edwards

and Silverberg [16, 17] used an SBXC-based ALOFT uav to identify thermals and implement

MacCready’s Speed-to-Fly theory on a small uav. The ALOFT uav was able to stay airborne

for 3.5 hours in autonomous soaring mode. The aircraft also placed 3rd in the Montague Cross

Country Challenge against expert R/C glider pilots. These flight test demonstrations have all

proven the feasibility and worth of static soaring for use with small uavs.

1.4.2 Gust Soaring

Autonomous gust soaring has also been successfully demonstrated with small uavs. Depenbusch

and Langelaan [5] examined gust soaring with a receding horizon controller to compute pitch

rates necessary for energy harvesting. Their work simulated gust and thermal soaring using an

Omega II 1.8-meter sailplane, similar to the slightly larger Omega II used herein, and observed

distinct energy savings possible with such an aircraft. Patel et al. [18] flight tested a gust soaring

capable small uav and recorded consistent results for both simulation and test data. Their

simple, low cost uav demonstrated energy savings of 36% in simulation and 46% in autonomous

soaring flight tests. These results solidify the potential performance improvements possible with

gust soaring techniques.

1.4.3 Dynamic Soaring

Just like all soaring techniques, dynamic soaring got its inspiration from birds. The phenomena

was first scientifically described by Lord Rayleigh in 1883 [19]. Ocean-going petrels and alba-

trosses have been widely observed dynamic soaring across the ocean in the separated regions

behind the crests of large waves as described by Pennyquick [7]. As mentioned before, only the

Procellariiform order is observed dynamic soaring. Pennyquick proposes that these are the only

types of birds capable due to their unique nostrils that act as sensitive pitot tubes. Other birds

possess nearly identical wing and size features, but do not have tubular nostrils and are not

seen dynamic soaring. The soaring-capable petrels and albatrosses use this technique to traverse

hundreds of kilometers out at sea, shown by Sachs et al. [20]. Sachs’ GPS loggers attached to

8

albatrosses have demonstrated that the birds are even capable of penetrating into the wind using

dynamic soaring alone. These long flights show the potential for extended cross country flights

with dynamic soaring methods.

The success of the albatrosses inspired research investigations into dynamic soaring techniques

for small uavs. The similar size and weight between small uavs and Procellariiform birds make

dynamic soaring an attractive solution to extending aircraft endurance. Sukumar and Selig [8]

analyzed dynamic soaring over sample fields in the mid-western United States using a 3-meter

sailplane. They compared the uav flight path results to albatross paths and concluded that

energy harvesting would be feasible with a small uav. Sachs and da Costa [6] explored the

use of jet streams at high altitudes for dynamic soaring. High altitude shear layers offer much

higher wind speeds and pronounced shear layers that might be exploited. Meanwhile, both

Zhao and Qi [21, 22] and Deittert et al. [23, 24] took a different approach from bird soaring.

They formulated optimal control patterns featuring engine-assisted as well as unpowered soaring

strategies. In both cases, the level of success was strongly dependent upon wind gradient and

speed. Lawrance and Sukkarieh [25, 26] combined static and dynamic soaring approaches to

explore a hybrid soaring technique. All of this research focused on dynamic soaring methods

with small uavs and predicted potential energy savings for long duration flight.

While all these papers demonstrated the feasibility and optimal control solutions to dynamic

soaring, there has not been the same level of flight test validation in small uavs that there has been

with autonomous thermal and gust soaring. This does not mean aircraft have not successfully

employed dynamic soaring before. Radio-control pilots routinely reach high speeds dynamically

soaring on the backsides of hills. Gordon [27] implemented dynamic soaring in manned L-

23 gliders above the desert. His pilots used 5-hole probes for precision feedback and control,

although safety and airframe limitations reduced the effectiveness of the techniques. Manned

aircraft are severely restricted by the necessary precautions, but small uavs are ideally suited

for dynamic soaring. Deittert et al. [24] acknowledged that dynamic soaring implementation

requires advances in flight control and sensing in order to be successful. Such sensors could

also prove useful to other flight aspects, such as gust soaring [4]. These sensors would need to

accurately measure wind speeds to estimate the wind gradient and determine the optimal path.

The previous research in dynamic soaring has proven its feasibility but issues in sensing and

control must be addressed before extensive implementation can occur.

1.4.4 Flush Air Data Sensing Systems

A variety of methods can be used for wind vector sensing on an aircraft or rotorcraft. Figure 1.1

illustrates some of the common approaches. Flush air data sensing (FADS) systems are a par-

ticular method based upon pressure measurements at locations on the surface of the aircraft.

This technique has an extensive background of research available. NASA research reports [28,29]

designed flush systems for air data measurements onboard the Space Shuttle and X-33 space ve-

hicles during re-entry where traditional techniques were not feasible. Later flight tests validated

9

the FADS technique with manned aircraft like the F-14 [30] and KC-135 [31] military aircraft.

These results demonstrate the feasibility of a FADS approach for accurate measurement of the

wind axes, even in fast, maneuvering flight.

Later research implemented neural networks alongside FADS systems with notable success.

The networks were employed to compute aircraft parameters from the FADS measurements.

Crowther and Lamont [32] explored different pressure port configurations over a generic stealth

fighter fuselage. Neural networks were used to computer V, α, and β given wind-tunnel training

data. Calia et al. [33] calculated static pressure and Mach number for a M-346 jet trainer using a

FADS system and neural networks. The networks were trained and validated using wind tunnel

tests on the front of the aircraft and demonstrated success when applied in flight tests of the

system. Rohloff et al. [34] employed a FADS on the nosecone of an F-18 to compute wind

parameters. Neural networks were specifically chosen in this case because they can handle large

sets of test data and did not require explicit knowledge of the airflow model. The success of these

flight tests show the capability of FADS sensing in a real-world environment.

While this research in neural network based FADS systems proves the accuracy of the ap-

proach, they have all been implemented in large, fast air vehicles with expensive instrumentation.

Few papers look at adapting this method for use in smaller aircraft. Meanwhile, the commercial-

grade sensors available for small uavs tend to protrude outward from the aircraft and cost more

than the aircraft itself [2]. The FADS approach from the larger aircraft can be scaled down in

the hope of creating small, accurate, low-cost wind sensors. A similar application has been used

before by Samy et al. [35] for FADS on the leading edge of a micro air vehicle wing. Their neu-

ral network FADS successfully worked for angle of attack sensing at low airspeeds. A modified

nosecone incorporating a FADS would employ the same principles and prove indispensable for

small autonomous gliders.

1.5 Contributions

The primary contributions are described below:

• Design and implementation of a low-cost flush air data sensing nosecone for measuring

differential pressure around a small uav.

• Creation of neural networks for computing airspeed, angle of attack, and angle of sideslip.

The networks are trained using wind-tunnel test data from the FADS nosecone.

• Performance verification of the wind sensing system through sample flight tests of the

aircraft. Specific maneuvers are performed to test the expected dynamic response of the

system.

1.6 Reader’s Guide

The remainder of the thesis is organized as follows:

10

• Chapter 2 describes the theoretical background of the nosecone. Potential flow models

are used to demonstrate the feasibility of the system.

• Chapter 3 presents the hardware implementation of the nosecone. The fabrication and

hardware selection processes are shown. Wind-tunnel tests collect pressure data for the air

data computer.

• Chapter 4 defines the neural network models employed for the sensing system. The wind-

tunnel surface pressures are used to train the neural networks to output the relevant air

data.

• Chapter 5 applies the neural networks trained for the air data computer to various pilot

controlled glide tests for validation.

• Chapter 6 reviews and concludes the work. Suggestions and improvements for future

research are included.

Chapter 2
Theoretical Background

The chapter provides the theoretical background used to analyze the pressure measurements over

a nosecone and prove the feasibility of the flush air data sensing method. Section 2.1 describes the

components required to define a complete wind vector and wind sensing system. The location of

the FADS system is discussed in the section as well. In Section 2.2, the nosecone location of the

FADS system is approximated as a hemisphere and a spherical potential flow model is applied.

The surface pressures over the nosecone are calculated in this section and the feasibility of such

a system is argued. The results from Sections 2.1-2.3 directly influence the work presented in

Chapter 3.

2.1 Problem Statement

The objective of the wind sensing system is to determine the wind vector on a glider for use by

a dynamic soaring controller. Dynamic soaring techniques for extracting energy from naturally-

occurring wind gradients offer huge potential for extending the endurance of small uavs. In order

to be successful, these techniques require precise knowledge of the aircraft’s speed and orientation

in the wind field. A practical wind sensor must provide airspeed and angles of attack and sideslip

to the soaring controller with adequate accuracy and precision to meet those requirements. The

dynamic soaring controller will then use the wind measurements to estimate the wind gradient

of the shear layer.

Many different forms of wind sensing techniques exist, but the nature of small uavs limits

the size and weight than can be appropriated to an air data system. For this reason, a flush

air data system presents the best method for implementation on a small, gliding uav. Flush air

data sensing uses pressure measurements taken on the surface of the aircraft to compute aircraft

parameters, namely, the wind axes in this situation. FADS pressure ports located along the

aircraft measure changes in airflow as the aircraft maneuvers and the wind field varies. These

measurements correspond to the aircraft’s orientation and are passed to the air data computer

12

to obtain Va, α, and β.

The wind axes parameters are defined in Figure 2.1 along with the body axes. The wind

velocity vector can be broken into the body axes components U ′, V ′, and W ′ in Equations

2.1-2.4:

U ′ = Va cos(α) cos(β) (2.1)

V ′ = Va sin(β) (2.2)

W ′ = Va sin(α) cos(β) (2.3)

Va =
√

(U ′)2 + (V ′)2 + (W ′)2 (2.4)

The airspeed, Va, is the magnitude of the velocity vector while α defines the angle in the XZ

plane projection and β defines the angle in the XY plane projection.

Figure 2.1. Body and wind axes definitions.

The flush sensing system must be designed in a way to minimize weight and necessary equip-

ment within the small airframe while still providing the accuracy required by the soaring con-

troller. In order to reduce the weight, only a small number of flush pressure ports can be used, so

these ports must be arranged to produce the largest pressure differentials between them. Large

pressure differences will only improve the accuracy of the pressure sensors. If the difference be-

tween the measurements is too small, only specialized, expensive transducers will be capable of

13

detecting changes with any sort of accuracy.

The ideal location for the FADS system is the aircraft’s nosecone. This location is the easiest

area to implement the air data system as it takes advantage of existing mounting points on

the airframe. Previously, the aircraft’s spinner had been located at this location before it was

removed, leaving four open screw holes in the firewall. These holes can definitely be used for

mounting the nosecone. The nosecone location also keeps the pressure ports out of other regions

of the aircraft that are more susceptible to separated or disrupted airflow. Generally, the nosecone

ports will always receive laminar, undisrupted flow at the front of the aircraft in comparison to

wing or fuselage mounted ports on the far side of the fuselage during a crosswind. If the crosswind

is too strong, the fuselage or wing ports will be noticeably affected while the nosecone ports will

not. These advantages make the nosecone a desirable location for the FADS system.

A main advantage of the the nosecone location is the fact that the nosecone can be accurately

approximated as a hemisphere. This allows a spherical potential flow model to estimate the

surface pressures around the nosecone. This approach has been used before to estimate pressure

when Samy et al. [35] used spherical potential flow models to analyze different FADS pressure port

arrangements for fuselage and wing leading edge air data sensing. The potential flow equations

will give a surface pressure difference between the ports and determine the feasibility of using

the nosecone for air data sensing before any implementation.

2.2 Surface Pressures in Potential Flow

The nosecone is approximated as a hemisphere and analyzed with a spherical potential flow

model. Since differential pressures are used to determine angle of attack and angle of sideslip,

determining port locations that maximize pressure differential for a give angle will allow the

design of a system with maximum sensitivity. The pressure at any point on the surface of the

nosecone is modeled as:

Ps = P∞ + q∞

(
1− 9

4
sin2 θ

)
(2.5)

where Ps is the surface pressure, P∞ is the freestream static pressure, q∞ is the freestream

dynamic pressure, and θi is the angle from the stagnation point on the front of the sphere to the

location i on the sphere. A 2-dimensional layout is seen in Figure 2.2. The nondimensionalized

static pressure coefficients over the surface of the hemisphere are given in Figure 2.3.

Next, the pressure differentials between two pressure ports are identified. The surface pressure

at a single port is already listed in Equation 2.5 and this can now be expanded to include two

pressure ports. The differential pressure readings between these ports at various flow angles is

defined in Equation 2.8.

Ps1 = P∞ + q∞

(
1− 9

4
sin2 (θ + α)

)
(2.6)

14

Figure 2.2. 2-dimensional view of the hemispherical nosecone with a pressure port at location i.

−100 −50 0 50 100
−1.5

−1

−0.5

0

0.5

1

Theta (deg)

P
re

ss
ur

e
C

oe
ffi

ci
en

t

Figure 2.3. Pressure coefficients over the hemispherical nosecone model.

Ps2 = P∞ + q∞

(
1− 9

4
sin2 (θ − α)

)
(2.7)

ΔP = Ps1 − Ps2 = −9

4
q∞ sin (2θ) sin (2α) (2.8)

Pressure ports 1 and 2 are set to mirror locations at angle θ from the centerline of the nosecone.

The wind flows over the nosecone at incidence angle α in the same plane as the two ports. In this

case, angle of attack α is shown, but the same equations apply to β just the same. Figure 2.4

depicts a 2-dimensional view of the hemispherical nosecone with multiple ports.

The port location θ angle that results in the largest pressure differentials can be found through

the derivative of Equation 2.8, seen in Equation 2.9.

∂ (ΔP)

∂θ
= −9

2
q∞ cos (2θ) sin (2α) (2.9)

15

Figure 2.4. Hemispherical nosecone with airflow entering at angle α.

