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Abstract

The motivation behind the research described in this thesis is be able to navigate
a small unmanned aerial vehicle (UAV) through complex environments. Missions
envisioned for small UAVS now require low altitude flights among many obstacles.
These obstacles can be simple shapes (telephone poles) or more complex shapes
(corners and protrusions of an urban canyon).

This thesis focused on the problem of estimating obstacle locations and safe
navigation to a known goal location. The close proximity and complex nature of
these environments requires a system of navigation and obstacle avoidance using
onboard sensors. However, payload limitations of small UAvVs place significant
restrictions on sensor size, weight, and power consumption. This thesis describes
the development and simulation of an algorithm that enables safe navigation using
only a monocular camera and GPS corrected inertial navigation system (GPS/INS).

The obstacle estimation problem poses many challenges. First, the camera
measurements (bearings to obstacles and bearing rates of the obstacles due to
motion of the vehicle) are heavily corrupted with noise. This greatly reduces
the certainty of information obtained from the camera. Second, the equations
governing the vehicle motion and vision measurements are highly non-linear. The
combination of noisy measurements with non-linear equations leads to significant
uncertainties in the estimation problem.

Traditional feature-based mapping techniques (like the Kalman Filter) become
intractable in this environment as too many features must be mapped to resolve
the complex shaped obstacles. A local occupancy grid is instead used to store
estimates of occupied space. The local occupancy grid has a limited size that can be
specified depending on the sensor field of view and computational condiserations.
The origin of the grid is fixed to the vehicle and in this application the orientation
is fixed to an inertial frame. By keeping the grid centered on the vehicle, vehicle
motion must be accounted for in the grid with a motion update step. A potential
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field trajectory generator provides the means for vehicle navigation and obstacle
avoidance. The algorithm performance is examined through simulations in an
environment modeled after the McKenna Military Operations in Urban Terrain
site at Ft. Benning, GA.
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Chapter

Introduction

This thesis presents the development and simulation of a an algorithm which en-
ables safe autonomous navigation in complex environments using a limited sensor
suite. The motivation for this research is to fly small unmanned aerial vehicles
(uAvs) through cluttered environments consisting of trees and buildings. The size
of the UAvs limits the types of sensors which are available to gather information
about its surroundings. A monocular camera is used to obtain bearing and opti-
cal flow measurements from obstacles as it fits within both the power and weight
restrictions.

The estimation problem poses many challenges. First, the vision measurements
are heavily corrupted with noise. This greatly reduces the certainty of informa-
tion obtained from this sensor. Second, the equations governing the system and
measurements are highly non-linear. The combination of noisy measurements with
non-linear equations leads to significant uncertainties in the estimation problem
which must be accounted for.

This thesis will:

e Provide a framework for navigation using only a monocular camera and
GPS corrected inertial navigation system (GPS/INS). This involves prepar-
ing mathematical models for vehicle dynamics and the on board sensors, and

selecting an appropriate tool to estimate and retain the locations of obstacles.

e Present a solution to the navigation problem based on an occupancy grid

and a potential field controller



Figure 1.1. The McKenna MOUT Site at Ft. Benning, GA is an example of a com-
plex cluttered environment. It consists of a central town of various shaped buildings
surrounded by a forest.

e Present simulation results to show the effectiveness of the designed system

in avoiding obstacles through both a forest and urban environment.

1.1 Motivation

Currently, many unmanned aerial vehicles (UAVs) operate at high altitudes where
the region is free of obstacles. However, this limits the tasks which can be per-
formed. Missions envisioned for small UAVs now require low altitude flights among
many obstacles such as search and rescue in forests and surveillance in urban en-
vironments (such as the one shown Fig. 1.1). The close proximity and complex
nature of these environments requires a system of navigation and obstacle avoid-
ance using on board sensors.

Current technologies for on board detection of obstacles rely heavily on LIDAR
and RADAR, large active sensors with great power requirements. The Department
of Defense (DoD) specifies passive detection as a goal for all unmanned systems

and lists reconnaissance as the number one priority for all classes of unmanned
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Figure 1.2. Schematic of a mission scenario. The UAV must avoid collisions with any
trees and buildings and navigate from a known start position to a known goal.

systems [1]. In addition to the restrictions imposed by passive sensing, vehicle
size adds significant complications: sensing payloads are restricted in both weight
and power requirements and vehicle performance requirements are very strict to
complete the necessary maneuvers for obstacle avoidance.

With the advent of low-cost, light-weight and low power CCD cameras, the use
of vision systems for obstacle avoidance has become an active field of research. In
addition to low power requirements and light weight, vision sensors are passive.
By not emitting an observable ping (like LIDAR and SONAR), vision systems lend
themselves to stealth applications.

This thesis is concerned with obstacle avoidance for small UAV operating in
complex, cluttered, unsurveyed environments (see Fig. 1.2 for a schematic). The
primary focus is on generating a local map of the environment which is suitable

for use with generic control and planning algorithms.

1.2 System Overview

Autonomous flight through an urban environment is a complex problem. Making
the problem even more difficult is the noisy measurements of bearing and optical
flow from the single camera. The block diagram in Fig. 1.3 shows a system that
uses the given sensors (GPS/INS and a monocular camera) to perform obstacle
avoidance and safe navigation to the goal.

The system is comprised of three major parts: a stabilized aircraft; an esti-
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Figure 1.3. System block diagram

mator; and a trajectory planner. For this thesis, the stabilized aircraft represents
a vehicle platform which can maintain a desired flight condition. As the vehicle
moves through the environment, the GPS/INS sensor outputs estimates of vehicle
states, X, (position, velocity, and orientation). A single forward-pointing cam-
era obtains measurements of bearing and optical flow (bearing rates) to obstacles,
Zcam- 1he estimator uses the available measurements of bearing and optical flow
combined with the estimated vehicle states provided by GPS/INS to compute a map
of obstacle position estimates. The trajectory planner uses knowledge of vehicle
state and the map of estimated obstacle locations to compute a safe path to the

goal.

1.3 Problem Description

The critical technology described is the development of a system which can success-
fully navigate to a goal while safely avoiding obstacles using only measurements of
bearing and optical flow and estimate of vehicle states from GpPs/INS. This thesis
presents solutions to the challenges faced in the navigation problem: managing
noisy sensors, estimating obstacle locations in complex terrain, and trajectory

planning using a local map.



1.3.1 Noisy Sensors

The camera obtains measurements of bearing and optical flow (bearing rate), both
very noisy measurements. To get an accurate estimate of obstacle location, a
robust estimator is necessary. In addition to the noisy sensor, this system must
also handle sensor dropouts (e.g. a brownout while operating over a desert).

This thesis proposes the use of a map to store estimates of obstacle location.
The map can continuously be updated with new information on obstacle location
taking account for the noise in measurements. Additionally, the map retains esti-
mates of obstacle locations in the case of sensor dropout so that obstacle avoidance

is still possible.

1.3.2 Estimating Obstacle Locations

Feature-based tracking techniques such as Simultaneous Localization and Mapping
(sLAM) (which have the advantage of not requiring the availability of camera mo-
tion measurements through external means such as GPS) have been successfully
used in mapping problems in the past[2]. However, these methods often need prior
knowledge of the terrain to initialize the Kalman Filter-based estimators. In cases
where no knowledge of the environment is known, they can be initialized using a
particle filter approach or estimated based on a terrain map(3, 4].

While these feature-based approaches work well in environments populated
with point obstacles (e.g. tree trunks in a forest), they quickly become intractable
in large environments or complex environments where obstacles are difficult to
define by features.

This thesis proposes the use of an occupancy grid as a map of obstacle locations.
The occupancy grid is shown to handle complex objects and portray their location

accurately and precisely.

1.3.3 Trajectory Planning

The vehicle should not only go to the goal, but also avoid obstacles along the
path to the goal. The estimator and map used in this thesis are designed to
be compatible with generic trajectory planners. In this thesis a potential field

approach is used for its simplicity and speed of computation|[5].



1.4 Related Work

There has been much research relating to the problem of navigation and obstacle
avoidance for mobile robots. The previous section presented references specifically
relating to Kalman Filter-based implementations, this section presents a more
detailed discussion of research in the related fields of vision based navigation and

occupancy grids.

1.4.1 Optical Flow

Vision based estimation methods have been popular recently due to low power and
weight requirements. Vision based techniques such as structure from motion seek
to build a three-dimensional model of the surrounding environment using known
motion of a monocular camera (e.g. [6]) but this is typically formulated as a batch
process and is thus not suited for real-time implementation.

Hrabar et al. have fused optical flow and stereo vision measurements on both
a tractor and unmanned helicopter to fly in urban canyons in real time[7]. Here
the optical flow measurement is used to turn the vehicle away when too large a
measurement is obtained. While the fusion system worked well and optical flow
measurements could keep the tractor centered in a corridor, the vehicle could not
navigate corners using the optical flow techniques.

Kim and Brambley proposed a system to hold a constant altitude by fusing
two optical flow measurements from optical mouse sensors in an extended Kalman
filter[8]. With dual optical flow, they are able to estimate both velocity and dis-
tance to ground. However, they make use of a terrain map to predict optical flow
measurements. Roberts et. al. uses stereo cameras to determine altitude above
the ground [9]. Optical flow measurements from both cameras are then combined
with the estimate of relative altitude to determine ground speed.

Chahl and Mizutani propose an optical flow method for ground avoidance[10].
Using one camera to measure optical flow at each pixel, they generate an elevation
map of the terrain ahead. Zufferey and Floreano also use 1-D cameras for optical
flow measurements to turn away from textured walls[11]. Netter and Franceschini
follow ground terrain using optical flow values from a simulated insect eye to

estimate the relative ground altitude[12].



Optical flow has been used for obstacle avoidance or ground speed estimation
by several researchers. However, direct reliance on measurements of optical flow

for obstacle avoidance results in low robustness to noise and sensor dropouts.

1.4.2 Occupancy Grids

Scherer et. al. recently successfully flew an autonomous helicopter through the
McKenna MOUT site at Ft. Benning, GA[13]. Their helicopter used a LIDAR
system to create a map of the surroundings and IMU and differential GPS mea-
surements to estimate the helicopter state. The use of LIDAR provides a near
perfect map of the surroundings (able to detect a 6 mm wire from 38m away)
which greatly assists navigation but comes at the high cost of power, weight, and
electromagnetic emissions.

Braillon et al. used stereo and optical flow to populate an occupancy grid
representation of the local environment, but their approach required identification
of a ground plane [14]. Usher also made use of occupancy grids to fuse data from
stereo vision and a scanning laser range-finder[15]. Here, each sensor generated
its own occupancy grid which were then combined using a weighted average. The
system did identify and avoid obstacles, but the tests were performed on a large
tractor capable of handling the heavy LIDAR system.

Badino et. al. used stereo cameras with a Kalman Filter to generate estimates
of obstacle locations and store them in a polar occupancy grid[16]. Dynamic
programming was used to find a connected line of closest obstacles to determine a
region of free space in front of the vehicle.

Recently, occupancy grids have been used with dynamic environments. Two
groups have used temporal occupancy grids to look at the change in the environ-
ment over time[17, 18]. By noting differences over time, dynamic obstacles can be
separated from static ones. Coué et. al. have used a 4 dimensional occupancy
grid to estimate obstacle location and velocity across a 2-dimensional space with
measurements from a scanning laser range finder[19]. This system both identifies
dynamic obstacles and accounts for their movement in prediction steps. How-
ever, the computational expense of this approach becomes too great for portable

computer systems as the size of the occupancy grid is increased.



Occupancy grids are useful for storing estimate of obstacle locations; however,
most current systems make use of LIDAR which is too heavy and power hungry a

device to use with small vehicles.

1.5 Contributions

The main contributions of this thesis are described below:

e Method for obstacle avoidance
A method for obstacle avoidance using only vision and GPS/INS sensors has
been developed. This system fuses estimates of vehicle states from an inertial
navigation system correctly by GPS with measurements from a camera to

determine relative obstacle locations.

e Estimator design
A map based on the occupancy grid was developed. Obstacle locations rela-
tive to the vehicle are estimated. This information was used by a trajectory

planner to compute a safe path to the goal through a complex environment.

e Performance verification through simulations
A simulation is run to test the performance of the designed system. Results
of simulations show that the occupancy grid based implementation provides a
solution to the navigation problem. The locations of obstacles are accurately

estimated and the vehicle reaches the goal on 95% of the simulation runs.

1.6 Reader’s Guide

The remainder of this thesis is organized as follows:

e Chapter 2 describes the navigation problem mathematically. It defines the
models for vehicle kinematics and the sensors. It also provides justification

and the derivation of the occupancy grid.

e Chapter 3 describes the tasks to be accomplished by the navigation system.
It then presents the mathematical implementation of the occupancy grid and

the controller.



e Chapter 4 begins with a description of the simulation setup designed to
test the navigation system proposed in Chapter 3. It then presents results

of the 2 dimensional simulations.

e Chapter 5 summarizes the results of this research and provides recommen-

dations for future work.



Chapter

The Navigation Problem

The following chapter defines the navigation problem. The major topics discussed

are:

1. Problem Statement: The setup of the navigation problem is detailed. A sys-
tem is described to navigate through a previously unsurveyed obstacle field.
The use of an occupancy grid is proposed to handle the complex environment

and noisy measurements.

2. System Models: A mathematical model is proposed to simulate vehicle dy-
namics. A sensor model is proposed to emulate the working of the sensors,
a single forward looking camera. The measurements of bearings and bearing

rates to obstacles are simulated by this model.

3. Occupancy Grid: The mathematical derivation of the occupancy grid is pre-
sented. To make the occupancy grid easier to implement computationally,

the estimation equation is transformed to log-odds form.

2.1 Problem Statement

The situation considered here is a vehicle moving through an unsurveyed obstacle
field consisting of small, convex obstacles (such as tree trunks) and large, poten-
tially non-convex obstacles such as buildings, Fig. 2.1. An on-board camera obtains
measurements of bearing and optical flow while GPS/INS provides estimates of ve-

locity and heading.
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Figure 2.1. Navigation/avoidance scenario. The vehicle must fly to a goal (not shown)
while avoiding small, convex obstacles (e.g. tree trunks) as well as large, potentially
non-convex obstacles such as buildings.

The problem is to navigate safely through the obstacle field to reach the goal.
As vehicle state is known through GPs/INS the problem is limited to obstacle
avoidance, which requires a means of sensing and then computing relative obstacle
position. A robust estimator is needed to handle the noisy measurements associ-
ated with bearings and optical flow. The estimator can then be used to generate a
map of obstacles and plot a safe trajectory using the map. A map also allows for
both continued navigation during sensor dropouts or in areas currently not in the
sensor field of view, but previously surveyed.

Given known vehicle state (x) and measurements of bearing and optical flow

(z), a map of the environment (m) will be computed. Here,

X = [:C7 y7w7u7v]T (2'1>

where x and y are the location of the vehicle, 1) is the vehicle heading relative to
an inertial frame, and v and v are the velocity of the vehicle in the body frame.
As optical flow and bearing measurements are noisy, the uncertainty in the map is
also needed to determine a trajectory that minimizes the probability of a collision.
Thus, it is necessary to compute p(m|z, x), the belief in the correctness of the map
given vehicle state and measurement history and measurement model z = g(x, m),
the probability of getting a measurement given the vehicle state and the map.
The rotational freedom of the vehicle introduces a non-linearity to the problem

through the kinematic model. Additionally, the projection of the three-dimensional
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Figure 2.2. Schematic of occupancy grid. Cells which are known to be free are white,
those which are known to be occupied are black, those which are unknown are grey.

world onto the two-dimensional image plane and then conversion to bearings and
optic flow also creates non-linearities in the sensor model. These both complicate
the problem of mapping.

Information about obstacles is only available from measurements of bearing
and optical flow, thus camera motion (and therefore vehicle motion) is essential.
However, obstacles directly in the path of motion (which need to be avoided)
generate almost no optical flow and thus no information for a range estimate;
transverse motion is required to produce a useful estimate of obstacle location.
While transverse motion gives good estimates of obstacles in front of the camera,
the vehicle must avoid obstacles which cannot be measured as they are not in the
field of view of the camera. As stated above, a map of estimated obstacle locations
is useful in this scenario.

An occupancy grid is a mapping algorithm which computes the likelihood that
discrete regions of the environment (cells) are occupied by an obstacle. This is
shown schematically in Fig. 2.2. As measurements are taken, the likelihood of cells
corresponding to the measurements is increased. Occupancy grids can also show
areas of low probability of occupancy (i.e. high probability of being free space)
by decreasing the likelihood of cells where measurements indicate no obstacles.
This makes the occupancy grid very robust to noisy measurements. With several
measurements, the estimate location of an obstacle and the uncertainty in the
estimate rise out of the grid.

Complex obstacles shapes are easily handled by the occupancy grid, seen in
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Fig. 2.2. An occupancy grid is analogous to a greyscale image, where the intensity
is proportional to the likelihood that a cell is occupied. Like an image, if finer detail
is required for the map a higher resolution grid can be used. As the occupancy
grid requires no data association, can represent both occupied and free spaces and
the certainty of the belief, is robust to noisy sensors, and can handle complex
shapes without being as computationally expensive as a feature based approach,
the occupancy grid is chosen to estimate the map of the environment.

After a map of the surrounding environment is generated, a control or planning
algorithm can be used to compute a path to the goal which minimizes the likelihood
of collision. It is assumed that the flight control system is able to maintain stable,
controlled flight.

The techniques described here to address these problems are applicable to full
three dimensional, six degree of freedom vehicle. Here motion is considered in a

two dimensional environment for algorithm development.

2.2 System Models

2.2.1 Frames

The vehicle is located at position x, y in an Earth-fixed frame (assumed to be an
inertial frame). The body frame B (defined by unit vectors x;, and y,) stays fixed
with the vehicle with its origin at the center of gravity of the vehicle. The orienta-
tion is defined by heading v with respect to the inertial frame. The occupancy grid
coordinate frame O (defined by unit vectors x, and y,) translates with the vehicle
sharing a common origin with frame B, but the orientation of its axes remain fixed
relative to the inertial frame, see Fig. 2.3. Frame O provides a link between the
moving vehicle and the occupancy grid. It gives obstacle positions relative to the
moving vehicle, but in the axes of the occupancy grid.

For this thesis, a slash in the subscript of a variable will be used to denote
the coordinate frame used. For example, ¥/, is the y-coordinate of point & with

respect to frame O.
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Figure 2.3. Coordinate Frames used in the system.