Assuming nonzero q∞ and α, the θ portion of the equation, cos (2θ), reaches zero at θ = 45◦.

This corresponds to the maximum pressure difference between ports. Therefore, the potential

flow model suggests the pressure ports should both be set to θ = +/- 45◦, or 90◦ apart from each

other, to give the largest pressure differential and subsequent sensitivity.

Another useful insight from Equation 2.8 demonstrates that nondimensionalized readings for

the pressure differential between ports are independent of dynamic pressure. When the differen-

tial pressure readings are divided by dynamic pressure, the resulting relation is independent of

airspeed, assuming angle of attack doesn’t change:

ΔP

q∞
= −9

4
sin (2θ) sin (2α) (2.10)

While it doesn’t appear too important by itself, this relation in Equation 2.10 can be used to

compare real pressure measurements to the potential flow model predictions. Even without

knowing the actual values, the same general behavior by wind tunnel or flight test measurements

would validate the applicability of the potential flow model for surface pressure measurements.

2.2.1 Pressure Differentials

Differential pressure values are plotted in Figure 2.5 for three separate port locations of θ =15◦,

30◦, and 45◦. The airspeeds used for the surface pressure measurements are 15 m/s and 25 m/s,

which fall well within the 10 - 30 m/s nominal operating range of the Omega II sailplane. Angular

deflections from 0◦ ≤ α ≤ 20◦ cover the maximum angles in a single direction the aircraft is likely

to encounter.

In practice, the angle of attack will probably never exceed α = +/- 10◦, with an even smaller

range for angle of sideslip. At these lower angles, the port location of θ = 45◦ produces signif-

icantly lower pressure differentials than seen in the upwards limits of Figure 2.5. At angle α =

10◦, the pressure difference drops to 106 Pa at 15 m/s and 295 Pa at 25 m/s. These pressure

differentials are definitely within the capabilities of available sensors. At α = 1◦, the difference

16

0 5 10 15 20
0

20

40

60

80

100

120

140

160

180

200

Angle of Attack (deg)

D
iff

er
en

tia
l P

re
ss

ur
e

M
ea

su
re

m
en

t (
P

a)

Theta = 15
Theta = 30
Theta = 45

(a) Differential pressure at 15 m/s.

0 5 10 15 20
0

100

200

300

400

500

600

Angle of Attack (deg)

D
iff

er
en

tia
l P

re
ss

ur
e

M
ea

su
re

m
en

t (
P

a)

Theta = 15
Theta = 30
Theta = 45

(b) Differential pressure at 25 m/s.

Figure 2.5. Differential pressure measurements for various port locations.

falls to 11 Pa at 15 m/s and 30 Pa at 25 m/s. The low differentials at this angle are more difficult

to accurately measure with pressure sensors than the higher angles. Angles near 0◦ will push

the limits of the sensors’ capabilities, but overall, the measurements suggest air data sensing is

possible using flush pressure ports.

2.3 Summary

The air data system must compute Va, α, and β to determine the wind vector in relation to

the aircraft. These wind components will then be sent to the dynamic soaring controller to

estimate the wind shear gradient and aerodynamic parameters. Flush air data ports offer a

desirable method to measure the wind parameters, but only if the pressure differentials between

ports are large enough to be accurately measured by pressure transducers. The nosecone of the

aircraft is approximated as a hemisphere and a spherical potential flow model is then used to

calculate the surface pressure measurements. This enables an accurate prediction of the pressure

differentials between various port locations. The results of the surface pressure differences confirm

the nosecone and a FADS system are a feasible method for measuring the wind vector.

Chapter 3
Implementation

This chapter details the physical implementation of the flush air data sensing system and its

components. The results from the potential flow analysis in Chapter 2 form a basis for the

design and configuration of the pressure ports. Section 3.1 discusses the Omega II airframe and

the requirements it places on the FADS. An XFLR model of the aircraft is developed to place

a static pressure port to obtain dynamic pressure readings. In Section 3.2, the hardware used

for the system is described. The fabrication process of the nosecone is detailed along with the

selection of the pressure transducers and air data computer. The nosecone developed in Sections

3.1 and 3.2 can then be tested to collect pressure data.

Sections 3.3-3.5 cover the wind tunnel testing process and the pressure measurements collected

during the tests. The wind tunnel testing procedures are described in Section 3.3. The resulting

pressure measurements are compared against the potential flow model in Section 3.4. In Section

3.5, the resolution of the onboard analog-to-digital converter (ADC) is verified against an external

ADC to confirm the sensitivity of the pressure measurements. These wind tunnel measurements

from Section 3.3 can be used to train neural networks in Chapter 4.

3.1 Omega II Airframe

The Omega II aircraft used for the dynamic soaring research has a mass of 1.2 kg with a 2-

meter wingspan. The main fuselage is made of carbon fiber with some plywood reinforcements

in critical locations inside the fuselage. Originally, the aircraft was equipped with an electric

motor for powered self-launches, although this has been disconnected and removed. The aircraft

is also equipped with a V-tail empennage rather than a conventional tail. The specific Omega II

aircraft is pictured in Figure 1.5 and the relevant aircraft specifications are listed in Table 3.1.

The Omega II airframe includes a number of features that ease the implementation of a FADS

nosecone. Most notably, the aircraft’s front fuselage section is readily adaptable. Before it was

disconnected, the electric motor mounted to a plywood firewall at the front of the fuselage. This

18

Table 3.1. Omega II aircraft properties.

variable value (units) description
m 1.2 (kg) mass
b 1.989 (m) wing span
c 0.1532 (m) mean aerodynamic chord
S 0.3046 (m2) wing area
xcg 0.0572 (m) c.g. location behind wing leading edge

left four 2.5 mm through-holes for screws and a 10 mm center hole. These holes can easily be

adopted to securely mount the nosecone and run pressure tubes back into the fuselage. The loss

of the heavy electric motor also freed up weight in the nose for the FADS system. The weight

distribution already assumed the motor’s significant mass in the front, so the location of the

FADS system actually helps alleviate a weight and balance problem rather than add to it. The

spinner for the propeller can also be used as a template for the nosecone shape. The 3 1
4 cm long,

4 cm diameter cone is narrower and shorter than desired, but serves as a good starting point for

the nosecone shape. These aspects from the electric motor system will prove useful in the design

of the prototype nosecone configuration for the FADS system.

The only real downside associated with a FADS system is the propeller can’t be employed on

the front of the aircraft since the motor and spinner are replaced. This restriction will not scuttle

the effort because the glider is capable of hi-start launches, which use elastic tubing staked to

the ground to slingshot the aircraft airborne. Hi-start launches enable the unpowered Omega

II to match the altitudes the self-launching version can reach, although it does eliminate the

possibility of semi-powered dynamic soaring. While the ability to power launch is lost, a FADS

equipped Omega II is fully capable of efficient dynamic soaring.

3.1.1 Static Pressure Measurement

Pressure ports distributed over the nosecone are a feasible method for sensing pressure differen-

tials at various flow angles, but they can’t be used to measure static pressure. A pressure port on

the front of the nosecone could measure the total pressure, but a static pressure measurement is

necessary to obtain dynamic pressure and subsequently compute airspeed. Static pressure read-

ings also give the air density when combined with static temperature readings. Since pressure

ports located on the nose are not capable of static pressure measurements, static ports will have

to be set at some other location along the aircraft.

A new model of the entire Omega II aircraft is created using XFLR5 aircraft analysis software.

XFLR5 employs panel method models to incorporate the contributions of the fuselage. Although

this program is not intended for complex analysis of the fuselage like a Computational Fluid

Dynamics model, it does give a clear prediction of the best regions for the placement of pressure

ports. The XFLR5 model is pictured in Figure 3.1.

The best static port location appears to be slightly in front of and below the main wing. This

area has a static pressure coefficient of Cp = -0.08, which is the closest to Cp = 0.0 in the entire

19

Figure 3.1. XFLR5 model of the Omega II at an airspeed of Va = 10 m/s and α,β = 0◦. Note: the
visible static pressure coefficient values range from Cp = +0.20 (red) to Cp = -0.20 (blue).

front fuselage area. The pressure coefficient value also remained roughly constant for angles of

attack from −5◦ < α < +5◦ and airspeeds 10 m/s ≤ Va ≤ 20 m/s. Other areas on the aircraft

might be slightly closer to Cp = 0.0, but limiting the ports to the front fuselage clusters the FADS

equipment close together and prevents pressure tubes from running all over the fuselage. The

slight bias in Cp measurements can also be calibrated out in the air data computer. A closeup

of the region of interest can be seen in Figure 3.2. Rather than a single port, two ports at the

same location on either side of the fuselage are employed. These can be averaged together to help

remove the effects of sideslip angles on pressure readings. The static pressure is then obtained

from these two ports and used in conjunction with total pressure and other readings.

3.2 Hardware

The results from Chapter 2 and Section 3.1 form the basis to produce a functional FADS nosecone

and air data computer. First, the information is used to select appropriate pressure transducers

to convert surface pressures into electrical signals. A physical prototype nosecone can then be

created and connected to the transducers. The output signals are sent to an Arduino micro-

controller acting as the air data computer. This combination forms a complete wind sensing

system.

3.2.1 Hardware Selection

The surface pressure values must be measured using some form of pressure sensor. For this

purpose, the system relies upon pressure transducers to convert the pressure measurements into

electrical signals. There are two main types of applicable pressure transducers: single port

20

Figure 3.2. Closeup view of the region around the static pressure port location on the Omega II
fuselage. Note: the visible static pressure coefficient values range from Cp = +0.20 (red) to Cp = -0.20
(blue).

transducers and dual port, differential pressure transducers. In a single port transducer, only

one pressure measurement from the pressure port is output. A differential pressure, dual port

transducer measures the difference between two pressure ports and outputs that difference. The

actual readings from both ports are not seen in the output, only the difference between them.

The advantage of using a differential pressure sensor is the space and approximate cost can be

halved with fewer transducers. Most of the surface measurements are not useful by themselves

anyways, as only static pressure can be used independently elsewhere. For these reasons, the

wind sensing system relies upon dual port, differential pressure transducers.

Two differential pressure transducers were considered for use in the sensing system: Honeywell

HSCDRRN002NDAA3 and Freescale MPXV7002DP. The Honeywell sensor is a high performance

sensor with an operating range from +/- 500 Pa. This falls right in line with the maximum

pressure differentials expected at α = 15◦and Va = 30 m/s. The full specifications are listed

in Table 3.2 and Figure 3.3 shows the sensor. Due to the higher performance, the Honeywell

transducer has a limited availability and a relatively high cost of $51.25 per sensor at Digi-

Key [36] or even higher at other distributors. This sensor possesses the capabilities needed for

the wind sensing system, but at an increased cost.

The other pressure transducer considered is a Freescale MPXV7002DP. These sensors have

been successfully used before in wind vector sensing system in the same manner [37, 38]. Spec-

ifications of the sensor are seen in Table 3.3 and the sensor is pictured in Figure 3.4. The real

advantages of the Freescale transducer is its simplicity, wide availability, and low cost. The sen-

sor is available at multiple distributors online, like DIY Drones, for a cost of $20 each [39]. The

sensors are also self contained breakout boards that can be cheaply replaced when one is damaged

or destroyed. The downside of them is their 2 kPa range is too broad for the pressure values

21

Table 3.2. Honeywell HSCDRRN002NDAA3 differential pressure transducer pertinent specifications.

parameter value (units)
price $51.25

operating range +/- 500 (Pa)
supply voltage 3.3 (V)
supply current 1.6 (mA)
signal output 0.33 - 2.97 (V)
accuracy 0.066 (V)

response time 0.46 (ms)

Figure 3.3. Honeywell HSCDRRN002NDAA3 differential pressure sensor [36].

seen by the nosecone. While the sensors will still detect the entire range of pressure changes,

sensors with a smaller 500 Pa range like the Honeywell transducer will generally produce a better

resolution than this sensor with a very broad range of pressure values. Despite this, the Freescale

differential sensors have established success for use in wind vector sensing techniques.

Table 3.3. Freescale MPXV7002 differential pressure transducer pertinent specifications.

parameter value (units)
price $19.99

operating range +/- 2000 (Pa)
supply voltage 5 (V)
supply current 10 (mA)
signal output 0.5 - 4.5 (V)
accuracy 0.1 (V)

response time 1 (ms)

Ultimately, the Freescale differential transducers are chosen based upon their low cost and

proven track record. The Honeywell sensors fit the pressure operating range more closely, but

at 250-300% the cost of Freescale sensors. The purpose of the nosecone FADS system is to

replace expensive $5000 probes for use on a $400 sailplane, so cost should be kept low. The

previous work with the Freescale sensors has shown them to be not only capable, but rugged and

22

Figure 3.4. Freescale MPX7002DP differential pressure sensor [39].

interchangeable. With the belly landing Omega II, the cost of replacing sensitive transducers

would rise extremely quickly. Despite the loss in performance, the Freescale sensors are used in

the wind vector system to measure differential pressure.

3.2.2 Fabrication

The spinner from the electric motor was used as a template for the prototype nosecone. The

hemispherical shape of the potential flow model was stretched into a curved conical shape with

a 4 1
8 cm diameter and 4 cm length. Because of the small size, only five pressure ports could

feasibly fit on the nosecone. One of the ports is placed at the tip of the nose with the remaining

four distributed over the rest of the nosecone. The stretched shape also required the pressure

ports to be moved forward from the location at θ = 45◦ to θ = 38◦. This should not have too

much effect on the pressure readings, but simplified the machining process. These modifications

were done to give more access to the inside of the nosecone shell for the assembly of the pressure

ports.