2.2.2 Kinematic Model

Velocities v and v are expressed in the body frame B. Setting v = 0 gives a non-
holonomic vehicle (e.g. a tracked ground vehicle or a fixed-wing aircraft). Here
the main application is a small autonomous rotorcraft, thus all three degrees of
freedom (u,v,1)) are retained. The control inputs are a,, a,, and w (acceleration

in z;, and ¥y, and turn rate).

T = wucosy) —vsiny (2.2)
¥y = wusiny + vcosy (2.3)
b = wH+N(0,02) (2.4)
U = a;+N(0,02) (2.5)
0 = a,+N(0,02) (2.6)

Here N(0,0?) denotes a Gaussian random variable with mean 0 and standard

deviation o. The noise is due to wind, and unmodelled noise in the controller.

2.2.3 Sensor Model

The camera is fixed to the vehicle pointed along the x;, axis. It obtains measure-

ments of bearing and optical flow (bearing rate) generated by objects within the
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(a) Computation of 3 (b) Computation of 3

Figure 2.4. Sensor Model

field of view. To model the camera, bearings to each object are computed

B = arctan LUC. W (2.7)

Lk/o
where z,, and y/, are the coordinates of the kth obstacle expressed in frame O.

The bearing rate is computed by taking the time derivative of Eq. 2.7

Bk:usinﬁk_vcosﬁk_¢ (2.8)

Tk Tk

where r; is the distance between the camera and the object. This can be seen
graphically in Fig. 2.4.

Across the camera field of view, many feature points will be tracked and gen-
erate values of optical flow. Often, multiple feature points will be tracked for the
same obstacle. Having too many measurements could slow down the estimation
process considerably, while not adding much new information if many of the mea-
surements represent the same obstacle. To limit the number of measurements,
the field of view of the camera is divided into a number of regions, each of equal
angular width AB. The resolution of Af is arbitrary and can vary based on im-
plementation; however, it is limited at the upper end by the pixel resolution of the
camera. Figure 2.5 displays an example of optical flow vectors from an image. It
also shows how the camera field of view is divided into distinct regions.

Dividing the field of view is equivalent to having an array of optical flow sensors,
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Figure 2.5. Discretized camera field of view. The red arrows represent simulated optical
flow vectors. As this is only in two dimensions, only the horizontal component of optical
flow is shown.

the n'* pointing along 3, and viewing a region defined by 3, + %. As this thesis
is concerned only with a static environment, the closer an obstacle is along a given
bearing the larger the magnitude of its optical flow vector, as can be seen in Eq. 2.8.
Because of this, in each region, the bearing rate with the largest magnitude is taken
as the value measured, as this corresponds to the closest obstacle in that region.
The optical flow measurement is assumed to be corrupted by Gaussian noise where
04 is the standard deviation of the Gaussian which is a constant across the field
of view.

The measurement vector z is

. 1T
z = |u, v, ¥, 87, 07 +N(0,%,) (2.9)
(62 0 0 0 0]
0 02 0 0 0
Y, = |0 0 03—) 0 0 (2.10)
0 0 0 0 0
2
0 0 0 0%

Where 3 and f are vectors containing the measurements of bearing and optical
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flow for each of the N regions.

ﬁ = [ﬂl? ﬁ?w"aﬁn]T
. . . 1T
o= [61, 52,...,ﬁn] (2.11)

S5 = oily (2.12)

where I represents an identity matrix of size N. Note that all measurements
have Gaussian noise except 3. The 3 measurement does not have noise as it is
defined to be the center of the region where the particular measurement of 3 is
obtained. The width Af is captured in the occupancy grid implementation of the

sensor model. This is discussed in the following section and in Chapter 3.

2.2.4 Range Model

As discussed above, the sensor obtains measurement of optical low and bearing.
To update the map, an estimate of obstacle location is necessary. As bearing to
the obstacle is already known, estimating the range to the obstacle will provide
the location of the obstacle in polar coordinates. To compute an estimated range

r* for a given measurement 3, Eq. 2.8 is solved for r

ro= f(z)
rto= Bi¢(usinﬂ—vcosﬁ) (2.13)

As there is noise in optical flow measurement, uncertainty in estimates of velocity
and heading rate, and uncertainty of value of 3 within the measurement region,
an uncertainty in the estimate o,« is also needed. Three possible methods for

computing r* and o,+ are compared:

1. Particle Transform: This method generates many random particles based on
the measurement probability distribution and propagates them through the
function f in Eq. 2.13 to then compute r* and o,«. This method preserves

the non-linearity of the system but at a high computational cost.

2. Unscented Transform: This method uses a small set of specifically placed

particles to represent the measurement probability distribution and propa-
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gates them through f to then compute r* and o,~. This method is much

faster to compute than the particle transform[20].

3. Linearization: This method uses the measurements directly to compute r*

and linearizes f to compute o,«. This is the fastest to implement.

Each method will use the measurement vector z and uncertainty 3J,. It is important
to note that ¥, has been modified slightly from Section 2.2. In the creation of the
measurements, o is given to be 0, as the 3 value used is that for the center of
the region and no noise is added. As the measurement can come from anywhere
within the specified region, the distribution of possibilities is approximated as a
Gaussian with standard deviation og.

Each method is described in detail below and all three are compared to deter-

mine which is the best suited for this application.

Particle Transform

The particle transform retains the full non-linearity of Eq. 2.13. A series of particles
Z are sampled randomly from the Gaussian distribution N (z, X,). These are then

propagated through f such that
S = f(Z) (2.14)

In this step, some particles generate a range less than zero. This implies measuring
an obstacle behind the camera, not in the field of view. As the camera can only
measure obstacles in the field of view, this computed range is illogical. Thus, any
particles with a range less than zero are omitted in the recovery of mean and
standard deviation. The computed mean and standard deviation of S become r*

and o,«, respectively.

Unscented Transform

For an n state estimation, 2n+1 Sigma Points are sampled symmetrically about the

mean, z, with covariance, >,. For this case, there are 5 states, | u v ¥ 3 (|,
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and therefore 11 Sigma Points.

Z:[z z+ V3, z-n\/z_z} (2.15)

where 7 is a scale factor that determines the spread of the Sigma Points. The
square root of the covariance is computed using Cholesky decomposition such that
Y, = V5, VI, Once the Sigma Points are computed, they are each propagated
through f in Eq. 2.13 to produce S, a 2n + 1 vector of ranges. The mean and

covariance of the estimated range are then computed.

S = f(2) (2.16)
s = Swy, (2.17)
Y = [S—-5]" W, [S—5§] (2.18)

where w,,, and W, are weight factors, and r* = s and af* = .

n=ayn (2.19)

Wm,1 = agl Wimn,i = ﬁ (220)
Wei=23l b (1-a’+q) W, =3l (2.21)

Typically « is chosen to be 1, and for Gaussian distributions, v = 2 is optimal[20].

In this implementation similar to the particle transform, often times at least
one Sigma Point per region exists where S < 0. Unlike the particle transform,
the negative ranges cannot simply be discarded. For the unscented transform, all
of the Sigma Points are needed to represent the probability distribution. This
problem is documented by Huster who suggests two ways resolve the issue: to
make 7 smaller (by making o smaller) or to alter /X, by rotating it by a unitary
matrix[21]. To ensure that all values are positive, the optimal v = 2 was kept, but
a = 0.09 was used to reduce the spread of the Sigma Points, as this is the simpler
of the two posed solutions. Reducing the spread of the Sigma Points reduces the
amount of the uncertainty propagated through the non-linear function, providing

a less accurate representation of the non-linearity[21].
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Linearization

In the linearized method, r* is directly computed from Eq. 2.13 using the mea-
surements, z. The Jacobian of Eq. 2.13 is computed and used to determine the
uncertainty in range estimate:

* * * * * T
v, |9 o ot O Ot (2.22)

0. =VL Y, V. (2.23)
o = (B+)7? (02 sin® B+ 07 cos” B + oj(ucos B + vsin 3)?] +
(B + )~ [(ag + ai)(u sin 3 — v cos ﬁ)z] (2.24)

Results

Figure 2.6 shows a comparison between all three methods. For the comparison,

values of 3 were generated using Eq. 2.8 with the parameters listed in Table 2.1.

Table 2.1. Values used for comparison

u = 4m/s Oy = O.Qm/s
v = 0ws | o, = 02w/
(0 = 40°/s o, = 0.06 °/s
ApB = 3° og = 0.5°

r = 10m |o; = 2°s

« = 009 |~ = 2

For g > 20°, all three methods produce similar results, the estimated obstacle
location is very close to the actual location, and the uncertainty is also low. For § <
20°, the differences between the linearization, unscented transform, and particle
transform are clear. The linearization does not account for the noisy measurements
in the estimate of r* and underestimates the covariance. As the spread of the
unscented transform is reduced to make all values non-negative, much of the non-
linearity is removed in the computation of covariance (note how it more closely

resembles the curve of the linearization).
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Figure 2.6. Comparison between the Particle Transform, Unscented Transform, and
Linearization. 3 measurements were generated for parameters in Table 2.1.

Ideally, the particle transform would be used to retain the probability distribu-
tion through the non-linear function. However, to get an accurate representation
of the distribution, 50000 particles were necessary for each angular region. Using
fewer particles resulted in large variance in the computed r* and o,« on each run.
Using this many particles is not feasible as it takes too much time to produce an
estimate.

While the unscented transform does compute r* similar to that of the particle
transform, the differences between these methods and the linearization occur for
3 < 20°. In this region, the value of § is on the order of 0. Measurements on the
same order as sensor noise produce poor estimates. When an estimate is known to
not be accurate in advance, the uncertainty in that estimate is more important than
the estimate itself. Here, o, is nearly the same for both the unscented transform
and the linearization; however, the linearization method is much easier to compute.
As the linearization provides results similar to the unscented transform for the areas
of interest and is not as computationally intensive, Equations 2.13 and 2.24 are

used to compute r* and o,.+.
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Adapting the linearized range model for use with an occupancy grid will be

discussed in Chapter 3.

2.3 Occupancy Grid

Qualitatively, an occupancy grid is a mapping algorithm which computes the likeli-
hood that discrete regions of the environment (cells) are occupied by an obstacles.
This is shown schematically in Fig. 2.2. While occupancy grids have been well
documented (e.g. [22, 23]), for completeness a derivation is presented here. This
section follows the derivation given in Thrun [23].

As discussed in Section 2.1, the goal is to estimate a map of the environment,
p(m|zy 4,21 4), where 214 is the set of all measurements and z;_; is the set of all
vehicle states up to time ¢. An occupancy grid is a numerical implementation of
a Bayes filter which computes the estimate of p(m) by discretizing the map into a

finite number of cells.

where m;; is a cell in the map.

The probability that a cell is occupied (p(m;;) = 1) or free (p(m;;) = 0) is
computed for each grid cell[22]. This results in a binary estimation problem over
all possible maps, posing a computational problem. An environment with M
cells has 2™ possible maps. To make the problem tractable, the probability of a
particular cell’s occupancy is assumed to be independent of all other cells. This is a
conservative approximation as possible information about the world is ignored (e.g.
continuity between cells along the wall of a building). Because of the assumption of
independence of cell occupancy, the problem of estimating p(m|z;._ 4, 1. ;) becomes

p(mij|z1..¢, x1..+) such that

p(m|21...t, $1...t) = Hp<mij |Zl...t; $1...t> (2'26)
ij

and now the likelihood of each cell’s occupancy can be computed independently.
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The binary Bayes filter for this discretized map of a static environment is

p(zt|mij7$t) p(mij|21...t—1,$1.._t—1)
P(2t|Z1...t—1, $1...t)

p(mij|21...t7x14..t) = (2'27)
where p(m;|21..4, 21.+) represents the probability that a grid cell m; is occupied,
given measurement history z;_; and vehicle path x; ;. The first term in the numer-
ator is the sensor model, the probability of getting a particular measurement based
on the map and current state. The map is not known, and what is desired is the

probability of the grid cell being occupied based on the measurements obtained and

the current state p(m;;|z, ;). To achieve this, Bayes’ Rule (p(A|B) = ’%)
is used for the sensor model of Eq. 2.27 to yield Eq. 2.28.
p<mij|21...t7 $1...t) _ p(mz’j|zt7$t) P(Zt|fft) P(mz‘j|21...t—17$1...t—1) (2.28)

p(mz‘j|l‘t) p(zt‘zl...t—laxl...t)

Both the measurement probability and map are assumed to be independent of
state, p(z|zt) = p(2z) and p(myj|x,) = p(m;;). These assumptions are founded in
that the vehicle’s location in the map does not change the likelihood of getting
a measurement and that the map does not change based on the location of the
vehicle. This simplifies Eq. 2.28 further to:

p<mij|zta ﬂUt) p(Zt) p(mij‘zl...tflaajl...tfl)
p(mg;) (2|21 -1, 71,1

pmijlzi. e, 1.4) = (2.29)
To make the problem numerically better conditioned and easier to implement
computationally, the occupancy is represented in log-odds form. First the odds

form of Eq. 2.29 is computed

p(mij |Zl...t7 xl...t)
1- p<mij|zl...tu xl...t)

o(mijlz1..t, 1. +)

N _ p(mig|ze, ) p(mijlzi -1, T10-1)
O(mm|21mt7 -’B1...t) 1 _p<mij‘zta fl?t) 11— p(mij‘zl...tflyml...tfﬂ
1 — L
i L= plmy) (2.30)
p(mi;)

which simplifies Eq. 2.29 by canceling the p(z] ... ) terms. The factor p(m;;) is the

initial probability that the cell at location (¢, j) is occupied. As the environment



24

is initially unsurveyed, the initial probability of occupancy is p(m;;) = 0.5, thus
the term on the third line simplifies to 1.

Finally, the log-odds form of the binary Bayes filter is obtained by taking the
logarithm of Eq. 2.30:

liij = IOgO(mij|Z1...t,$1...t)
p(mz‘j|zt>$t)
1- P(mij|2t, ﬂUt)

p(mij |Zl...t—17 fL‘l...t—1)
1 - p(mz’j|zl...t—17 xl..j—l)

+ log (2.31)

lt,ij = lOg

The probability of occupancy can be recovered from the log-odds form by solving

Eq 2.31 for p(mi]’|21mt, -Il...t)

€xp lt,ij

_ 2.32
1+ exply ( )

p(mijle...ta $1...t) =

The second term on the right hand side of Eq. 2.31 is simply the accumulated

log-odds of occupancy over all previous time steps:

p(mij |Zt> ft)
L — p(mijlze, )

lii; = log + 11 (2.33)
The estimation problem is now a recursive equation to compute the occupancy of
each grid cell. This can be implemented easily and efficiently.

The first term on the right hand side of Eq. 2.33 is the inverse sensor model
(i.e. the change in log-odds occupancy of a grid cell given a sensor measurement
z;). Given that there are usually multiple measurements, in this case one for each

bearing [3,, the inverse sensor model for each measurement will be added together

N
p(mij‘ztnvxt)
li'zg 1 ’ L1 2.34
" n Ogl—P(miﬂZt,mxt) Tl (234

Functionally, detecting an obstacle in a grid cell means the log-odds of occu-
pancy in that cell is increased by some amount. The space between the vehicle
and the obstacle must be free, thus the log-odds of the occupancy of the cells
lying between the occupied cell and the vehicle is decreased. Cells outside the
field of view get no new information so the log-odds values of those cells remain

unchanged. The amount of the increase and decrease is dependent on the inverse
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sensor model, defined in Chapter 3.

2.4 Summary

The navigation problem is described in Section 2.1. As vehicle states are assumed
to be known, the problem is defined as reaching a goal location while safely avoid-
ing obstacles using noisy measurements of optical flow and bearing from a single
camera. To handle the noisy measurements, a map is used to estimate obstacle
locations so that the uncertainty in the estimates can be tracked. Due to the com-
plex nature of the environment, Kalman Filter (feature based) approaches are too
computationally intensive to execute. An occupancy grid is chosen for its ability
to handle both the noisy measurements and the complex environment.

Mathematical models of the vehicle kinematics and sensor are developed in
Section 2.2. Motion is modeled as a second order function with control inputs
of acceleration (a,, a,) and heading rate () expressed in the body frame. Op-
tical flow measurements are simulated by calculating the apparent bearing rate
of stationary obstacles due to the translation and rotation of the moving vehi-
cle. To obtain estimates of obstacle location, an estimated range to an obstacle is
computed from the optical flow measurement.

A mathematical derivation of the occupancy grid is presented in Section 2.3.
The estimation equation is represented in log-odds form to make the problem easier
to implement computationally. In log-odds form, the measurement updates can
simply be added to the map belief at the previous time step.

A solution of the navigation problem using the occupancy grid is given in

Chapter 3 and simulation results are presented in Chapter 4.



Chapter
System Design

The following chapter details the techniques used to solve the safe navigation

problem defined in Chapter 2. The design is divided into three sections:

1. Inverse Sensor Model: The inverse sensor model is responsible for updating
the occupancy grid with the obtained measurements. The inverse sensor
model is divided into two parts, range and direction. Functions are cre-
ated to approximate the probability distribution in order to save time and

computations.

2. Local Occupancy Grid: A global occupancy grid continues to grow as a
vehicle explores the area. As computational power is limited, storing and
manipulating this large grid will be problematic. A local occupancy grid is
used which limits the size of the grid and moves the grid with the vehicle. A
motion model for the local occupancy grid is required and the formulation is
described.

3. Vehicle Control: A potential field controller is used to create a desired head-
ing. While these are well documented, the particular setup used here is
detailed as well as the algorithm to create control inputs from the desired

heading.
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Figure 3.1. Schematic of the occupancy grid showing r;; and &;;

3.1 Grid Cell Coordinates

To describe locations in the occupancy grid, both Cartesian and polar coordinates
are used. As the coordinate systems defined so far are all Cartesian, knowing
the location of cells in the occupancy grid in Cartesian coordinates is a relatively
simple task. The coordinates (x;; Jos Yij /O) are location of the center of the cell at
(7, j) as defined in frame O which translates with the vehicle. However, as the
sensor model is defined in a polar coordinate frame, a polar representation of the
grid cell locations is beneficial for the inverse sensor model. Polar coordinates are
also useful in the vehicle controller as distances to obstacles are used. Thus, 7;; is
defined as the distance from the vehicle to a grid cell, and ;; is the angle from the

X, axis to the center of the grid cell.

i = ATt Y (3.1)
&j; = arctan Yisfo (3.2)
Lij/o

Figure 3.1 shows a schematic.
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3.2 Inverse Sensor Model

The inverse sensor model is used to update the occupancy grid with measurements.
As discussed in Section 2.2, the camera field of view is divided into a series of
regions of equal angular width. For each region, the maximum magnitude optical
flow measured is used as the measurement but the location of that measurement
within the region is discarded. From the value of optical flow, an estimated range to
the obstacle is computed, thus the obstacle location is known in polar coordinates.
As such, the inverse sensor model is comprised of two pieces: first, a function of
range to the obstacle; second, a function of angular position to reflect the bearing

of the measurement and the angular resolution of the sensor.