A number of different port configurations are possible, but aligning the ports with the body

axes maximizes resolution. Other arrangements like a ‘x’ shape with the ports aligned 45◦ off the

body axes would enable multiple transducers to directly record the changes in pressure associated

with angular deflections. This allows for more redundancy in the measurements as more than

two transducers would record angular movement, but it reduces the separation between pressure

ports in the direction of the body axes. The reduced separation limits the differential pressure

reading on the transducer and degrades the resolution when compared to the ‘+’ arrangement.

Other configurations allow more than two ports to record α and β deflections, but sacrifice the

resolution available.

The nosecone was machined using a 3-dimensional rapid prototyping machine. The updated

design was laid out in Solidworks Solid Modeling software before being sent to the machine.

The fabrication of the nosecone cost less than $8 in total at The Pennsylvania State University’s

23

Learning Factory. The plastic material used by the rapid prototyping machine did not present

an issue as the material is durable enough to survive hard landings and can be easily drilled

and sanded. The only problem encountered is an inconsistent error with small deviations in wall

thickness. The deviations caused a few of the nosecones to come out either too large or small to

match the shape of the fuselage and form a smooth contour. There is no real fix to this problem,

but it didn’t drastically change any results.

The nosecone had to be separated into two distinct parts during the machining process to

allow access to the inside while still maintaining the solid mount to the fuselage. The larger

piece contains the shell of the cone shape, including the pressure port holes. The second piece

forms the base of the cone that meets the firewall on the main fuselage. The areas that overlap

between the two parts are cut with a jig-saw pattern, as seen in Figure 3.5. When the work on

the inside of the nosecone is complete, the two halves snap snugly together.

(a) Exploded view. (b) Assembled view.

Figure 3.5. Solidworks model. The first view shows the two separate pieces. The second view shows
the pieces snapped together.

The main shell defines the curvature of the nosecone and contains the five pressure ports.

The pilot holes for the pressure ports were created by the rapid prototyping machine as 1
8 inch

(3.175 mm) holes through the surface. Small 5
32 inch (3.969 mm) OD, 3

32 inch (2.381 mm) ID

by 5 cm long brass tubes were inserted into the pilot holes, flush with the external surface. The

tubes were sanded down to match the curvature of the nosecone and protrude normal from the

surface. Flexible 1
8 inch (3.175 mm) ID tygon tubes were then attached to each of the brass

tubes. Thick layers of epoxy were applied to outside of the tygon tubes where they fit over

top of the brass tubes. The thick globs of epoxy were then spread out to the inside wall of

the nosecone to make a complete seal between the surface, brass tubes, and tygon tubes. This

process is visible in Figure 3.6. The 1
8 inch (3.175 mm) tube size was chosen to take up less space

within the nosecone and Paces et al. [37] already demonstrated that this size of pressure port

will have minimal impact on the output signal when compared to larger ports. The same process

24

for making port connections is used for the two static pressure ports on the fuselage, although

those tygon tubes are mated together with a 3-way connector.

Figure 3.6. Internal view of the nosecone shell. The 5 tygon tubes are epoxied to 5 brass tubes that
are in turn epoxied to the inside of the shell. This forms a complete seal through both connections.

Rather than contain pressure ports, the nosecone backing’s purpose is to mount the FADS

cone to the fuselage. This is done through four 2.5 mm holes drilled into the firewall that

previously held the electric motor in place. The holes in the backing piece match the fuselage

holes and 2.5 mm nuts were epoxied onto the inside face of the backing. This enables a blind

fit when screwing the nosecone into place after the two pieces have been snapped together. The

backing also contains a 10 mm hole in the middle that matches a similar hole in the firewall.

The tygon tubes from the shell ports can be passed through this hole to the pressure transducers

on the inside of the fuselage. After being screwed into place, 2.5 mm screws hold the backing

securely against the firewall.

Once the two pieces of the nosecone are finished and the tygon tubes have been passed through

the 10 mm hole in the center, the two parts are epoxied together. This permanently seals the

pieces together, but is necessary to ensure they remain held together in flight and upon landing.

The whole external surface must then be sanded down to smooth out the epoxy bumps and any

ridges left from the rapid prototyping machine. This smooth nosecone is the finished product and

can be screwed into place with 2.5 mm screws. The attached nosecone is pictured in Figure 3.7.

25

Figure 3.7. View of the finished nosecone after the pieces have been epoxied together and sanded
smooth.

3.2.3 System Layout

The signals from the differential pressure transducers are fed into the air data computer, the

last component needed for a complete wind sensing system. The electrical signals are converted

into digital readings by the computer and sent to model functions that compute the wind vector

parameters. The wind vector parameters can then be sent to transmitters, computers, or au-

topilots, as well as the dynamic soaring controller it’s intended for. A diagram of the system is

pictured in Figure 3.8.

An ArduPilot Mega serves as the programmable air data computer of the FADS system.

The ArduPilot Mega is an Arduino programming language based, single-board microcontroller

specifically optimized for use in small uavs. Arduino-based controllers are widely used in many

research projects and there exists a large, well-documented reference and support community.

ArduPilot Mega’s low cost of $64 and wide availability makes it an attractive solution [40]. The

ArduPilot board is easily adapted and can be used as a fully functional autopilot when combined

with RC equipment and sensors. The specifications of the ArduPilot Mega are found in Table

3.4 and the board is pictured in Figure 3.9.

Once the computational methods in the air data computer have calculated the wind vec-

tor components, this information is sent to the desired controller or transmitter location. The

ArduPilot handles the communication, although the exact form of the communication protocol

26

Figure 3.8. System block diagram

Table 3.4. ArduPilot Mega microcontroller specifications.

parameter value (units)
processor speed 16 (MHz)

memory 256 (KB)
battery voltage 7-11 (V)
supply output 5 (V)
digital I/O 40

analog inputs 16
ADC resolution 10 (bit)
serial ports 4
RC channels 8

depends on the system interface and sensors attached. This complete FADS system cost $8 to

manufacture and $124 to instrument compared to thousands of dollars for a commercial probe

system. The next step is to create the parameter computing functions, which first require training

data.

3.3 Wind Tunnel Tests

Raw training data was collected from wind-tunnel tests performed in The Pennsylvania State

University’s low-turbulence, subsonic wind tunnel with a 3.25 x 5 ft (1 x 1.5 m) test section.

The data attained in the tests trains the wind-modeling computational methods for the air data

computer. Testing was performed across multiple weeks, although only the last week’s data is

used for training. The other sets of data are still used for data analysis. All of the wind tunnel

tests make a large and robust data collection for training the air data computer.

For the wind-tunnel tests, the airframe was mounted to an armature connected to stepper

motors. Since the 2-meter wing can not fit within the test section in either direction, two carbon

27

Figure 3.9. ArduPilot Mega microcontroller [40].

fiber reinforced foam wings, 52 and 79 cm span, were cut out with the aircraft’s MH-32 airfoil.

The aircraft was also mounted in a 90◦ roll orientation to allow more wingspan to fit within the

section. The wing must be included as the inner wing section near the wing root will affect the

static pressure ports; however, the outer wing tip sections are assumed to have negligible effect

on the readings and can be truncated. Figure 3.10 depicts the aircraft as it is mounted during

the tests.

The tests were performed at airspeeds of 9 m/s to 27 m/s in 1 m/s increments. The airspeed

themselves were not directly controlled, but rather indirectly through manual control of the wind

tunnel’s throttle. This airspeed range corresponds to the expected flight speeds of the aircraft

while dynamic soaring. At each airspeed, pressure readings were taken from −15◦ ≤ α, β ≤ +15◦

in 1◦ increments. The stepper motors moved in standardized rows controlled by the computer.

Dynamic tests consisting of rate and dynamic step tests were performed along with the steady

state step tests, but were not included in any training data.

The stepper motor movement and data collection synchronization was commanded through

LabVIEW. The LabVIEW program also recorded measurements from pressure transducers mounted

in the wind tunnel. These transducers were calibrated to read the dynamic pressure at the air-

craft’s test section. Static pressure and temperature were measured in 5 minute intervals and used

to calculate air density, then combined with the dynamic pressure readings to obtain true air-

speed. At each particular commanded location, the LabVIEW program automatically recorded

the true α and β locations, collected 101 data points from the wind tunnel mounted sensors, and

saved 101 data packets from the ArduPilot containing Va, α, β, and checksum values. The entire

process only lasts about 2 seconds at each location. The wind-tunnel pressure and temperature

sensors along with the computer-controlled stepper motors give full knowledge of the true wind

vector. This true data can then be used to train the functions with the corresponding Va, α, and

β measurements.

The two reinforced wings were intended to also deal with the large lift forces expected at

28

Figure 3.10. The aircraft mounted in the wind tunnel.

high angles of attack at the higher airspeeds. The wings were reinforced with carbon fiber due

to the large stresses expected near Va =30 m/s and α = 15◦. The shorted wingspans also lessen

the torque placed on the stepper motors by the lift force. The pitch PK-266 and yaw PK-245

stepper motors max out at 1.17 and 0.43 N m respectively [41]. Even the truncated 72 cm wing

produces too much torque on the pitch motor at high airspeeds, so the 52 cm wing reduces the

torque on the motor without being too narrow to affect the static pressure reading. These two

wings were necessary to take the place of the 2-meter wing and its effect on the static pressure

ports’ readings.

During testing, the majority of the runs were completed with the 79 cm span wing. At Va =

20 m/s, the wing produces too much torque for the pitch motor, causing it to stall at α = 10◦

and stop moving any further. The α deflections were limited to a maximum of α = 0◦ until Va =

24.5 m/s to increase the airspeed range while avoiding stalling the motors. After this, the 52 cm

wing was installed on the airframe and the runs from 19 m/s to 25 m/s were repeated to overlap

the data for comparison. At Va = 27 m/s, even the 52 cm wing produced too much torque for

the pitch motor so the runs from Va = 25 to 27 m/s had the α deflections truncated again. The

29

intentions were to explore the full range of α, β deflections until 30 m/s, but the stepper motors

could not exceed 27 m/s without stalling. Figure 3.11 shows some of the results for both the

52 cm and 79 cm wings. There are no noticeable differences between the data and both sets of

wind-tunnel test data should be included in training data.

−15 −10 −5 0 5 10 15
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Angle of Attack (deg)

A
lp

ha
 M

ea
su

re
m

en
t

52 cm, 18.7 m/s
79 cm, 18.5 m/s
52 cm, 20.5 m/s
79 cm, 20.8 m/s

(a) Angle of attack comparison.

−15 −10 −5 0 5 10 15
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Angle of Sideslip (deg)

B
et

a
M

ea
su

re
m

en
t

52 cm, 18.7 m/s
79 cm, 18.5 m/s
52 cm, 20.5 m/s
79 cm, 20.8 m/s

(b) Angle of sideslip comparison.

Figure 3.11. Comparison of similar results from 52 and 79 cm wings.

3.4 Comparison to Potential Flow

The results from the wind-tunnel testing can be compared against the estimates from the potential

flow model. This gives an indication of the accuracy and applicability of the models for design use.

Even if the measurements do not specifically match the model, similar trends in the data indicate

the behavior predicted by the model is still valid. Real-world airflow are susceptible to many

unforeseen influences and measurements are also affected by sensor bias and noise. Comparison

between the actual readings and the predicted readings serves to validate the assumptions made

in the design of the FADS system and check for large deviations that adversely affect the results.

A direct comparison between the measured pressure differentials and the difference predicted

by the potential flow model shows similar behavior but different magnitudes. In Figure 3.12, both

plots depict relatively straight lines that decrease with increasing α or increase with increasing β

for both measured and predicted data. Although they share the same behavior trends, it’s clear

the magnitudes of the potential model are much higher than seen in the actual measurements. A

good portion of the deviation can be attributed to assumptions made for both the potential flow

model and the pressure measurements. The potential flow model assumes multiple parameters

are constant or negligible and doesn’t account for interference and viscous effects. The pressure

differentials from the wind-tunnel measurements are actually estimates from the digital signals

and could easily be inaccurate due to changes in the sensor and analog-to-digital converter

parameters. Despite difference in magnitudes, the plots confirm the nosecone measurements

behave in the expected manner and share roughly the same intercepts.

30

−15 −10 −5 0 5 10 15
−250

−200

−150

−100

−50

0

50

100

150

200

250

Angle of Attack (deg)

P
re

ss
ur

e
D

iff
er

en
tia

l

Measured
Predicted

(a) Angle of attack comparison.

−15 −10 −5 0 5 10 15
−250

−200

−150

−100

−50

0

50

100

150

200

250

Angle of Sideslip (deg)

P
re

ss
ur

e
D

iff
er

en
tia

l (
P

a)

Measured
Predicted

(b) Angle of sideslip comparison.

Figure 3.12. Pressure differentials in wind-tunnel measurements versus potential flow predictions.

Normalized pressure differentials are also used to compare the nosecone measurements with

the potential flow model predictions. Equation 2.10 from the previous chapter showed that the

α and β pressure differentials are independent of airspeed when divided by q∞, forming a simple

method to compare the measurements. Both plots in Figure 3.13 demonstrate the normalized

pressure differences are not totally independent of airspeed, but do begin to collapse onto one

another as airspeed increases. The divergent behavior at low airspeed appears to be due to

separation and strong viscous effects at the low Reynolds numbers. Additionally, the wing has a

pronounced effect upon the α differential and especially the q∞ measurement. The effect of the

wing propagates upstream to the nosecone. Likewise, the q∞ measurement really measures the

U’ component of the wind vector from Equation 2.4 as α or β change, not the magnitude, Va, so

the plots are not perfect comparisons to the model. Regardless, the normalized measurements

show the same definite trend predicted by the potential flow model.

−15 −10 −5 0 5 10 15 20
−1

0

1

2

3

4

5

Angle of Attack (deg)

N
or

m
al

iz
ed

 A
ng

le
 o

f A
tta

ck
 M

ea
su

re
m

en
ts

10.7 m/s
12.9 m/s
15.3 m/s
17.4 m/s
19.4 m/s
21.1 m/s

(a) Angle of attack measurements.

−15 −10 −5 0 5 10 15
−8

−6

−4

−2

0

2

4

6

Angle of Sideslip (deg)

N
or

m
al

iz
ed

 A
ng

le
 o

f S
id

es
lip

 M
ea

su
re

m
en

ts

10.7 m/s
12.8 m/s
15.4 m/s
17.4 m/s
19.3 m/s
21.0 m/s
22.7 m/s
24.7 m/s

(b) Angle of sideslip measurements.

Figure 3.13. Pressure differentials normalized with dynamic pressure measurements.

Despite the differences in specifics, the general trends of the wind-tunnel measurements match

31

the predictions from the potential flow model. The measurements support the assumptions

made by the model and verify that nothing unexpected has occurred. This verification clears

the measurements to be fully capable of training the computational methods in the air data

computer.

3.5 Sensor Resolution

Before proceeding, the resolution of the ArduPilot’s 10-bit analog-to-digital converter (ADC) is

examined. The wind sensing system needs high sensitivity from the pressure sensors and ADC

in order to maintain high accuracy. Since the Freescale transducers already have too broad an

operating pressure range, the associated sensitivity of their signals is suboptimal. The ArduPilot’s

10-bit ADC ought to be compared against a higher bit converter to verify the lower resolution is

not further degrading the sensitivity.

To check the effect of the Arduino’s ADC resolution, the analog signals from the transducers

are also connected to an external ADC. The wiring connecting the transducers to the ArduPilot

are split and connected to a Texas Instruments PCI-6036E 16-bit ADC. The 10- and 16-bit

readings are normalized onto the same scale by dividing each reading by the respective value at

the same predetermined position index. Three airspeeds at or around Va = 10.7, 17.5, and 22.9

m/s are used to compare the results for different airspeeds. The data is then collected in α and

β sweeps at these airspeeds. Comparison between the 10- and 16-bit results indicate the effect

of ADC resolution on the measurements.

The analog-to-digital converter mean and standard deviations results are the same regardless

of the ADC resolution. Figure 3.14 depicts the mean readings for the 101 data points at each

particular step. There is virtually no difference between the 10- and 16-bit mean measurements

on the normalized scale for both α and β sweeps. More likely, the difference in sensor resolution

would manifest itself in the standard deviation of the measurements. Lower resolution signals

would show larger fluctuations with the more discrete jumps. Figure 3.15 plots the standard

deviation of the measurements, but there is no difference in magnitude between the 10- and 16-

bit signals at each airspeed. The standard deviations don’t exactly match due to random noise,

but the averages are consistent at each airspeed. The 10-bit ADC signals demonstrate the same

mean and standard deviation as the 16-bit higher resolution ADC.

This similar performance shows the signal resolution will not be improved with a higher bit

ADC. The noise in the readings is due to external sources beyond control, such as air turbulence

or noise in the transducer and its wiring. The 10-bit ADC is not hampering accuracy of the

system and its resolution is ample for use with the Freescale sensors.

3.6 Conclusion

This chapter explored the physical implementation of the flush air data system. The design of

the nosecone and pressure port configuration was adapted for the Omega II airframe from the

32

−15 −10 −5 0 5 10 15 20
−3

−2

−1

0

1

2

3

Angle of Attack (deg)

N
or

m
al

iz
ed

 A
ng

le
 o

f A
tta

ck
 M

ea
su

re
m

en
ts

16−bit 10.7 m/s
10−bit 10.7 m/s
16−bit 17.4 m/s
10−bit 17.4 m/s
16−bit 22.9 m/s
10−bit 22.9 m/s

(a) Angle of attack measurements.

−15 −10 −5 0 5 10 15
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Angle of Sideslip (deg)

N
or

m
al

iz
ed

 A
ng

le
 o

f S
id

es
lip

 M
ea

su
re

m
en

ts

16−bit 10.6 m/s
10−bit 10.6 m/s
16−bit 17.5 m/s
10−bit 17.5 m/s
16−bit 22.7 m/s
10−bit 22.7 m/s

(b) Angle of sideslip measurements.

Figure 3.14. 10-bit versus 16-bit analog-to-digital converter mean readings.

−15 −10 −5 0 5 10 15 20
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6
x 10−3

Angle of Attack (deg)

N
on

di
m

en
si

on
al

iz
ed

 S
ta

nd
ar

d
D

ev
ia

tio
n

16−bit 10.7 m/s
10−bit 10.7 m/s
16−bit 17.4 m/s
10−bit 17.4 m/s
16−bit 22.9 m/s
10−bit 22.9 m/s

(a) Angle of attack standard deviation.

−15 −10 −5 0 5 10 15
1

1.5

2

2.5

3

3.5

4

4.5

5
x 10−3

Angle of Sideslip (deg)

N
on

di
m

en
si

on
al

iz
ed

 S
ta

nd
ar

d
D

ev
ia

tio
n

16−bit 10.6 m/s
10−bit 10.7 m/s
16−bit 17.5 m/s
10−bit 17.5 m/s
16−bit 22.7 m/s
10−bit 22.7 m/s

(b) Angle of sideslip standard deviation.

Figure 3.15. 10-bit versus 16-bit analog-to-digital converter standard deviation.

potential flow analysis in Chapter 2. A rapid prototyping machine created the nosecone in two

sections along with five pressure ports. Two static ports were drilled into the fuselage for static

pressure measurement. These six pressure readings identify the full wind vector. Freescale differ-

ential pressure transducers were chosen for their simplicity and low cost despite their suboptimal

sensing range. Output signals from the pressure transducers are sent to an ArduPilot Mega,

which acts as a programmable air data computer. This system was mounted onboard the Omega

II airframe and tested in a wind tunnel. The results showed agreement with the potential flow

model and verified the resolution of the system components.

The results collected in the wind tunnel can now be used to train the air data computational

methods. Large sets of data were collected during the wind-tunnel tests; now the question is

what to do with all the data. The data itself can’t be directly used to find the wind parameters

since the pressure measurements and wind vector do not have a one-to-one relationship. The

data can instead train multiple data models to compute the full wind vector. Neural networks

33

are chosen for this purpose, detailed in Chapter 4.

Chapter 4
Surface Pressure to Air Data

This chapter covers the selection, creation, and training of computational methods used to obtain

the Va, α, and β air data parameters from surface pressure measurements. Section 4.1 discusses

various computational methods and details the selection of neural networks for this purpose. The

basic structure and methodology of neural networks is explained as well. The neural network

training process is described in Section 4.2. The training data is taken as a subset of the wind-

tunnel test data from Chapter 3. Multiple neural networks of different sizes are trained to each

compute the wind vector parameters. The results from Section 4.2 are then used in Section 4.3

to examine the performance of the various neural network models. Comparisons at cruise flight

operating ranges and at high angle deflections identify the accuracy of the networks over the

entire dynamic soaring cycle. The best networks are selected for implementation on the air data

computer.

4.1 Air Data Methods

With the large amount of wind tunnel testing data, a robust, efficient method must convert the

pressure measurements into wind vector components. This is made difficult by the complex nature

of the airflow over the nosecone when it’s at various angles and airspeeds. A simple mathematical

model is not possible since the potential flow equations in Chapter 2 used to calculate surface

pressure from wind components are not invertible. The equations are not one-to-one functions

since different airspeeds and flow angles produce the same surface pressure differential. For

example, according to Equation 2.8, the nosecone at Va = 29 m/s and α = 2◦ has the same

differential pressure of 81 Pa between the α ports as Va = 10 m/s and α = 18◦. There is a

huge difference between the wind vectors and a misinterpretation by the air data computer could

prove seriously detrimental, if not disastrous. This only becomes more problematic as the β

angle is incorporated and still further complicated with the actual measurements. The air data

conversion from surface pressures to wind vector components is not a trivial matter and requires

35

complex methods.

Multiple methods can be used to obtain the wind vector from surface pressure measurements.

One particular method is curve or function fitting techniques. The measurement equation is

assumed to be known or well-defined to determine the appropriate coefficients. In some cases,

this method is combined with Kalman filters for closer approximation [42]. Lookup tables are

another method to accurately compute the wind vector from a large collection of data. The air

data is interpolated from a 3-dimensional table that includes all the measurements and truth

data. This method has been used before for FADS or probe system, sometimes in conjunction

with polynomial functions and Kalman filters [43]. These methods have worked successfully in

the past, but have their own disadvantages that limit their effectiveness in this case. Function

fitting requires a predetermined knowledge of the system and its order or additional methods to

account for error and variations. Lookup tables don’t need this previous knowledge, but require

at least one large table to be stored in the flight computer. The potential flow model from

Chapter 2 gives good estimates for the measurements, but the actual 3-dimensional viscous flow

over the nosecone is not well understood. Additionally, while the ArduPilot Mega does contain

an adequate amount of memory for a lookup table, smaller Arduinos that could also be used

do not. Processing larger tables will also take computation time and slow down the ArduPilot.

These two methods are not ideal for implementation on this FADS air data computer.

4.1.1 Neural Networks

Neural networks present an ideal solution to compute the wind vector parameters from the surface

pressure input. Neural networks are complex models made up of numerous neurons of certain

weights and biases. The data collected in the wind tunnel would then be used to train the network

and determine the appropriate weights associated with the neurons. Neural networks have been

used many times before in FADS or multi-hole probe system due to their applicability [32–35].

They are particularly well suited compared to lookup tables or other functions because they excel

when trained with large data sets, but don’t need any preceding information on even the most

complex systems. The resulting trained networks are capable of high accuracy without prior

knowledge and large tables stored in the air data computer.

The readings from the pressure transducers are sent to three separate neural networks rather

than a single network. Each network is responsible for computing Va, α, or β from the three

pressure readings. Attempts were made to combine all three networks into a single network with

three outputs, but the root-mean-square error increased considerably afterwards. Both feedfor-

ward and radial basis neural networks were investigated, but the feedforward networks produced

a higher performance despite significantly less neurons. Only feedforward neural networks are

used hereafter.

The feedforward neural networks all follow the same general structure. The three readings

from the pressure transducers are sent into each network’s input layer with N number of neurons.

Each input layer neuron is then connected to every neuron in the hidden layer, which is made

36

of N neurons as well. All the neurons in the hidden layer are connected to a single neuron in

the output layer that generates the designated wind parameter. The N number of neurons in

both the input and hidden layers are all individually weighted. The weighting for each neuron is

determined during the training process. The architecture results in a N by 3 weighting matrix

for the input layer since it has three inputs, a N by 1 weighting vector in the hidden layer, as

well as a N by 1 bias vector for the input layer and a 1 by 1 scalar for the hidden layer. The

airspeed neural network’s architecture is pictured in Figure 4.1 and the remaining two α and β

networks follow the same exact structure.

P2

P3

P1 1

2

N

1

INPUT LAYER

.

.

.

1

2

N

HIDDEN LAYER

.

.

.

OUTPUT LAYER

AIRSPEED NEURAL NETWORK

MEASUREMENTS

AIRSPEED (M/S)

Figure 4.1. The generalized structure of the airspeed neural network with N neurons in the input and
hidden layers. The α and β networks follow the same structure.

Different feedforward networks with varying numbers of neurons were compared. Within

each network, the N number of neurons in the input and hidden layers was kept consistent, but

multiple versions with N = 3, 9, 15, 30, and 45 neurons were analyzed. With each increase in

the number of neurons, the complexity and memory requirement also increased. Table 4.1 shows

the number of neurons in each layer along with the number of parameters to be stored for both

the single network and the total system. Large numbers of neurons will generally improve the

accuracy, but at the risk of slowing down the computer or even exceeding memory capability

of the Arduino if too many parameters are stored. All of the networks are still fully capable of

converting the surface pressure measurements to air data components.

4.2 Neural Network Training

The training data used for the neural networks is taken as a subset of the wind-tunnel surface

pressure measurements and truth data. Data from all the airspeeds are used with the aerody-

namic angles truncated to −5◦ ≤ α ≤ 12◦ and −6◦ ≤ β ≤ 6◦. These angles correspond to

37

Table 4.1. The number of parameters stored in each network. The number of neurons affects the
parameters stored in the input and hidden layers for each network. The total number of parameters
accounts for three networks with the same structure.

Neurons Input Layer Hidden Layer Network Total System Total
3 12 4 16 48
9 36 10 46 138
15 60 16 76 228
30 120 31 151 453
45 180 46 226 678

the usual operating range of the Omega II sailplane. Data points outside the expected oper-

ating range would expand the capabilities of the sensor at extreme flight conditions, but these

capabilities are not necessary for this particular soaring application. Also, the extraneous data

adversely affects the training process and degrades the eventual network’s effectiveness within

normal flight regimes.

Before use, the training data set was preprocessed to remove bad measurements and fit within

the training process bounds. ArduPilot data packets that failed to pass a simple checksum were

removed. Anomalous measurements that otherwise passed the check were also deleted. For

example, a 2000 Pa reading among one-hundred 38 Pa readings would have been identified as

anomalous. This anomalous reading probably occurred as the sensor momentarily disconnected

as it bounced around within the aircraft. The deleted anomalies were obviously incorrect read-

ings, not unfavorable data readings. This data verification proved important because the sensor

readings are averaged together. Rather than use all 101 data points, the mean of the 101 or

remaining data points for a particular Va, α, and β location is used as the single measurement

for this location in the training data. This use of mean values reduced the number of training

points drastically, but didn’t skew the results.