3.2.1 Range

As discussed in Section 2.2, a linearized range model is used to compute an estimate
of range r* and the uncertainty in the estimate o« from the measurements of
optical flow 3 in each sector 3,.

In addition to the Gaussian uncertainty described by o+, the sensor model must
reflect the intuition that the space between the camera and the detected obstacle is
unoccupied and the space behind the detected obstacle remains unknown. Here, a
95%/99.7% rule is used. For a Gaussian distribution, 95% of the values lie within
2 standard deviations from the mean and 99.7% of the values lie within 3 standard

deviations from the mean.

> 0.5, r*—20,>r>r"+30,-
P =0.5, r>r"+ 30 (3.3)

<05, O0<r<r*—20+

Here, the obstacle is assumed to most likely exist 2 standard deviations in
front of and 3 standard deviations behind the estimated range, and this region
should have a probability of occupancy greater than 0.5. The region greater than
3 standard deviations behind the estimate is unknown, and thus the probability
remains 0.5. Finally, the region greater than 2 standard deviations in front of the

estimate is believed to be unoccupied and thus have a probability of occupancy
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Figure 3.2. The range vs. probability (solid green) is constructed by combining a
Gaussian (dashed blue) and sigmoid (dash-dotted red). Here r* = 15 and o, = 2. Note
the comparatively low probability of occupancy for r < r*.

less than 0.5. To model this behavior a sigmoid curve and a Gaussian curve are
combined to produce the probability curve of occupancy as a function of range,
seen in Fig. 3.2.

One problem with the linearization and this approach is when obstacles are
far away or not present. For distant obstacles, ﬁ R —1/}, from Eq. 2.8, and thus
B + w ~ 0. Equation 2.13 will yield r* ~ oo, which makes sense for a distant
object. Unfortunately, Eq. 2.24 will also estimate 0, =~ oo. While a large estimate
uncertainty for a distant object is logical, it is problematic. As can be seen in
Eq. 3.3, if 0.« > 2r*, the occupied region extends from the estimated location all
the way to the camera. Thus, there is no region to mark as free space between the
estimated location and the sensor.

For this reason, a limit is set for the value of r*. When r* > 7,,,,, 7" will be set
t0 ez and o« will be set to a small value. By doing this, when a very far away
obstacle is measured or no obstacle is present, the grid will be updated to reflect
the knowledge of free space.

The same problem exists for obstacles located in the direction of motion. As
mentioned in Section 2.1, these obstacles generate almost no optical flow separate
from the rotation of the vehicle; from Eq. 2.8, again 6 R~ —LL. This is currently
handled as described above, such that often the area directly in the path of motion
will be marked as free space. The control section addresses this problem, and
implements methods to properly resolve the area in the path of motion.

In the final equation in the derivation of the occupancy grid, Eq. 2.34, the

inverse sensor model must be in log-odds form in order to add it to the previous
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Figure 3.3. Examples of approximate inverse sensor model curves. Subfigures a and
¢ use a Gaussian and Sigmoid to generate the inverse sensor model probability (solid
red lines). The log-odds representation is then calculated and shown in subfigures b
and d (solid red lines). Subfigures b and d use a Gaussian and sigmoid to generate an
approximate of the log-odds representation (dashed blue lines). These values are then

converted back to probability form and are shown in subfigures a and c¢ (dashed blue
lines). Here r* = 15 and o« = 2.

log-odds belief. Thus, the probability form inverse sensor model must be con-
verted to log-odds form. While this is possible, performing this calculation over
every grid cell for every measurement is computationally intensive. Thus an ap-
proximation for the log-odds form of the probability curve shown in Fig. 3.2 is
desired. Figure 3.3 shows the method of approximation.

Figure 3.3(a) shows an inverse sensor model probability curve (solid red line).
The log-odds representation of this curve is shown in Fig. 3.3(b) as the solid red
line. For this case, the probability and log-odds representation curves are of very
similar shape, but shifted and scaled. Thus, an approximated log-odds representa-

tion is generated by combining a sigmoid with a Gaussian, shown in Fig. 3.3(b) as
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the dashed blue line. The probability representation of this approximated log-odds
curve is computed and shown in Fig. 3.3(a) as the dashed blue line.

For this case, the true and approximated probability curves appear nearly iden-
tical. The average error between the two curves is €,,,s = 0.0054 for 5 < r < 21, the
region where the curves differ. This similarity holds well for 0.1 < p(m;;|z, z:) <
0.9. Outside this range, the non-linearities of the log-odds conversion become
apparent.

Figures 3.3(c) and 3.3(d) show the same procedure as above, but for a larger
range of probabilities. While the approximated curve does not exactly match the
true range model, the log-odds form can still be reasonably approximated as a
sigmoid and a Gaussian. For 0.05 < p(m;;|z;, z;) < 0.95 the average error between
the two probability curves is €,,,s = 0.0513 for 5 < r < 21.

In log-odds form, the range portion of the inverse sensor model is approximated

by the following:

UT,’; \/g

Co (r—rk)?
+—0r;‘1\/§ {exp [——2032 ] } (3.4)

Here 1 is the estimated range obtained from the optical flow measurement in the

-1
falr) = —a {1 —+ exp 2nlr —rat 2%;)] }

n'™ bearing. The factors ¢; and ¢y are used to scale the two contributions to the
probability of occupancy and to account for normalization.

Note that in Eq. 3.4, the log-odds value for free space (the amplitude of the
sigmoid) is not scaled. This amplitude could be scaled identically to the Gaussian
—ci(ops v2m)~!. This would incorporate the idea that as the uncertainty in the
range estimate increases, the magnitude of the log-odds belief should decrease.
This would be the case for a Gaussian distribution; as the standard deviation
increases, a lower probability is spread across a wider area. However, a greater
uncertainty in obstacle range does not change the belief that the region between
the vehicle and the obstacle is free space. Because of this, the log-odds value for

believed free space remains a constant, —c;.
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3.2.2 Direction

A scaling factor is calculated to account for the bearing of the measurement and
the uncertainty in vehicle heading. To model the uncertainty in vehicle heading, a
Gaussian would ideally be used to scale the value calculated from Eq. 3.4. However,
as the range estimate is for the entire angular region because the specific bearing is
not kept, the scaling factor over the width of the region should be a constant. To
achieve this constant value over the width of a measurement region which tapers
off similar to a Gaussian at the edges, a sigmoid function is again used to compute
the scaling factor as a function of the difference between ¢ and the center of the

angular region:

(3.5)

cs(l€ = Bu — ¢ — 05A8 — 1-25%))‘1

(€)= (1+ 0 -

where c3 is a weighting parameter, AS is the angular width of the measurement
region, and oy is the uncertainty in the current heading estimate.

For the grid cell located at (x;;, v;;) , the log-odds of occupancy induced by a
measurement of optical flow in the n' region z, can be computed by evaluating

ri; and &; for that cell and computing

p(mz’j |Zt,m xt)
1 - p(mij|zt,n; ft)

log = [n(ri)9n(&ij) (3.6)
An example is shown in Fig. 3.4.

The inverse sensor model given in Eq. 3.6 will update the occupancy grid with
measurements obtained from the camera. The following section provides details
on how the occupancy grid was implemented in this application to store estimates

of occupied space.

3.3 Local Occupancy Grid

Typically, occupancy grids remain globally fixed while the vehicle moves through
the grid. This allows for a simple implementation; however, as the vehicle explores
the environment, the map quickly grows large and becomes computationally in-

tractable. As local obstacle avoidance is the focus of this research, a local occu-
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Figure 3.4. Example of the Inverse Sensor Model in log-odds form. The example shows
an obstacle located at r* = 15, indicated by the peak, with o, = 1.2. Between the sensor
and the obstacle is likely to be unoccupied, indicated by the trench. Regions outside
the sensor field of view (or occluded by obstacles) have zero change to their log-odds
of occupancy. Here the angular width of the region is AG = 30°. To create the high
resolution, the grid cells are 0.25 m on each side.

pancy grid (fixed to the vehicle) is used. The local occupancy grid has a limited
size governed by sensor field of view and computational considerations, and can
thus be adapted to the specific hardware available on a particular vehicle. For the
local occupancy grid, the grid origin remains fixed to the vehicle, Fig. 3.5. Then,
the grid can either rotate with the vehicle, or the vehicle can rotate within the
grid.

Grid orientation can be fixed to any convenient frame. Vehicle (and thus grid)
motion is computed using a motion update step. The complexity of this motion
update depends in part on the choice of grid orientation. If the grid remains fixed
with the vehicle, both a rotation and translation are performed as part of the
motion update. If the orientation of the local occupancy grid remains fixed to an
inertial frame, only a translation is necessary.

Computationally the occupancy grid representation of the environment can be
treated as an image, and techniques developed for image processing (e.g. blur-
ring, convolution, rotation) and libraries used for image processing (e.g. OpenCV,
MATLAB Image Processing Toolbox) can be used to translate and rotate the local
occupancy grid as it moves with the vehicle. In any update where one grid cell
does not map directly to another, some blurring (loss of certainty in the estimates)

will occur. For a rotation, the grid cells will only match if the rotation is a mul-
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Figure 3.5. Schematic of local occupancy grid. Cells which are known to be free are
white, those which are known to be occupied are black, those which are unknown are
grey. Note that the center of the occupancy grid is at the origin of the O frame.

tiple 90°. In order to keep the grid correctly matched to the vehicle orientation
many small rotations will take place, thus creating a large loss of precision over
time. Additionally, a rotation is a time consuming task. For these reasons, the
orientation of the grid is fixed in frame O.

By fixing the orientation in frame O, only a translation of the grid is necessary
for the motion update. Here this is performed using a convolution. The convolution
kernel is generated based on the translated area of a grid cell, see Fig. 3.6. The
percentage of the original cell area overlapping a surrounding cell determines the

value of the convolution integral.

Lt+1 = K= Lt (37)
K = K,*xK,
<+9At )]
max ,0
Ag’r‘id

S/AY AV
K, = |max ,0 1—
Y |: ( Agm’d > ‘ Agrid
—i A, 4
max ,0 3.8
( Agrid )} ( )

K, = [max (+$At 0) 1-— 20
where A4 is the size of a grid cell, the * operator indicates a convolution, and

)
Agm'cl Agm’d

max(n,0) returns n if n > 0.

The rate of motion update is in principle arbitrary. In practice is it affected
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Figure 3.6. Example translation of occupancy grid in the y, direction

by grid size, vehicle motion, and computational considerations. Performing the
motion update at every time step poses two problems. First, a convolution takes
computational time. Performing a two-dimensional convolution at 50Hz slows the
operation of the algorithm. Second, performing the convolution introduces blur
when the translation does not map one cell exactly to another (Fig. 3.6). The top
image shows the initial occupancy grid, with the center cell known to be occupied.
Translation by a fraction of a grid cell (middle image) means that the probability
of occupancy must be split over the neighboring cells (bottom image), introducing
a blur. This blur artificially decreases the belief in occupancy (or freedom) of a
grid cell.

To reduce the artificial blurring, motion updates are only performed when the
translation is greater than or equal to the length of a grid cell. Additionally,
the motion updates are performed separately in the z, and y, directions. Not
only does this reduce some of the blurring, but also decreases computational time
as performing two one-dimensional convolutions is less computationally intensive
than one two-dimensional convolution.

To model the reduction in certainty of the grid as the vehicle moves, the kernel
does not sum to one. By making the sum of the kernel less than one, the magnitude

of each cell goes down at each iteration, and thus the certainty in the estimate will
also be reduced. Thus the motion update kernel becomes:
—A

—A
K, = wcx[max( y—l,O) max(l—‘ y—l,O) 0
Agrid Agm’d

A A
max(l—‘+ ¥ -1 ,0) max(+ y—l,O)] (3.9)
Ag?“id

Agm’d
A, A,
K, = w,x {max(jL —1,0) max(l— + ,O) 0

grid

-1

grid
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where A, = yA;, A, = &/, and the kernels are evaluated when A, > A4 or
Aw 2 Ag'rz'd-

The value of w, is the overall magnitude of the kernel. For w, = 1, there is

(-l
max — —
Agrid

no loss of information over the motion update. If w. = 0, the log-odds of the
occupancy grid will go to 0 after the motion update (i.e. no knowledge of the sur-
roundings). For 0 < w,. < 1, the magnitude of the log-odds of the occupancy grid
will be reduced after the motion update, and thus the certainty of the occupancy
grid will be reduced.

Note that the artificial blurring can also be reduced by increasing the reso-
lution of the occupancy grid. This comes at the cost of increased computation
requirements.

The local occupancy grid is implemented as follows:

1. Initialize the log-odds occupancy grid to all zeros (0.5 probability).

2. Update the grid with measurements using the inverse sensor model.

3. Determine how far the vehicle has moved since the last motion update.

4. If the distance is greater than the length of a grid cell, use the convolution

to perform a motion update.

5. Repeat from Step 2.

3.4 Vehicle Control

While the methods described are applicable for a vehicle with three degrees of
freedom [u v 9], a non-holonomic vehicle is used to simplify vehicle control (i.e. v
and © are set to be 0). Thus the trajectory planner consists of a heading generator
and the controller uses the desired heading to compute control inputs, a, and w.
The heading generator uses a potential field type approach to avoid obstacles
and reach the goal[5, 24, 25]. The particular implementation in this thesis is similar

to the virtual force field and vector field histogram methods used by Borenstein and
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Koren[26, 27]. Regions of high probability of occupancy represent high potential
(to be avoided) and the goal is represented by a sink. The desired heading is
determined by a gradient. This gradient is computed at the vehicle (i.e. the origin

of the occupancy grid) as
V= (]- - wg)vgrid + wgvgoal (311)

where w, is a factor to weight goal seeking vs. obstacle avoidance, V.4 is the
gradient term from the occupancy grid and Vg, is the gradient term resulting

from the sink representing the goal. The desired heading is computed from V as

Yges = arctan % (3.12)

where V,, and V, are the y and 2 components of the gradient V, respectively. Put
simply, the controller will attempt to steer the vehicle in the direction of steepest
descent towards the goal.

Figure 3.7 shows the steps in creating V4 (the gradient vector due to the
occupancy grid) at a particular point in time. Only a region in the vicinity of
the vehicle (here, a 30 by 30 cell box centered on the vehicle) is considered. The
gradient of the occupancy grid in probability form is computed, V7 ;. This is then
scaled by K (Vgpia = K X V7 .,) so that the location of an obstacle relative to the
vehicle is included in the trajectory planner. Figure 3.7(a) shows the probability
values of the local occupancy grid with colors representing p(m;; = occupied). The

probabilities are computed from the log-odds representation using Eq. 2.32.

3.4.1 Grid Gradients

First a Prewitt edge detector (seen in Fig. 3.7(b)) is used to find gradients in both

the z, and y, directions, This will give large values only at edges (i.e. at

*
grid®
boundaries between occupied and unoccupied space) and small values in regions

of similar occupancy probability.
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Figure 3.7. Creating the potential field controller. The vehicle is shown by the cranked
triangle. Subfigure (f) shows the gradient vectors with non-uniformly scaled magnitudes:
short green = V,;q, medium magenta = Vg4, long red = 1) ge,
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3.4.2 Scaling

Second, scaling factors k;; are introduced to allow weighting to the occupancy grid

gradient term, V ;. This factor is created in two parts. The first part to the
scale factor is a long term planner. It looks ahead and determines which direction
is better in terms of avoiding obstacles. The second part looks closer to the vehicle
and in a wider span to be sure that the vehicle is not headed towards or will turn

into an area of high probability of occupancy.

Long-term

For the first part of the scale factor, values near the vehicle should still be weighted
more heavily than values further away to avoid the more immediate obstacles.
However, values at a distance are included to cause the vehicle to turn before
it strikes them. A Gaussian is used to scale the gradient field with the standard
deviation being a function of vehicle speed. This makes the occupancy grid gradient
influence to be a function of time, reacting to obstacles that are a certain time away.

The standard deviation of the Gaussian is

cavVu? 4+ v? 4+ cy

A )
grid

(3.13)

where A4 is the length of a grid cell and ¢4 and c¢; are parameters which allow

further tuning of the scaling factor in its dimension and standard deviation.
Values in the direction of motion should have greater influence on desired head-

ing than those from values to the sides and those already passed. A second Gaus-

sian was used to weight the occupancy grid gradients based on vehicle orientation.

s
7dir = CGW + c7 (3'14)
where cg and ¢; are more tuning parameters. Again the standard deviation is a
function of vehicle speed. At high speeds, obstacles in the direction of motion are
of a larger concern than obstacles to the sides. At slow speeds, the vehicle can
more quickly change directions, thus there is a wider field to consider to determine
the best possible path.
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These two Gaussians were combined to create the scaling factor /{:}]Qng

) % ew <_M> (3.15)

2
2Udir

15t

2
long < Tij
J 202

where 7;; is the distance from a grid cell to the vehicle, and &;; — v is the angle

between the unit vector to the grid cell and the direction of motion. This is shown

in Fig. 3.7(c).

Short-term

For the second part, the construction of the scale factor is similar to that of the
first, using a Gaussian for both distance and direction. However, the parameters
are different to reflect the different objective. Additionally, the areas off center are
weighted more heavily to keep the vehicle from turning into any obstacles. This is

accomplished by using an absolute value on the directional Gaussian:

kfjhOTt = g X exp (—M) X exp (— (en =16 = ¢!)2) (3.16)

2 2
2cig 2ciy

This is shown in Fig. 3.7(d).

The scale factor is simply the combination of the two parts:
ki = k"8 4 gghort (3.17)

The term V4 is generated by taking the sum of the scaled occupancy grid gra-
dient.

Vaia =Y (kij X Viiais) (3.18)

ij

Figure 3.7(d) shows the scale factor due to the close avoidance, Fig. 3.7(c) shows
the scale factor from the longer trajectory planning and Fig. 3.7(e) shows the
combination of these, k;;. Figure 3.7(f) shows the result of applying the scale
factors to the initial gradient, shown in Fig. 3.7(b).
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3.4.3 Goal

The goal gradient V.4 is simply a unit vector in the direction of the goal.

T
Lgoal — T Ygoal — Y

\/(xgoal - x)Z + (ygoal - y)2 , \/(mgoal - :U)Q + (ygoal - y)2

vgoal = (319)

3.4.4 Control Inputs

Once a desired heading 145 is determine from Eq. 3.12, the turn rate command is
computed as a function of the difference between the desired current heading.