In addition to removing bad or anomalous measurements, the training data was preprocessed

to adjust the scale and offset of the subset. All the data was shifted until a reading of zero

corresponded to zero pressure differential. This helped center the data since the three pressure

transducers each have their own slight bias that sometimes changed as temperature or airspeed

varied. The data was also normalized to a scale of +/- 1 since the neural network training process

requires the input data to fall within these bounds. To normalize the measurements, every mean

data point was divided by the single largest magnitude measurement from the entire set of

wind-tunnel measurements. This ensured that in all subsequent use of the networks, the data

wouldn’t exceed the bounds as long as this same value was divided from the measurements. The

normalized training data subset has a resulting range of -0.2726 to 0.8288. After preprocessing,

the training set was stored as a 4648 by 3 input matrix.

The true Va, α, and β values corresponding to the 4648 by 3 training subset were saved in

three separate target vectors. One vector stored the airspeed values from the wind tunnel as the

targets for the airspeed neural network. Unlike the input data, this vector is not normalized and

the data is kept in units of m/s. The α and β target vectors are made up of the true positions of

38

the aircraft recorded from the position of the stepper motor when the measurements were taken.

These vectors were converted to radians to prevent any unforeseen issues with angles in degrees.

The large training data input matrix and the three corresponding target vectors are then ready

for training the neural networks.

4.2.1 Training Method

The feedforward neural networks were trained using the Levenberg-Marquardt algorithm. The

Matlab Neural Network Toolbox includes the specific Levenberg-Marquardt function used for

training the networks [44]. The algorithm uses a backpropagation, gradient-based approach to

minimize the mean-square error. Matlab’s Levenberg-Marquardt training function, trainlm, is

one of the easiest methods to implement. According to the toolbox’s comparison of methods,

the algorithm performs particularly well on nonlinear regression fitting and is the fastest at

function approximation [44]. The method does require more memory than the other quasi-

Newton or Resilient Backpropagation techniques available, but this is not an issue since the

networks themselves were already kept small for their Arduino implementation. After each

training process, the networks are retrained heuristically until performance doesn’t improve.

The training data matrices are further broken up into three sections for training, testing, and

validation. The data is randomly separated into 70% for training, 15% for validation, and 15%

for independent testing. The first two sections are used in the training method itself while the

third section tests the trained networks as an external performance verification technique. The

results of the training and testing are shown in the next section.

4.3 Results of Wind Tunnel Based Training

The airspeed, angle of attack, and angle of sideslip neural networks are trained with the methods

previously described. The overall results of the training are seen in the root-mean-square error

(RMSE) of the training output, listed in Table 4.2. These results include the training, validation,

and independent testing RMSE for the entire training data set.

Not surprisingly, the most complex systems demonstrate the lowest error. The airspeed

RMSE only improves slightly between the 15, 30, and 45 neuron networks. The 30 neuron Va

network performs almost as well as the 45 neuron model and either can be used in the final

configuration. The α and β networks both demonstrate diminishing returns with increasing

neuron count, although not to the level of the airspeed networks. The α networks may have

benefited most from the increased number of neurons since the aircraft is asymmetric in the y

axis and the effect of the wing factors into the measurements more. With that same logic, it’s

surprising the Va RMSE doesn’t improve more drastically with more neurons. The airspeed ports

really measure U’ from Equation 2.4, not Va, so a higher number of neurons would seemingly

account for this complex relationship better. The fact that it didn’t might reflect the difficulty

in airspeed sensing or the accuracy has actually reached a bottom limit with the measurements.

39

Regardless of the airspeed limit, all these results point to accurate wind sensing through the

neural network computational method.

Table 4.2. Root-mean-square error of neural network output. The performance corresponds to the
entire training set containing the training, validation, and testing subsets.

Neurons Airspeed (m/s) Angle of Attack (deg) Angle of Sideslip (deg)
3 0.2551 1.3594 0.4026
9 0.2272 0.7429 0.2685
15 0.1910 0.7193 0.2252
30 0.1855 0.5120 0.1744
45 0.1844 0.3648 0.1497

4.3.1 Full Operating Range

The results of the neural networks are compared to the true Va, α, and β values over the entire

nominal operating range. Figure 4.2 depicts the performance of the Va, α, and β networks for

measurements taken at the lower end of the airspeed spectrum at Va = 10 m/s. The performance

of the same networks for measurements taken at a higher airspeed of Va = 20 m/s is shown in

Figure 4.3. The true angle of attack covers the full range of the training set from −5◦ ≤ α ≤ 12◦

while only one half of the β range is used since it can be assumed to be symmetric.

Both figures show the same general behavior for the Va, α, and β plots. All the neural networks

behave rather consistently with similar overshoot or undershoot at the same spots. The higher

neuron count models match the true values closer than the fewer neuron models, although not

by much. The trends also demonstrate the higher count networks don’t seem to be overfitting

the data either as once feared. Overall, the networks perform better at higher airspeeds due to

the larger pressure differential. The higher pressure values give the pressure transducer more

sensitivity and enable finer measurements. The training data taken from these measurements

will result in finer network outputs. The airspeed bias due to angle of attack is higher at the

lower airspeeds. The bias decreases from Vα,bias = 0.6 m/s in Figure 4.2(a) to Vα,bias = 0.25 m/s

in Figure 4.3(a). Angle of attack predictions show improvement in overshoot and undershoot

in Figure 4.3(b) over Figure 4.2(b). The β networks also show better performance at higher β

positions in Figure 4.3(c) at the higher airspeed. These results definitely suggest the limiting

factor is the pressure transducer sensitivity. Despite this issue, the networks all work as intended

and further plots take closer observations at their performance in particular instances.

4.3.2 Cruise Regime

While Figures 4.2 and 4.3 show the general performance behavior of the networks over the entire

training set range, it’s difficult to compare the accuracy of the networks on such a large scale.

For this reason, a smaller data set consisting of flight parameters in the cruise flight regime is

used. The cruise regime is defined as angular positions of 2◦ ≤ α ≤ 6◦ and 0◦ ≤ β ≤ 2◦. Angle

of attack α = 2◦ corresponds to trimmed flight at 20 m/s while α = 6◦ corresponds to trimmed

40

0 20 40 60 80 100 120 140

10.2

10.3

10.4

10.5

10.6

10.7

10.8

10.9

11

11.1

Time (s)

A
irs

pe
ed

 (m
/s

)

True
3 Neurons
9 Neurons
15 Neurons
30 Neurons
45 Neurons

(a) Airspeed Performance

0 20 40 60 80 100 120 140
−6

−4

−2

0

2

4

6

8

10

12

14

Time (s)

A
ng

le
 o

f A
tta

ck
 (d

eg
)

True
3 Neurons
9 Neurons
15 Neurons
30 Neurons
45 Neurons

(b) Angle of Attack Performance

0 20 40 60 80 100 120 140
−1

0

1

2

3

4

5

6

7

Time (s)

A
ng

le
 o

f S
id

es
lip

 (d
eg

)

True
3 Neurons
9 Neurons
15 Neurons
30 Neurons
45 Neurons

(c) Angle of Sideslip Performance

Figure 4.2. Performance of the neural networks for the full range of data at 10 m/s with −5◦ ≤ α ≤ 12◦

and 0◦ ≤ β ≤ 6◦.

flight at 10 m/s. The aircraft does not generally slip drastically in this case, so β is limited to

β ≤ 2◦. A closer analysis of the cruise parameters allows a more in depth comparison of the

networks’ performance in the expected operating range.

The cruise regime analysis depicts a clear improvement in accuracy attributed to larger neuron

layers. Lower airspeed results at Va = 10 m/s are shown in Figure 4.4 along with higher airspeed

plots at Va = 20 m/s in Figure 4.5. In both figures, the α and β biases decrease noticeably with

an increased number of neurons in the networks.

The angle of attack bias decreases from an almost constant 1◦ offset for the 3, 9, and 15 neuron

networks to a max of 0.3◦ for the 30 and 45 neuron networks in Figure 4.4(b). Figure 4.5(b)

has the same behavior. The angle of sideslip networks in Figures 4.4(c) and 4.5(c) show an

improvement in accuracy in the higher neuron models, but not as distinct as in the α performance

plots.

41

0 20 40 60 80 100 120 140
19

19.5

20

20.5

21

21.5

Time (s)

A
irs

pe
ed

 (m
/s

)

True
3 Neurons
9 Neurons
15 Neurons
30 Neurons
45 Neurons

(a) Airspeed Performance

0 20 40 60 80 100 120 140
−6

−4

−2

0

2

4

6

8

10

12

14

Time (s)

A
ng

le
 o

f A
tta

ck
 (d

eg
)

True
3 Neurons
9 Neurons
15 Neurons
30 Neurons
45 Neurons

(b) Angle of Attack Performance

0 20 40 60 80 100 120 140
−1

0

1

2

3

4

5

6

7

Time (s)

A
ng

le
 o

f S
id

es
lip

 (d
eg

)

True
3 Neurons
9 Neurons
15 Neurons
30 Neurons
45 Neurons

(c) Angle of Sideslip Performance

Figure 4.3. Performance of the neural networks for the full range of data at 20 m/s with −5◦ ≤ α ≤ 12◦

and 0◦ ≤ β ≤ 6◦.

The airspeed figures show less success than the α and β plots. In Figure 4.4(a), there is

only slight increases in accuracy with increasing number of neurons. There is an improvement in

accuracy with the 15, 30, and 45 neuron models at Va = 20 m/s in Figure 4.5(a); however, there

is still a 0.3 m/s bias between the predicted and true airspeeds. This noticeable bias appears to

be another result of the sensitivity in the pressure transducers and in the true airspeed measure-

ments. The bias might result from inconsistencies in the measurements and tradeoffs made in

the training process to account for these inconsistencies. Even though the Va performance is less

pronounced, all three wind vector parameters’ performance in the cruise regime demonstrate a

clear boost from more complex neural networks.

42

0 5 10 15
10.35

10.4

10.45

10.5

10.55

10.6

10.65

10.7

Time (s)

A
irs

pe
ed

 (m
/s

)

True
3 Neurons
9 Neurons
15 Neurons
30 Neurons
45 Neurons

(a) Airspeed Performance

0 5 10 15
1

2

3

4

5

6

7

8

Time (s)

A
ng

le
 o

f A
tta

ck
 (d

eg
)

True
3 Neurons
9 Neurons
15 Neurons
30 Neurons
45 Neurons

(b) Angle of Attack Performance

0 5 10 15
−0.5

0

0.5

1

1.5

2

2.5

Time (s)

A
ng

le
 o

f S
id

es
lip

 (d
eg

)

True
3 Neurons
9 Neurons
15 Neurons
30 Neurons
45 Neurons

(c) Angle of Sideslip Performance

Figure 4.4. Performance of the neural networks for a cruise operating range at 10 m/s with 2◦ ≤ α ≤ 6◦

and 0◦ ≤ β ≤ 2◦.

4.3.3 High Angle Deflections

During dynamic soaring maneuvers, the aircraft will have to perform sharp climbs, dives, and

turns to correctly orient with the wind as commanded by the soaring controller. Even if the

aircraft spends most of its time cruising in steady glides, the dynamic soaring maneuvers are

the important sections of the flights. The complex control parameters are the reason a wind

sensing system is needed so the system better perform well during these maneuvers. While

the exact airspeeds and angles required for dynamic soaring vary, certain portions of the flight

path will require rapid changes in lift coefficient and heading angles, recorded in optimal control

paths [21, 22]. At these portions, the lift coefficient reaches values from 1 ≤ CL ≤ 1.5 and the

associated angle of attack will be near maximum. During these rapid lift coefficient changes,

the heading angle fluctuates at almost 10◦/sec and the angle of sideslip will vary as the aircraft

43

0 5 10 15
20

20.2

20.4

20.6

20.8

21

21.2

21.4

Time (s)

A
irs

pe
ed

 (m
/s

)

True
3 Neurons
9 Neurons
15 Neurons
30 Neurons
45 Neurons

(a) Airspeed Performance

0 5 10 15
0

1

2

3

4

5

6

7

Time (s)

A
ng

le
 o

f A
tta

ck
 (d

eg
)

True
3 Neurons
9 Neurons
15 Neurons
30 Neurons
45 Neurons

(b) Angle of Attack Performance

0 5 10 15
−0.5

0

0.5

1

1.5

2

2.5

Time (s)

A
ng

le
 o

f S
id

es
lip

 (d
eg

)

True
3 Neurons
9 Neurons
15 Neurons
30 Neurons
45 Neurons

(c) Angle of Sideslip Performance

Figure 4.5. Performance of the neural networks for a cruise operating range at 20 m/s with 2◦ ≤ α ≤ 6◦

and 0◦ ≤ β ≤ 2◦.

rapidly changes direction and orientation into the wind. A training data subset at high α and

β values will give an indication of neural network performance during these important portions

of the flight path. Since the previous section examined the performance at low α and β, this

comparison will analyze the performance at seemingly worst-case α and β values. A reasonable

conclusion about neural network performance during actual dynamic soaring maneuvers can be

inferred from the comparisons.

Another truncated training data subset with 8◦ ≤ α ≤ 12◦ and 4◦ ≤ β ≤ 6◦ is used to

examine the performance of the neural networks at the extremes of the training data. Likewise,

these correspond to the most aggressive orientations the aircraft would experience. Just as in

the previous comparisons, the neural network output all appear consistent with no extraneous

behavior. The same increase in accuracy at higher airspeeds is observed between Figures 4.6 and

4.7. The lower neuron count models more accurately compute α and β at Va = 20 m/s than

44

at Va = 10 m/s where the plots appear closer together. In general, the higher neuron number

networks are more accurate at α and β prediction, just as before.