As described earlier, the estimator provides poor estimates of obstacle location
in the region in front of the camera. A dither term is incorporated which causes
the vehicle to sweep back and forth, resolving the area that would otherwise be

unknown.

2 t
w = c13(Vaes — V)M + 15 COS ( ch ) (3.20)
16

where w is in units of rad/s and ¢ and 145 are in radians.

To allow smaller radius turns (which may be necessary in environments with
densely packed obstacles) a speed controller is implemented. This allows vehicle
speed to vary (within a set range) with commanded turn rate, which permits
smaller radius turns.

A, — C17 — C18W (321)

Here c;7 and c¢ig are the acceleration control parameters.

3.5 Summary

This chapter has presented a method for navigation through an unsurveyed envi-
ronment. The occupancy grid serves as a map to store the locations of free space
and obstacles. By making a local occupancy grid, the system is tractable and less
computationally intensive while still retaining the information necessary to navi-
gate through the surrounding environment. A convolution is used to translate the
occupancy grid with the vehicle motion. The inverse sensor model updates the

grid with the measurements of bearing and bearing rate obtained from the cam-
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era. A potential field method controller is used to create a desired heading based
on the local occupancy grid and the desired goal location. Lastly, a simple differ-
ence controller generates control inputs based on the current and desired headings.
The next chapter will provide simulation results showing the performance of this
method.



Chapter

Simulation Results

The following chapter presents the results obtained from a simulation designed
to test the system proposed in Chapter 3. The simulation consists of navigation
between 100 different starting locations and 3 different goal locations. The simu-
lation is setup to represent a typical environment for navigation given the sensors
described in Chapter 2.

The description of the simulated environment and the definition of parameters
and constants presented earlier are described in Section 4.1. Results are presented

in Section 4.2.

4.1 Setup

To demonstrate the utility of the proposed approach, simulations of flight through
an environment modeled after the McKenna Military Operations in Urban Terrain
(MOUT) site at Ft. Benning, GA (shown in Fig. 4.1) are conducted..

The urban town is made up of a series of walls, each represented by a line of
points. Points are used for convenience in computing bearings and bearing rates to
obstacles. Instead of having to ray cast across a simulated surface, measurements
are computed for each point. The town limits are defined by an ellipse 87m by
57m rotated 20.° For the perimeter forest, tree trunks are represent by a circle
of 8 equally spaced points. To be sure the algorithm works for all sizes of trees,
diameters vary between 0.5 m and 1.5 m. One hundred and fifty trees are randomly

located outside of the town, but no closer than 8 m to another tree. In addition to
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Figure 4.1. McKenna MOUT Site at F't. Benning, GA

convenience in implementing the simulation, the use of points to represent objects
corresponds well to the actual computation of optical flow where feature points are
found for each object and tracked across the field of view.

Three goal locations are selected in different parts of the urban setting. One
is close to the center of the town, the other two are between buildings near the
edge of the town. One hundred starting locations are randomly generated. These
locations are either within or outside of the forest. The locations are no closer than
4m to a tree and no closer than 10 m to one another. This provides an even spread
across the environment while not starting the vehicle in an immediate avoidance
scenario before it has a chance to map the environment.

The simulation is called a success if the vehicle reaches within 2m of the goal.
If the vehicle comes within 1m of any obstacle, the simulation is marked as a
failure. Additionally, due to memory constraints, the simulation is allowed to run
for 60s. As the maximum distance between any starting point and goal is 150 m,
this means that the vehicle must travel faster than 2.5m/s on the longest route
(ignoring the extra distance required to avoid obstacles).

The local occupancy grid is a square of 30 m per side. As the smallest obstacle
to detect is no smaller than 0.5m, each grid cell of the occupancy grid is also a
square 0.5 m per side. As stated in Section 2.3, the initial belief of the environment
is uncertainty. Thus, the occupancy grid is initially set with a probability of 0.5
and the log-odds representation of the grid is initialized to zeros.

As stated in Section 3.4, vehicle kinematics are assumed to be non-holonomic
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(i.e. v and v are set to be 0). This is a more challenging example of kinematics than
that provided by a holonomic vehicle both from the standpoint of map generation
and obstacle avoidance: turns are required both to avoid obstacles and to ensure
that obstacles directly ahead of the vehicle are accurately resolved. The vehicle
is initialized with a speed of 4m/s and pointed in the direction of the goal. This
sometimes positions the vehicle so that it is initially heading towards a tree. This
is one reason for creating the starting locations such that they are no closer than
4m to any obstacle. Limits are set on the maximum and minimum vehicle speed

and turn rate control input:

u

Y

2.5m/s
-1 rad/S

5.5m/s

<
< 1 rad/S

<
<

Vehicle kinematics are computed at a rate of 50 Hz. The kinematics are also
updated using a second order model (e.g. ;41 = x;+TAt+ %JEAt). Measurements
of optical flow are sampled at a rate of 10Hz. Because of this, the controller
only produces control commands at 10 Hz. If the controller were to run more
frequently, there would not be any new information regarding obstacles, only a
possible slight change in the positions of obstacles due to the distance traveled
by the vehicle. As the occupancy grid cells are 0.5m in size and the vehicle
maximum velocity is 5.5m/s, the maximum distance the vehicle could travel in the
0.1s between controller updates, is slightly larger than the length of a grid cell.
As the occupancy grid is only translated in a motion update when the vehicle has
traveled the length of a grid cell, the occupancy grid could displace at maximum
one cell between control updates.

For this simulation, the camera model has a field of view of 90° which is divided
equally into 24 measurement regions, each 3.75° wide. As discussed in Section 3.2,
there is a maximum range r,,,, where values of r* beyond that return no useful
information. For the parameters used in this simulation, r,,,, = 27 m. As the local
occupancy grid is 30 m on a side, the furthest distance from the vehicle is 22 m to
the corners of the grid. With r,,,, = 27 m, this means that all measurements can
be represented in the local occupancy grid.

The standard deviation for parameters which contain Gaussian noise are given
in Table 4.1.
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Table 4.1. Standard Deviations

o = 0.625° | oy = 125%

on. = 02w/ g, = 0.05m/

op = 1° o, = 2°%s

o) = 0.25°/s

Table 4.2. Constants

cgp = 03 | =1 c3 = 15 cy = 1
cs = 125|cg = 099 |c; = 195 cs = 0.0035
cg = 1 ciop = 075 | e = ?—g 2 = §
ci3 = 11 |cy = 08| ¢ = 0.45 cg = 3
ciz = 09 Jeag = 12 |w, = 0038 | w, = 09772

There are 18 constants and 1 weighting parameter used in the system design.
The values of these are provided in Table 4.2. Values ¢; — c3 are for the inverse
sensor model and are dependent upon the sensor used. The control weighting
parameter w, and control constants cs — c;3 dictate the path followed by the
vehicle. Limited tuning was performed on these values, and they are not necessarily
optimal.

The magnitude of the motion update kernel w,. is determined to be 0.9772
based on the speed of the vehicle and resolution of the local occupancy grid. It is
decided that after the vehicle travels half the length of the grid, the certainty of a
grid cell should be halved. For a a grid that is 30 m on a side, this should occur
every 15m. For a grid cell size of 0.5m on a side, there will be 30 motion updates

over that span.
w, = 0.53 ~ 0.9772 (4.1)

4.2 Results

As previously stated, one run is executed from each starting location to each goal
location for a total of 300 runs. Table 4.3 displays the raw data from these 300
runs. Initially, there appears to be a success rate of 89.33%, with 29 instances
where the vehicle comes closer than 1 m to an obstacle. Upon looking at the data,

in 19 of the 29 runs marked as crashes, the collision occured within the first 2s of
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the simulation.

Table 4.3. Results
Goal 1 | Goal 2 | Goal 3 | Total

Success {9 &9 90 268
Crash 8 11 10 29
DNF 3 0 0 3

Total 100 100 100 300

These collisions are most likely due to the vehicle being pointed directly at an
obstacle. In an actual application, the vehicle would be aimed so that it is heading
towards the goal, but initially away from any close obstacles. Most likely, these
collisions could be avoided with better initial conditions. Table 4.4 shows the data
if these collisions inside of 2s are thrown out. The simulation now has a success
rate of 95.37%.

Table 4.4. Adjusted Results

Goal 1 | Goal 2 | Goal 3 | Total
Success 89 89 90 268
Crash > 2s 2 4 4 10
DNF 3 0 0 3
Total 94 93 94 281

The reason for the three runs which did not finish is unknown. The data for
these runs is not saved so one can only speculate on what occurred. One possibility
is a simple lack of time to complete the course. Two of the 3 were starting at a
distance greater than 130 m from the goal. Looking at the data, they both traveled
over 250 m. The other was initially under 50 m from the goal. It would appear
from this that there was ample time to reach the goal for all three of these runs,
if the vehicle could take a direct line.

Due to the complexity of the environment and the potential field controller, it
is possible that the shortest path to the goal had a lower potential than a longer
path, due to the noisy measurements. In this case, the vehicle could have turned
away from the optimal path to pursue one with a lower potential.

A second possibility is the local minima associated with potential field con-
trollers. While overall the trend is to navigate towards the goal, there possibly

exist spots in the environment where the draw of the goal and the repulsion from
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the obstacles are equal to each other. One such example would be a corridor ending
in a dead end towards the goal. The vehicle is drawn down the corridor to reach
the goal, but is forced to turn away at the end. At some point leaving the corridor,
the draw of the goal turns the vehicle back down towards the dead end, and the
vehicle is stuck in an endless loop. Both of these possibilities could be solved with
a more intelligent control architecture.