In both Figures 4.6(b) and4.7(b), the 30 neuron networks have slightly more accuracy than

the 45 neuron models. Meanwhile in Figures 4.6(c) and 4.7(c), the 30 and 45 neuron networks

exhibit the same performance. With the same accuracy, it appears the 30 neuron network might

be a better model for implementation in the air data computer.

The airspeed plots in Figures 4.6(a) and 4.7(a) experience the same issues as before. All

the networks in Figure 4.6(a) perform roughly the same while the 30 and 45 neuron networks

display slightly better performance in Figure 4.7(a). The bias observed in all the previous figures

disappears in Figure 4.7(a). Again, this seems to indicate a tradeoff in performance during the

training process. Despite the higher angular positions, the neural networks all demonstrate the

same level of accuracy seen in the cruise operating range. All of the models manage to predict

the values with varying levels of success attributed to their complexity.

4.3.4 Network Comparison

Not surprisingly, the more complex networks outperform the simpler networks across the board.

This is most noticeable in the α predictions as the 3 and 9 neuron network predictions overshoot

or undershoot the true α values by up to 2◦ or 3◦, particularly at the lower airspeeds. There is

quite an improvement in performance from the 3 to 9 neuron networks and from 9 to 15 neurons.

Despite the noticeable inferiority to the 30 and 45 neuron α networks, the simpler models perform

much better than expected at high angle deflections. If the 30 or 45 neuron networks cannot be

implemented, the 15 neuron α network serves as a good replacement computational method.

The angle of sideslip plots show similar improvement in accuracy with more neurons, although

at a lower scale. The β networks were already more accurate than the α networks, so the more

complex models did not improve the performance as drastically as in the α networks. This

could be due to a number of factors. The β networks were trained with a smaller training range

that varied much less than the 17 α positions used to train the α networks. The β networks

also benefited from the symmetry across the aircraft’s z axis to improve performance. Angle of

sideslip measurements see little to no effect from the wing due to this symmetry, unlike the Va

and α measurements. These predispose the β networks to less variation in measurements and

finer predictions as a result.

Predictions from the airspeed neural networks display a consistency similar to the β network

outputs. This consistency suggests a simpler model might be sufficient and the measurements

are noisy. Since the wing affects the Va measurements more than the α measurements, it appears

the measurements are more likely noisy than the complex wing airflow interactions are accurately

captured by simple models. Separation or fluctuations due to the wing propagate upstream and

affect the static ports, resulting in larger standard deviations. The calibrated pressure transducers

in the wind tunnel used to detect true Va could also present noisy signals and account for the bias

observed between predictions and true values in some of the figures. The other possible source

45

0 5 10 15
10.15

10.2

10.25

10.3

10.35

10.4

10.45

10.5

10.55

10.6

10.65

Time (s)

A
irs

pe
ed

 (m
/s

)

True
3 Neurons
9 Neurons
15 Neurons
30 Neurons
45 Neurons

(a) Airspeed Performance

0 5 10 15
7

8

9

10

11

12

13

14

Time (s)

A
ng

le
 o

f A
tta

ck
 (d

eg
)

True
3 Neurons
9 Neurons
15 Neurons
30 Neurons
45 Neurons

(b) Angle of Attack Performance

0 5 10 15
2.5

3

3.5

4

4.5

5

5.5

6

6.5

Time (s)

A
ng

le
 o

f S
id

es
lip

 (d
eg

)

True
3 Neurons
9 Neurons
15 Neurons
30 Neurons
45 Neurons

(c) Angle of Sideslip Performance

Figure 4.6. Performance of the neural networks for high angle deflections at 10 m/s with 8◦ ≤ α ≤ 12◦

and 4◦ ≤ β ≤ 6◦.

of error is a discrepancy in the airspeed readings. Bias in some portions of the true Va values

or large jumps in airspeed data would force a trade-off in the neural network training process.

The Va would have to accept a certain level of bias to minimize error to the entire set. This type

of error would also account for the bottoming out of airspeed RMSE with increased number of

neurons. Regardless of the reason, it’s only at higher airspeeds that the more complex neural

networks demonstrate noticeable improvement over simpler models.

For subsequent implementation, the 30 neuron neural networks are the best models. In all the

figures, the 30 neuron networks match the performance of the 45 neuron networks, and exceed it

in a few cases. Even though memory capacity is not a problem with the ArduPilot Mega based

air data computer, 225 fewer parameters for the 30 neuron networks will ease implementation.

If a smaller capacity computer was used, the 15 neuron models would work for one or all of the

networks in the computer. The 30 neuron Va, α, and β networks all demonstrate a high level of

46

0 5 10 15
19

19.5

20

20.5

Time (s)

A
irs

pe
ed

 (m
/s

)

True
3 Neurons
9 Neurons
15 Neurons
30 Neurons
45 Neurons

(a) Airspeed Performance

0 5 10 15
7

8

9

10

11

12

13

Time (s)

A
ng

le
 o

f A
tta

ck
 (d

eg
)

True
3 Neurons
9 Neurons
15 Neurons
30 Neurons
45 Neurons

(b) Angle of Attack Performance

0 5 10 15
3.5

4

4.5

5

5.5

6

6.5

Time (s)

A
ng

le
 o

f S
id

es
lip

 (d
eg

)

True
3 Neurons
9 Neurons
15 Neurons
30 Neurons
45 Neurons

(c) Angle of Sideslip Performance

Figure 4.7. Performance of the neural networks for high angle deflections at 20 m/s with 8◦ ≤ α ≤ 12◦

and 4◦ ≤ β ≤ 6◦.

accuracy in the predictions and are selected for the air data computer.

4.4 Conclusion

Computational methods to convert surface pressure measurements to air data parameters were

discussed in this chapter. A neural network approach was chosen over lookup tables or other forms

of function fitting. Neural networks do not require preexisting knowledge of the system and can

handle large data sets without issue. The training data for the networks was taken from the wind

tunnel test measurements for all airspeeds with angles from −5◦ ≤ α ≤ 12◦ and −6◦ ≤ β ≤ 6◦.

Various 3, 9, 15, 30, and 45 neuron networks were trained using the Levenberg-Marquardt process

to compute Va, α, and β. The results from the training and validation processes are then used

to compare the performance of the networks.

47

The 30 neuron neural networks represent the best and most efficient computational methods

for the wind vector parameters. The 30 neuron models demonstrate the same performance as the

45 neuron networks, but with hundreds of fewer required parameters. This smaller size makes it

easier to implement on the air data computer. The three Va, α, and β neural networks are now

ready to be applied to actual flight tests for real-world performance validation.

Chapter 5
Gliding Flight Tests

The wind sensing system’s performance during simple glide tests is covered in this chapter.

Section 5.1 discusses the setup and instrumentation of the Omega II for the tests. GPS measure-

ments are used for validation purposes, although more complex sensors to measure the full true

wind vector are unfortunately unavailable. Section 5.2 details the systems response to multiple

flights. One steady glide with minimal maneuvering identifies the baseline performance of the

system since the GPS-derived estimates are more accurate in trimmed flight. Two other flights

with elevator and rudder doublets demonstrate the longitudinal and directional responses of the

system.

5.1 Testing Setup

For the flight tests, the ArduPilot Mega used as the air data computer also functions as the

R/C controller for the Omega II. The ArduPilot is switchable between basic autopilot control

and fly-by-wire R/C control. During these tests, the autopilot functionality was removed and

all flights are flown under full manual control. The Arduino is responsible for managing all

the digital input and output commands on the aircraft. The ArduPilot interprets PPM signals

from a 72 MHz, 8-channel Castle Creations Berg4 receiver for pilot commands for aileron, flap,

elevator, and rudder deflections. It then converts the pilot commands to servo PWM signals and

determines the correct V-tail, flap crow, and differential aileron mixing. While the ArduPilot

serves as the flight control system computer, it still handles the data acquisition of the the wind

sensing system.

5.1.1 Sensor Integration

A number of components are attached to the ArduPilot Mega for the glide test validation flights.

The most necessary components are the Freescale pressure transducers. The transducers are the

same exact sensors from the wind-tunnel testing arranged in the same exact order. This will

49

cut down on any issues caused by different bias or resolution between sensors. Unlike in the

wind-tunnel tests, the pressure transducers are connected to a proto-board that fits over top of

the ArduPilot board rather than directly to the ArduPilot itself. This connection saves premium

space within the tightly packed airframe. All the Arduino pins from before are connected back

to the same sensors and the proto-board slides over top of the ArduPilot as seen in Figure 5.1.

These three pressure transducers are solely responsible for all the surface pressure measurements

on the aircraft.

Figure 5.1. The proto-board shield mounted to the ArduPilot Mega.

GPS measurements from a MediaTek GPS receiver monitor the position and groundspeed

of the aircraft. The GPS receiver used is a MediaTek MT3329 reciever with a breakout board

specifically configured for use with an ArduPilot Mega [45]. Shown in Figure 5.2, the GPS

receiver is mounted on the outside of the Omega II’s canopy to prevent interference from the

carbon fiber fuselage acting as a Faraday cage. Even though the GPS receiver does not measure

airspeed or aerodynamic angles, the groundspeed and altitude readings give an indication of the

aircraft’s overall flight path. This provides some form of validation for the wind vector sensing

system and groundspeed matches airspeed on windless days. The GPS can later be coupled

with altitude sensors to determine pitch angle using vertical speed. GPS measurements form an

integral part of the validation techniques to verify the air data sensor’s performance.

Data transmission is handled with two 2.4 GHz XBee Pro wireless radios. One module

connects to the Arduino proto-board shield while a second connects to a laptop ground station.

Both modules are capable of transmitting and receiving data, although data is only transmitted

from the Arduino to the laptop module during flights. The XBee antenna protrudes from the

aircraft’s canopy right behind the GPS receiver and can also be seen in Figure 5.2. The XBee’s

2.4 GHz radio frequency was chosen since it doesn’t conflict with the 72 MHz R/C receiver.

The XBee modules allow the measurements from the wind sensing system and the other

50

Figure 5.2. MediaTek GPS receiver mounted to airframe.

components to be stored externally on the laptop computer. The XBee radios are set to 57600

baud rate to allow large data packets to pass quickly to the ground station. Messages are also

kept brief to save bits and aid in the transmission of messages. Faster data transmission gives

finer measurements and prevents information from being lost or bottle-necked. All the data

packets are tagged with the Arduino time to indicate the staggering of the messages and check

for errors or time delays.

5.1.2 Data Packets

Four main data packet messages are sent over the XBee modules. These messages are listed

below:

1. GPS packet

The GPS data outputs in the following format:

<Identifier; Arduino timer; latitude; longitude; altitude; groundspeed; course; # of SVs

visible; GPS time>

Note that all the units are in meters, meters/second, seconds, or degrees where appro-

priate. These measurements are limited by the GPS receiver and are sent as soon as they

arrive for a speed of 1 Hz. An example packet is shown:

<$GP; 1101; 23.0985721; 120.2843832; 120; 20; 123.1; 4; 03:35:23.10>

51

2. Wind sensor packet

The wind data is sent in the following format:

<Identifier; Arduino timer; airspeed; angle of attack; angle of sideslip; checksum>

The wind sensor packet includes all the pressure readings as well as a checksum. Be-

cause the neural networks have not been verified, the raw measurements are sent to the

computer and processed offline rather than on the Arduino itself. The checksum is the

same 3 ∗ Va + 5 ∗ α+ 7 ∗ β formula from the wind-tunnel test data. An example packet is

shown:

<$PR; 1102; 512, 512, 512, 7221>

3. Radio input packet

The pilot commands received by the R/C receiver are stored and repeated back in the

following format:

<Identifier; Arduino timer; L. aileron; R. aileron; elevator; rudder; autopilot mode; pitch

trim; autopilot airspeed; flap setting>

The numbers are sent in PPM format and reflect the commands before V-tail, crow, or

differential aileron mixing. The autopilot mode and airspeed commands are currently dis-

abled. An example packet is shown:

<$RI; 1103; 1500; 1500; 1600; 1400; 2000; 1507; 1837; 1900>

4. Servo output packet

The commands to the servos are also sent to the ground station in the following format:

<Identifier; Arduino timer; L. aileron; L. flap; R. flap; R. aileron; L. ruddervator; R.

ruddervator>

These servo commands reflect the mixing and are in PWM format. The flap servos were

disabled during the flights as they were not needed. An example packet is shown:

<$SO; 1104; 1500; 1500; 1500; 1500; 1600; 1200>

52

5.2 Neural Network Results

The 30 neuron Va, α, and β neural networks trained in Chapter 4 are applied to the flight test

data. The neural networks are implemented offline rather than onboard the computer to speed

up data analysis and because the best network model was not clearly identified on the dates the

aircraft was flown. Raw pressure data is collected from the pressure transducers by the Arduino,

sent to the laptop via the XBee, and received through Hyperterminal to externally save the data.

Before each flight, the first 5 seconds of the data recordings are used to identify the calibration

offset necessary to rezero the readings while the aircraft is at rest. Unexpectedly, this offset

changed noticeably from the wind-tunnel tests and varied from flight to flight, even without

wind. Because this discrepancy was unexpected, a better method was not in place and instead

the data was shifted down manually until it matched the wind-tunnel measurements taken while

at rest.

After post-processing the raw data with the correct tare, the measurements are sent to the

neural networks. The tared data is normalized according to the same procedure as before with

the same exact numbers. These normalized measurements are then fed into each neural net-

work. The measurements are not filtered or pre-processed aside from the normalization scaling

transformations described in order to represent a real-time implementation. The results from the

neural networks should then behave in the exact same manner as a system onboard the Arduino.

A total of six glide tests were flown with the FADS-equipped Omega II sailplane. All of

the flights were conducted during the early daylight hours to minimize wind and gusts. The

glider was thrown off a 13-meter slope in a South-East heading, which was maintained for most

of the flights. Each flight consisted of simple, deliberate maneuvers except during the first 5

seconds of flight. During these few initial seconds after hand-launching, large variations occurred

as the pilot quickly stabilized the aircraft, often from dangerous orientations. According to the

University Park Airport’s ATIS weather report, the wind speed for that morning was 3 m/s

North or North-East [46]. The testing site was surrounded by trees and slopes on three sides and

no noticeable winds were observed during the tests, despite the ATIS reading 7 miles away.

Results from each of the glide tests are compared against the GPS measurements. The

airspeed output is compared to the GPS groundspeed to give an indication of the neural network’s

accuracy, especially on a calm day. Since the wind at the test site appeared negligible, the

groundspeed from the GPS can be assumed to be roughly equal to the airspeed. Angle of

attack output is compared against an α estimate derived from a steady glide assumption and

the groundspeed. Using the aircraft’s 11.10 N weight and other aircraft parameters, the angle of

attack can be estimated for groundspeed with Equation 5.1:

αg =
W

0.5 ∗ ρ ∗ Vg
2 ∗ S ∗ a3D

(5.1)

where ρ = 1.2295 kg/m3 on that day and a3D = 0.1043/◦. There are no equivalent comparisons

for β from the GPS data, but it’s assumed β ≈ 0◦ unless excited by lateral-directional commands.

53

These methods provide a good validation technique for verifying the accuracy of the wind sensing

system in the absence of a true validation sensor or technique.

5.2.1 Steady Glide

System output for a steady gliding flight is pictured in Figure 5.3. Aside from the first 5 seconds

of flight as the pilot stabilizes the aircraft after the hand-launch, there is minimal pilot input.

Only minor corrections to level the wings and slight nose up elevator to lightly flare for landing

are sent to the computer.

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

Time (s)

A
irs

pe
ed

 (m
/s

)

Estimate
Groundspeed

(a) Airspeed Output

2 4 6 8 10 12 14 16 18 20
−2

0

2

4

6

8

10

12

14

Time (s)

A
ng

le
 o

f A
tta

ck
 (d

eg
)

Estimate
From Groundspeed

(b) Angle of Attack Output

2 4 6 8 10 12 14 16 18 20
−15

−10

−5

0

5

10

15

Time (s)

A
ng

le
 o

f S
id

es
lip

 (d
eg

)

Estimate

(c) Angle of Sideslip Output

Figure 5.3. Wind vector output from the neural networks for a steady glide flight test.

Airspeed and groudspeed in Figure 5.3(a) display nearly identical behavior. Since there

is minimal pilot input and the aircraft glides with no wind, the groundspeed should closely

match airspeed. The Va predictions show more fluctuations, although Vg would not pick up

the transients at a slower 1 Hz rate. Surprisingly, the Va neural network demonstrates good

54

predictions even when the aircraft flies at or below the lower limit of the training data, Va = 9

m/s.

Angle of attack and the associated groundspeed estimate are depicted in Figure 5.3(b). Just

like the airspeed and groundspeed, the computed α also displays close agreement with the trend

line of the expected αg value for a steady glide. Towards the end of the flight, the αg is slightly

lower than α; however, this agrees with the airspeed comparison since Vg > Va during the same

period. It makes sense that the α would be larger if the aircraft is flying at a lower airspeed.

Additionally, the aircraft is near the ground and the pilot flared the aircraft in ground effect at

this point. These conditions could further affect the Va and α surface pressure measurements

and the resulting computed parameters.

During the flight, β remains fairly constant with a slight negative bias. Only small rudder

adjustments were sent so the slight bias is probably the result of incorrect calibration in the

measurements that is manifesting in the results. Despite this bias, the computed β values remain

close to the expected 0◦ during the flight. All the Va, α, and β results suggest the neural networks

are accurate computational models for the wind parameters during a steady glide. Although the

exact true values are unknown, the GPS-derived estimates agree with the neural networks.

5.2.2 Longitudinal Response

Longitudinal response of the system is displayed in Figure 5.4. The aircraft is excited with two

elevator doublets to test the changes in Va and α. For the doublet input, the elevator is deflected

trailing-edge down for a nose down moment at 5.5 seconds into the flight followed immediately

by an elevator up command. The entire process is repeated 9.5 seconds into the flight as well.

After the doublet, the pilot stabilized the aircraft, partly accounting for the fluctuations in the

Va, α, and even β readings.

Figure 5.4(a) shows the airspeed and groundspeed for the test. In this case, the groundspeed

measurements can’t be compared as directly to Va and α as in the steady glide test because the

elevator doublet induces a highly dynamic response. Despite this, the trend in the groundspeed

agrees with the trend in the airspeed. The groundspeed still decreases as the average Va de-

creases and increases with the increasing airspeed. Since the GPS updates at 1 Hz, all the Vg

measurements seem delayed compared to the widely varying Va predictions. These variations

depict the effect of the rapid pitching at the elevator doublets. The aircraft picks up speed when

the nose is pitched down at t = 5.5 seconds and then slows as the nose is pitched back up. The

magnitudes seem off as the aircraft would stall at an airspeed of Va = 4 m/s, but the airspeed

behavior definitely displays the intuitive response.

Angle of attack response is illustrated in Figure 5.4(b). The aircraft isn’t in a steady glide

for most of the flight so the groundspeed estimate, αg, is inaccurate until the later part of the

flight when the aircraft glides in for a landing. Even though elevator commands pitch rate,

not α, the elevator doublet should be reflected in the angle of attack response. Assuming the

flight path remains roughly constant immediately following the elevator excitation, the near

55

2 4 6 8 10 12 14 16 18
0

2

4

6

8

10

12

14

Time (s)

A
irs

pe
ed

 (m
/s

)

Estimate
Groundspeed

(a) Airspeed Output

2 4 6 8 10 12 14 16 18
−2

0

2

4

6

8

10

12

14

Time (s)

A
ng

le
 o

f A
tta

ck
 (d

eg
)

Estimate
From Groundspeed

(b) Angle of Attack Output

2 4 6 8 10 12 14 16 18
−15

−10

−5

0

5

10

15

Time (s)

A
ng

le
 o

f S
id

es
lip

 (d
eg

)

Estimate

(c) Angle of Sideslip Output

Figure 5.4. Wind vector output from the neural networks for a glide excited with elevator doublets.

instantaneous elevator commands should induce a rapid change in α for a few seconds while the

aircraft responds. Indeed, α decreases following the nose-down pitching command and increases

after the nose-up elevator input.

The longitudinal response of the system readily matches the expected trends in the Va and

α values. The elevator doublet is noticeably detected by the neural networks and seen in the

results. The magnitudes of the parameters appear to have a slight bias, but the true values are

unknown. Additionally, the biases from this particular test flight seem abnormal compared to

the other flights and could slant the output. Overall, after some fine-tuning, the system appears

fully capable of detecting longitudinal variations in the wind vector.

56

5.2.3 Directional Response

The Omega II is excited with rudder doublets to induce a lateral-directional response. The neural

network output for this test is shown in Figure 5.5. A rudder doublet in this case consists of

a trailing-edge left rudder command to yaw the aircraft left followed by opposite rudder to the

right. In this flight, the two doublets are performed in rapid succession with one at t = 5 seconds

and the second at t = 6.5 seconds into the flight. Just like the elevator in the longitudinal

response, the rudder does not directly control β, but the rudder still induces a change in the

angle of sideslip as the directional response.

2 4 6 8 10 12 14 16 18
0

2

4

6

8

10

12

14

Time (s)

A
irs

pe
ed

 (m
/s

)

Estimate
Groundspeed

(a) Airspeed Output

2 4 6 8 10 12 14 16 18
−2

0

2

4

6

8

10

12

14

Time (s)

A
ng

le
 o

f A
tta

ck
 (d

eg
)

Estimate
From Groundspeed

(b) Angle of Attack Output

2 4 6 8 10 12 14 16 18
−15

−10

−5

0

5

10

15

Time (s)

A
ng

le
 o

f S
id

es
lip

 (d
eg

)

Estimate

(c) Angle of Sideslip Output

Figure 5.5. Wind vector output from the neural networks for a glide excited with rudder doublets.

The angle of sideslip response to the rudder doublet is plotted in Figure 5.5(c). The β results

reflect the commands since β increases as the aircraft yaws left and decreases as it yaws right.

The sideslip readings flatten out at β = -12◦ which is at least partly due to the measurements

exceeding the training data limit at β = -6◦. The rudder causes extremely large and rapid

57

changes in sideslip so these β predictions outside the training range are questionable, but don’t

appear unreasonable. Immediately after the second doublet, the transients are expected as the

aircraft stabilizes itself. All the β values closely mirror the intuitive results.

The airspeed and groundspeed plots in Figure 5.5(a) should not display large changes as a

result of the rudder commands. Along with α, only token changes in Va are recorded during

the rudder commands, except for two particular points. The airspeed drops rapidly for a brief

instant after the rudder inputs are sent, but quickly recover back to the previous values. This

behavior is unexpected, although it could be due to unknown transients in the surface pressure

measurements that manifest during the maneuver and affect the neural network output. Even

with the airspeed drops and recoveries, the neural network readings follow expectations with

little change in the mean value.

The neural network results agree with the expected directional response of the system. Air-

speed and angle of attack predictions do not demonstrate any response to the rudder doublet

aside from the extraneous transients. Angle of sideslip matches the change expected from the

left and right rudder commands. The success of the system proves it can detect the trends in

the directional response given pilot inputs.

5.3 Conclusion

The 30 neuron feedforward networks from Chapter 4 compute Va, α, and β for multiple glide tests

of the FADS-equipped Omega II. The aircraft is instrumented with available sensors to measure

pressure and GPS packets and to wirelessly transmit that data to a ground station. Unfortu-

nately, a more complex validation method was not available so the exact wind data parameters

are unknown. Despite this, numerous flights are performed to compare the response of the sys-

tem to longitudinal and directional inputs. The system outputs agree with GPS measurement

derived estimates for a steady glide. Angle of attack and sideslip predictions follow the expected

trends for elevator and rudder doublets to test the longitudinal and direction responses. Without

knowing the exact true values, the air data results of the tests indicate the system’s apparent

accuracy in computing the wind vector during both steady flights and dynamic maneuvers.

Chapter 6
Conclusion

Small uavs’ low size, weight, and cost make them attractive for use in various applications. This

small size and weight proves to be a double-edged sword as it also limits the amount of fuel or

battery space available and the resulting flight endurance. More fuel or batteries can be added,

but at the cost of mission payload. Energy harvesting techniques such as autonomous soaring

offer the potential to alleviate the lack of endurance without additional fuel.

Dynamic soaring is a particular form of soaring that exploits naturally-occurring spatial wind

gradients to extract energy from the environment. Spatial wind gradients occur at shear layers

near the surface of the ground or sea, on the leeward side of hills, or even in high altitude

jet streams. These are rather reliable and predictable sources of potential energy. Albatrosses

routinely fly hundreds of miles out to sea without flapping their wings using dynamic soaring

alone. Despite its large potential, this method has one daunting barrier: dynamic soaring requires

precise knowledge of the local wind vector to be successfully employed. Out of all the species of

birds, albatrosses and petrels are the only birds capable of dynamic soaring. These birds possess

unique sensory organs in their beaks and nostrils that act as pitot static systems for measuring

airspeed and orientation. If uavs are going to mimic the albatross dynamic soaring method, they

will also require similar sensing systems to determine the wind vector.

This thesis presents a method for wind vector sensing on a small uav to enable it to em-

ploy dynamic soaring techniques. Different forms of wind sensing exists, but are ill-suited for

application on small uavs. Small aircraft are limited in the weight and space alloted to a sensor

which prevents most wind vanes and booms from being implemented. The low-cost nature of

the aircraft also precludes several thousand dollar probes from being mounted to a rough land-

ing glider that only costs a few hundred dollars. To address these concerns, the approach uses

surface pressure measurements taken with flush pressure ports on a nosecone to determine the

wind parameters. This flush air data system (FADS) mimics the same method proven successful

by albatrosses.

A potential flow analysis of a hemispherical nosecone model is performed to validate the

59

concept of a FADS nosecone. The potential flow model predicts the differential pressure readings

expected over the nosecone and identifies trends within the data. Results from the analysis point

to the optimal configuration and location of the pressure ports to maximize the accuracy and

sensitivity of the system. The design suggested from the potential flow analysis is adapted to

create a functioning prototype. A rapid prototyper machined the nosecone while commercially

available pressure transducers were used to keep the cost down. The entire functioning system

cost less than $130 to produce, but is still fully capable of sensing the aircraft’s speed and

orientation in the local wind field.

Neural networks are implemented in the air data computer to calculate airspeed, angle of

attack and angle of sideslip from the surface pressure readings. Wind-tunnel tests of the nosecone

and FADS system collected data at various airspeeds and aerodynamic angles. Three separate

feedforward neural networks to each compute Va, α, and β are trained using the wind-tunnel

measurements and Matlab’s Neural Network Toolbox. Five different networks of increasing

complexity and size are tested for each wind parameter with the remaining data. The 30 neuron

networks are chosen over 45 neuron models because 30 neuron neural networks performed nearly

the same as the more complex models, but with 225 fewer stored parameters.

Gliding tests with the FADS-equipped aircraft were flown to analyze the performance of the

system during actual real-world flights. The performance of the neural networks and the system

is evaluated for steady glides, longitudinal maneuvers, and directional slips. Although the exact

true wind parameters can not be determined without more complex validation techniques, GPS

measurement derived estimates are compared against the results as a baseline verification. The

comparison and trends in the system output qualitatively show the neural-network-based FADS

nosecone is capable of accurate wind sensing.

6.1 Summary of Contributions

6.1.1 Design of Flush Sensing Nosecone

A functional nosecone capable of determining the local wind field at airspeeds up to 30 m/s is

developed. The system measures surface pressure at five flush ports distributed over the nosecone.