For the 273 runs which did not result in a collision, the average distance of
closest approach is 1.786 m with a standard deviation of 0.4262m. Over all of the
300 runs, the average velocity of the vehicle is 5.1069 m/s.

Figures 4.3 and 4.4 display the results from a representative run of the simula-
tion. Obstacles (shown in gray) are precisely and accurately identified, except for
those directly in front of the camera (as expected). Note that the gradient-based
approach to control causes the vehicle to steer away from space with unknown
occupancy, thus causing the vehicle to turn to improve its knowledge of the area
directly in front. The added dither also aids in the resolution of the unknown area
directly to the front.

Figure 4.5 shows the vehicle flight paths from a sample of 30 successful runs
of the simulation, 10 to each goal. The effect of the added dither control can be
observed when the vehicle operates in open space. When no obstacles are present
to force an avoidance maneuver, the dither control causes a sinusoidal shape to
appear in the vehicle path.

As a particular obstacle remains within the field of view it is localized with
greater accuracy. Further, the confidence that space thought to be unoccupied
actually is free space increases with time in the field of view. The model handles
both small point obstacles and large complex shaped obstacles equally well.

The occupancy grid also maintains its memory of space which has left the field
of view. This aids in the navigation around corners and trees, as the controller
can use the information of what is directly to the sides of the vehicle even thought
it is not currently in view. The convolution successfully translates the occupancy
grid beliefs such that the grid memory is possible. The scaling of the convolution
to less than one does cause the confidence of the cells to fade over time while not

blurring the grid.
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Figure 4.3. Sequence of images from representative run. The vehicle is shown as a
red cranked triangle, camera field of view is shown as green dashed lines. Cell color
represents occupancy probability: red = high, blue = low, green = 50% (uncertainty).
Obstacles are shown as gray lines, where visible the magenta dot is the goal, otherwise
the magenta line points towards the goal.
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Figure 4.4. Continuation of the sequence of images from representative run from
Fig. 4.3. Again, the vehicle is shown as a red cranked triangle, camera field of view
is shown as green dashed lines. Cell color represents occupancy probability: red = high,
blue = low, green = 50% (uncertainty). Obstacles are shown as gray lines, where visible
the magenta dot is the goal, otherwise the magenta line points towards the goal.
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Chapter

Conclusion

Flying a small unmanned aerial vehicle (UAV) through cluttered environments has
been the motivation for the obstacle avoidance algorithm presented in this thesis.
Missions envisioned for small UAVS require low altitude flights among many obsta-
cles such as search and rescue in forests and surveillance in urban environments.
The close proximity and complex nature of these environments requires a system
of navigation and obstacle avoidance using onboard sensors. This thesis focused
on the problem of estimating obstacle locations and safe navigation to a known
goal location using a monocular camera and GPS/INS.

The current technologies for obstacle avoidance rely heavily on LIDAR and
RADAR, large sensors with great power requirements. However, payload limita-
tions of small UAVs places significant restrictions on sensor size, weight, and power
consumption. With the advent of low-cost, light-weight and low power CCD cam-
eras, the use of vision systems for obstacle avoidance has become an active field of
research. In addition to low power consumption and light weight, vision sensors
are passive, reducing the probability of detection.

The obstacle estimation problem poses many challenges. First, the camera pro-
vides measurements of bearings to obstacles and bearing rates of the obstacles due
to motion of the vehicle (and thus camera). Both of these measurements are heav-
ily corrupted with noise. This greatly reduces the certainty of information obtained
from the camera. Second, the equations governing the vehicle motion and vision
measurements are highly non-linear. The combination of noisy measurements with

non-linear equations leads to significant uncertainties in the estimation problem
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which must be accounted for.

To handle the noisy camera measurements and produce an accurate estimate of
obstacle location, a robust estimator is necessary. In addition to the noisy sensor,
the estimator must also handle sensor dropouts (e.g. a brownout while operating
over a desert). A map is used to store estimates of obstacle locations. The map can
continuously be updated with new information on obstacle location and take into
account the noise in measurements. Additionally, the map retains the estimates of
obstacle locations in the case of sensor dropout so that obstacle avoidance is still
possible.

Traditional mapping techniques based on the Kalman Filter fail in this partic-
ular application. While the feature based approaches work well in environments
populated with point obstacles (e.g. tree trunks in a forest), they quickly become
intractable in large environments or complex environments where obstacles are
difficult to define by features.

An occupancy grid approach is used to map the estimated locations of obstacles.
As local obstacle avoidance is the focus of this research, a local occupancy grid is
used. The local occupancy grid has a limited size governed by sensor field of view
and computational considerations. The origin of the grid is fixed to the vehicle
and in this application the orientation is fixed to an inertial frame. By keeping
the grid centered on the vehicle, vehicle motion must be accounted for in the grid
with a motion update step.

To make the problem numerically better conditioned and easier to implement
computationally, the occupancy grid is represented in log-odds form. This allows
for measurement updates to simply be added to the belief at the previous timestep.
In addition, the motion updates can be performed using a convolution kernel.

Estimates of range to obstacles are produced from the bearing and bearing
rate measurements obtained from the camera and estimates of vehicle state from
an inertial navigation system corrected by GPS. The inverse sensor model takes the
estimates of obstacle locations and increases the log-odds of cells corresponding to
these estimates, and decreases the log-odds of cells between the vehicle and the
estimated obstacle.

Vehicle navigation and obstacle avoidance is handled by a potential field trajec-

tory generator. Regions of high occupancy represent high potential (to be avoided)
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and the goal is represented by a sink. The trajectory planner attempts to steer
the vehicle in the direction of steepest decent towards the goal.

A two-dimensional simulation of the described system was performed in an
environment modeled after the McKenna Military Operations in Urban Terrain
site at Ft. Benning, GA. The vehicle was started at various points in a forest
surrounding the town with goal locations inside the town. Out of 281 simulation
runs, the vehicle had a success rate of 95%, colliding with an obstacle 10 times
and not reaching the goal due to time constraints 3 times. The occupancy grid
provided both precise and accurate displays the estimates of obstacle and free
space locations. The longer an obstacle was in the field of view of the camera, the
more certain and more precise the estimated location became. The grid approach
was able to handle both small point obstacles and large complex shaped obstacles

equally well.

5.1 Summary of Contributions

5.1.1 Method for obstacle avoidance

A method for obstacle avoidance using only vision and GPS/INS sensors has been
developed. This system fuses estimates of vehicle states from an inertial navigation
system correctly by GPS with measurements from a camera to determine relative

obstacle locations.

5.1.2 Estimator design

A map based on the occupancy grid was developed. Obstacle locations relative to
the vehicle are estimated. This information was used by a trajectory planner to

compute a safe path to the goal through a complex environment.

5.1.3 Performance verification through simulations

A simulation is run to test the performance of the designed system. Results of

simulations show that the occupancy grid based implementation provides a solution
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to the navigation problem. The locations of obstacles are accurately estimated and

the vehicle reaches the goal on 95% of the simulation runs.

5.2 Recommendations for Future Work

5.2.1 Trajectory Planners and Controllers

While the gradient-based control algorithm implemented here worked well with an
overall success rate of 95%, it (like all potential field approaches to path planning)
is subject to local minima and the possibility of navigating into dead ends[28].
Additionally, the vehicle did have several collisions which would not be acceptable
in a hardware implementation. A more intelligent trajectory planner should be
used to minimize collisions and produce a closer to optimal path to the goal.

Combinations of global and local path planners has been successful in the
past[13]. Using a path planning routine (such as A* or D*) could provide a route
that leads to the goal, while a local potential field approach could ensure that the
vehicle still steers away when navigating too close to perceived obstacles.

The control algorithm used here also assumed a non-holonomic vehicle (v =
0. Rotorcraft have the unique maneuvering capability of sidewards flight. By
translating laterally, optical flow measurements could be obtained for objects in
front of the vehicle. While a controller to utilize this capability would be more
complicated than the one presented here, this would greatly improve the ability to

resolve the area in front of the camera.

5.2.2 Three Dimensions

The work presented in this thesis accounts for only two dimensions, though the
world is three-dimensional. While the two-dimensional environment used here is
similar in many ways (avoiding tree trunks and building walls), in practice these
small UAvVs will have to navigate through doorways, under branches, and other
obstacles with vertical components.

While the occupancy grid method used here can work in a third dimension
(becomes a cube-like occupancy grid), the required computer memory and compu-

tational effort will grow exponentially. While three-dimensional occupancy grids
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have been implemented, they used large vehicles with powerful computers[13]. For
the smaller vehicles discussed in this thesis, new techniques might need to be re-

searched to meet the computational requirements.

5.2.3 Hardware Implementation

The simulation results prove that the concept works in theory; however, an actual
hardware implementation will prove if the system can function in real-time. While
the models and equations designed in this thesis can be used in hardware, more
development is necessary. An actual method for calculation of optical flow from
a camera feed needs to be developed. Also, the vehicle will operate in a three-
dimensional environment and thus have 6 degrees of freedom (DOF) (in contrast
the the 3 DOF in this thesis). While a two-dimensional occupancy grid can still
be used to represent the environment, models of vehicle (and thus camera) motion

need to be derived for the 6 DOF.
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