These are coupled with two static pressure ports housed in the fuselage. Low-cost, commercial

pressure sensors and microcontrollers are chosen to minimize the cost of the system.

6.1.2 Neural Network Based Air Data Computer

Feedforward neural network models are created to each compute the airspeed, angle of attack,

and angle of sideslip wind parameters. The networks were trained with subsets taken from wind-

tunnel measurements of the FADS nosecone. Output performance of the networks was verified

using an independent testing subset of the wind-tunnel test data.

60

6.1.3 Performance Validation Through Glide Tests

The trained neural networks were applied to results taken during simple flight tests of the aircraft.

Results from various flights testing steady glide and longitudinal and directional responses of the

system demonstrated correct qualitative behavior. The system showed agreement with GPS-

derived estimates of the true wind vector and intuitive expectations of the transient response.

6.2 Recommendations for Future Work

6.2.1 Sensor Selection

While the Freescale differential pressure sensors demonstrate they are capable of sensing changes

in the wind vector, the limitation of their sensitivity is seen in Chapters 4 and 5. Before it can

reach the level of precision required for dynamic soaring, the FADS system needs more sensitivity

at lower airspeeds and aerodynamic angles. The aircraft will reach airspeeds at or in excess of 30

m/s during these maneuvers so the sensors still need an adequately matched pressure range. The

Freescale transducers worked well, but it was clear from the results they had too large a pressure

range to meet the necessary sensitivity. The wind-tunnel and flight test results suggest the

Honeywell differential pressure sensor or similarly ranged products will produce clearer readings

which would go a long way towards improving precision. Smaller pressure range sensors, possibly

coupled with filters, would possess the performance necessary for dynamic soaring uavs.

The results from the wind-tunnel tests and gliding flights have shown the airspeed can be

correctly determined from the differential reading between the total and static pressure ports.

As mentioned before, coupling the total and static measurements in one differential pressure

transducer prevented them from being separated. Employing two single port sensors in place

of the dual port transducer would enable static pressure measurements to be used for pressure

altitude and density computation, especially when combined with a temperature sensor. This will

not necessarily improve the accuracy of the wind vector sensing but would expand the capabilities

of the system. If the space is available after a redesign of the electrical components and proto-

board, independent static pressure measurements would serve as a convenient supplement to the

full wind vector.

6.2.2 Testing

The initial glide tests demonstrated the viability of the neural network FADS system; however,

more thorough evaluation testing is necessary before the system is ready for use with a dynamic

soaring controller. Many more flights with hi-start launches for higher altitudes are necessary

since the simple hand-launched glide tests were limited in the aggressiveness and duration of

maneuvers due to the low altitude. Although the GPS-derived estimates for the wind parameters

gave good indication of the accuracy, some independent form of true Va, α, and β measurement

is required. Ideally, this would come through limited use of a 5-hole probe to simultaneously

61

record the wind data alongside the FADS system. Additional verification methods like tower

flyby or dynamic maneuvers have been used to identify the true wind vector [1,42]. Longer flight

tests with independent verification methods would prove indispensable and would quantify the

accuracy of the system.

In addition to expanding flight tests, additional wind-tunnel tests would improve the system’s

performance. According to the glide test results, the aircraft does fly at airspeed below 10 m/s for

extended periods. Since the training data stopped at 10 m/s, the system’s accuracy for output

below this limit can’t be verified. Further wind-tunnel tests to collect additional low-speed

training data would solidify the accuracy of the system in these regions. At the other end of

the airspeed spectrum, increased tests at higher airspeeds would fill in gaps in the training data.

Since the stepper motors used in the wind-tunnel tests jammed at high angle deflections at high

airspeed, shortened ranges of data were collected at higher airspeeds. If the motor is replaced

or rebuilt, full ranges of angular deflections would prevent any skewing in the neural network

training process caused by an inadequate amount of training data at high α, high Va combinations.

Additional wind-tunnel testing would further enhance the neural network performance with the

extra training data in underrepresented regions of the flight envelope.

Bibliography

[1] Haering, E. A. (1995) Airdata Measurement and Calibration, Tech. Rep. 104316, National
Aeronautics and Space Administration.

[2] Space Age Control (2012), “State-of-the-Art Air Data Products Solutions Guide,” On-
line.
URL http://www.spaceagecontrol.com/adpgal.htm

[3] Dartmoor Gliding Society (2012), “What Is Gliding,” Online.
URL http://www.dartmoorgliding.co.uk/html/what is gliding.html

[4] Langelaan, J. W. and N. Roy (2009) “Enabling New Missions for Robotic Aircraft,”
Science, 326(5960), pp. 1642–1644.

[5] Depenbusch, N. T. and J. W. Langelaan (2010) “Receding Horizon Control for Atmo-
spheric Energy Harvesting by Small UAVs,” in AIAA Guidance, Navigation, and Control
Conference, AIAA Paper 2010-8177, Toronto, Ontario, Canada.

[6] Sachs, G. and O. da Costa (2006) “Dynamic Soaring in Altitude Region Below Jet
Streams,” in AIAA Guidance, Navigation, and Control Conference, AIAA Paper 2006-6602,
Keystone, Colorado.

[7] Pennyquick, C. J. (2002) “Gust Soaring as a Basis for the Flight of Petrels and Albatrosses
(Procellariiformes),” Avian Science, 2(1).

[8] Sukumar, P. and M. Selig (2010) “Dynamic Soaring of Sailplanes over Open Fields,” in
28th AIAA Applied Aerodynamics Conference, AIAA Paper 2010-4953, Chicago, Illinois.

[9] Barnes, J. P. (2011), “How Flies the Albatross: The Flight Mechanics of Dynamic
Soaring,” Online Presentation.
URL http://www.howfliesthealbatross.com/downloadables/Albatross%20Dynamic%20Soaring.pdf

[10] Morris, A. (2007), “Birds Art Bulletin,” Online.
URL http://www.birdsasart.com/bn221

[11] Zufelt, K. (2011), “Checklist of Seabirds of the World,” Online.
URL http://www.pelagicodyssey.ca/page4

[12] Chakrabarty, A. and J. W. Langelaan (2010) “Flight Path Planning for UAV Atmo-
spheric Energy Harvesting Using Heuristic Search,” in AIAA Guidance, Navigation, and
Control Conference, AIAA Paper 2010-8033, Toronto, Ontario, Canada.

63

[13] Allen, M. J. and V. Lin (2007) “Guidance and Control of an Autonomous Soaring Vehicle
with Flight Test Results,” in 45th AIAA Aerospace Sciences Meeting and Exhibit, AIAA
Paper 2007-867, Reno, Nevada.

[14] Andersson, K. (2009) “Extending Endurance for Small UAVs by Predicting and Searching
for Thermal Updrafts,” Mechanical and Astronautical Engineering Dept., Naval Postgrad-
uate School, Monterey, California, 2009.

[15] Andersson, K., I. Kaminer, and K. D. Jones (2010) “Autonomous Soaring; Flight Test
Results of a Thermal Centering Controller,” in AIAA Guidance, Navigation, and Control
Conference, AIAA Paper 2010-8034, Toronto, Ontario, Canada.

[16] Edwards, D. J. (2008) “Implementation Details and Flight Test Results of an Autonomous
Soaring Controller,” in AIAA Guidance, Navigation, and Control Conference, Reston, Vir-
ginia.

[17] Edwards, D. J. and L. M. Silverberg (2010) “Autonomous Soaring: The Montague
Cross-Country Challenge,” Journal of Aircraft, 47(5), pp. 1763–1769.

[18] Patel, C. K., H.-T. Lee, and I. M. Kroo (2008) “Extracting Energy from Atmospheric
Turbulence,” in XXIX OSTIV Congress, OSTIV, Lsse-Berlin, Germany.

[19] Rayleigh (1883) “The Soaring of Birds,” Nature, pp. 534–535.

[20] Sachs, G., J. Traugott, and F. Holzapfel (2011) “Progress Against the Wind with
Dynamic Soaring - Results from In-Flight Measurements of Albatrosses,” in AIAA Guidance,
Navigation, and Control Conference, AIAA Paper 2011-6225, Portland, Oregon.

[21] Zhao, Y. J. (2004) “Optimal Patterns of Glider Dynamic Soaring,” Optimal Control Ap-
plications and Methods, 25, pp. 67 – 89.

[22] Zhao, Y. J. and Y. C. Qi (2004) “Minimum Fuel Powered Dynamic Soaring of Unmanned
Aerial Vehicles Utilizing Wind Gradients,” Optimal Control Applications and Methods, 25,
pp. 211–233.

[23] Deittert, M., A. Richards, C. A. Toomer, and A. Pipe (2009) “Dynamic Soaring
Flight in Turbulence,” in AIAA Guidance, Navigation, and Control Conference, AIAA Paper
2009-6012, Chicago, Illinois.

[24] Deittert, M., A. Richards, C. Toomer, and A. Pipe (2009) “Engineless Unmanned
Aerial Vehicle Propulsion by Dynamic Soaring,” Journal of Guidance, Control, and Dynam-
ics, 32(5).

[25] Lawrance, N. R. and S. Sukkarieh (2009) “Wind Energy Based Path Planning for
a Small Gliding Unmanned Aerial Vehicle,” in AIAA Guidance, Navigation, and Control
Conference, AIAA Paper 2009-6112, Chicago, Illinois.

[26] ——— (2010) “Simultaneous Exploration and Exploitation of a Wind Field for a Small
Gliding UAV,” in AIAA Guidance, Navigation, and Control Conference, AIAA Paper 2010-
8032, Toronto, Ontario, Canada.

[27] Gordon, R. (2006) Optimal Dynamic Soaring for Full Sized Sailplanes, Master’s thesis,
Air Force Institude of Technology.

[28] Larson, T. and P. M. Siemers (1980) Use of Nose Cap and Fuselage Pressure Orifices for
Determination of Air Data for Space Shuttle Orbiter Below Supersonic Speeds, Tech. Rep.
1643, National Aeronautics and Space Administration.

64

[29] Whitmore, S. A., B. R. Cobleigh, and E. A. Haering (1998) Design and Calibration of
the X-33 Flush Airdata Sensing (FADS) System, Tech. Rep. 206540, National Aeronautics
and Space Administration, Dryden Flight Research Center.

[30] Larson, T., S. A. Whitmore, L. J. Ehernberger, J. B. Johnson, and P. M. Siemers

(1987) Qualitative Evaluation of a Flush Air Data System at Transonic Speeds and High
Angles of Attack, Tech. Rep. 2716, National Aeronautics and Space Administration.

[31] Larson, T. J. and P. M. Siemers (1981) Subsonic Tests of an All-Flush-Pressure-Orifice
Air Data System, Tech. Rep. 1871, National Aeronautics and Space Administration.

[32] Crowther, W. J. and P. J. Lamont (2000) “A Neural Network Approach to the Cali-
bration of a Flush Air Data System,” School of Engineering, University of Manchester.

[33] Calia, A., E. Denti, R. Galatolo, and F. Schettini (2008) “Air Data Compution
Using Neural Networks,” Journal of Aircraft, 45(6), pp. 2078–2083.

[34] Rohloff, T. J., S. A. Whitmore, and I. Catton (1998) “Air Data Sensing from Surface
Pressure Measurements Using a Neural Network Method,” AIAA Journal, 36(11), pp. 2094–
2101.

[35] Samy, I., I. Postlethwaite, , and D.-W. Gu (2010) “Neural-Network-Based Flush Air
Data Sensing System Demonstrated on a Mini Air Vehicle,” Journal of Aircraft, 47(1), pp.
18–31.

[36] Digi-Key (2012), “HSCDRRN002NDAA3 Honeywell Sensor,” Online.
URL http://www.digikey.ie

[37] Paces, P., K. Draxler, V. Hanzal, T. Censky, and O. Vasko (2010) “A Combined
Angle of Attack and Angle of Sideslip Smart Probe with Twin Differential Sensor Modules
and Doubled Output Signal,” in IEEE Sensors 2010 Conference, Institute of Electrical and
Electronics Engineers.

[38] Chen, X. Q., Q. Ou, D. R. Wong, Y. J. Li, M. Sinclair, and A. Marburg (2009)
“Flight Dynamics Modelling and Experimental Validation for Unmanned Aerial Vehicles,”
in Mobile Robots - State of the Art in Land, Sea, Air, and Collaborative Missions (X. Q.
Chen, Y. Q. Chen, and J. G. Chase, eds.), chap. 9, InTech, pp. 177 – 202.

[39] DIY Drones (2012), “Breakout Board MPXV7002DP,” Online.
URL https://store.diydrones.com

[40] ——— (2012), “ArduPilot Mega 1 - Arduino Compatible UAV Controller w/ ATMega2560,”
Online.
URL https://store.diydrones.com

[41] Oriental Motor (2012) “Stepping Motors,” Oriental Motor General Catalog 2012/2013.

[42] Parameswaran, V., R. V. Jategaonkar, and M. Press (2005) “Five-Hole Flow Angle
Probe Calibration from Dynamic and Tower Flyby Maneuvers,” Journal of Aircraft, 42(1),
pp. 80–86.

[43] Wenger, C. W. and W. J. Devenport (1999) “Seven-Hole Pressure Probe Calibration
Method Utilizing Look-Up Error Tables,” AIAA Journal, 37(6), pp. 675–679.

[44] MathWorks, Inc. (2012), “Neural Network Toolbox,” Online.
URL http://www.mathworks.com/help/toolbox/nnet/

65

[45] DIY Drones (2012), “MediaTek MT3329,” Online.
URL https://store.diydrones.com

[46] Weather Underground (2012), “Daily Observations for University Park, PA,” Online.
URL http://www.wunderground.com

