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Abstract

Coordinated soaring by a flock of small unmanned aerial vehicles (suavs) provides a
means of conserving fuel while performing aerial tasks. The ability to exploit ther-
mal columns in the atmospheric boundary layer allows suavs to remain airborne
without expending any onboard sources of energy, i.e., soaring flight. This thesis
presents an analysis of the cruising phase during coordinated soaring where a flock
of suavs relies on thermal exploitation to maximize endurance for monitoring-type
missions.

To this end, a maneuver is investigated that involves each suav repeating a
round-trip between a thermal and a monitoring/surveillance target so as to main-
tain continuous monitoring of the target. The focus is on minimizing the number
of agents required to maintain continuous, persistent monitoring of the target for
given atmospheric conditions (thermal strength and distance between the thermal
and monitoring target) and on maximizing a free parameter (time or distance)
when the number of agents is specified.

It will be shown that the optimal cruising speed for maximizing the endurance
of monitoring-type missions varies between the best l/d speed and the MacCready
speed and depends on the “aggregate thermal strength” of a given cycle, or equiva-
lently, the ratio of the time that one suav spends away from the target to the time
that it spends at the target. An examination of multiple-thermal exploitation is
also presented, followed by an evaluation of the flight simulations supporting the
single-thermal results.
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Chapter 1
Introduction

This thesis presents an analysis of the relationship between atmospheric con-

ditions and the number of soaring small unmanned aerial vehicles (suavs)

required to ensure persistent monitoring of a ground target. The focus is on

minimizing the number of suavs required for a persistent monitoring cycle by

investigating the optimal cruising airspeeds. This research was motivated by a

combination of the limited onboard fuel capacity of suavs and the lack of intu-

ition regarding single and multiple-thermal exploitation for both single-agent and

multiple-agent scenarios.

To begin understanding the system, the persistent monitoring cycle is limited

to only consist of the monitoring and thermalling jobs, with the assumption that

the exploration job is being completed by a third party, i.e., the strengths and

locations of nearby thermals are already known. This assumption places the focus

on the cruising phase during the cycle and not on the auxiliary tasks required for

success.

This thesis: (a) derives the closed-form equations for the optimal cruising air-

speeds during di↵erent persistent monitoring scenarios, (b) introduces the novel

concept of the “aggregate-thermal”, (c) presents a short analysis of multiple-

thermal exploitation, and (d) presents flight simulator results demonstrating the

significance and accuracy of the theoretical conclusions.
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Figure 1.1. Thermal exploitation by a soaring suav [1].

1.1 Motivation

Small unmanned aerial vehicles excel at tasks unsuitable for their larger coun-

terparts. Their small size, low cost, and ability to cooperate autonomously with

other suavs have generated interest in many diverse applications including for-

est fire monitoring, severe weather monitoring, load transport, and stationary

high-altitude monitoring platforms [4–10]. However, their practicality and im-

plementability are hindered by their limited onboard propulsion energy, limiting

range and endurance.

Luckily, it has been shown that thermal exploitation can significantly increase

suav endurance. Since John Wharington first proposed the idea of autonomous

thermal soaring suavs [11,12], there has been a lot of research on improving ther-

mal centering controllers, path planners, and the balance between exploration and

exploitation of the thermal field [13–19]. One area yet to be investigated is the

cruising stage during monitoring-type missions where a suav travels repeatedly

between an thermal column and a monitoring target; note that “monitoring” and

“monitoring” will be used interchangeably. Here, this topic is explored with a fo-

cus on maximizing airborne time, i.e., endurance, for missions requiring continuous

uninterrupted monitoring of a ground target.
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Figure 1.2. Silent Wings persistent monitoring scenario.

1.2 The Problem

Persistent monitoring soaring scenarios confine the aircraft to a specific region of

a few square kilometers around a monitoring target. When a flock of suavs is

used in conjunction with thermal lift, one aircraft is assigned to monitor the target

while the other aircraft explore and exploit the surrounding thermals, creating a

map of thermal lift while maintaining altitude.

In this thesis, the exploration stage is disregarded and it is assumed that the

strengths and locations of thermals are known. This results in a scenario where

the aircraft are engaged in a cycle of monitoring a target, cruising to a thermal, ex-

ploiting a thermal, and cruising back to the target in a way that keeps at least one

agent at the target at all times, resulting in continuous monitoring of the target.

In the case of a persistent monitoring scenario where only one agent is available,

the target must periodically be unoccupied and the agent can only attempt to min-

imize the time spent away from the target. And in the case of multiple-thermal

exploitation, the agents exploit multiple thermals before arriving back at the mon-

itoring target. These scenarios are constrained further by requiring each cycle to

begin at a fixed altitude, thus, if the conditions were theoretically constant, the

mission endurance would be infinite. The characteristic scenario and trajectory
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are shown in Figure 1.2.

In this fashion, focus is placed on maximizing mission endurance by optimizing

the cruising phase of continuous monitoring missions. It is important to note that

the altitude and continuous monitoring constraints allow one to fully define the

scenario and formulate governing equations; it will become clear that the results in

this paper are not restricted to scenarios with these constraints. The subsequent

analysis will address the following questions:

� Which quantity is maximized when mission endurance is optimal?

This question is not as simple as it seems. For instance, maximizing the time

spent at the target will leave the agent at too low of an altitude to cruise to

a thermal, whereas minimizing the number of agents in a monitoring cycle

is not always optimal in multiple-agent scenarios.

� What is the relationship between the optimal airspeed, the best

L/D airspeed, and the MacCready airspeed?

The fact that the optimal airspeed is neither the best l/d airspeed nor the

MacCready airspeed was a surprise at the onset of this research. Never-

theless, the three airspeeds are related to each other and, in particular, the

relation to the MacCready speed gives rise to a novel quantity, here referred

to as the “aggregate thermal.”

� When is multiple-thermal exploitation beneficial to the cycle?

Polar maps of regions where multiple-thermal exploitation is preferred over

single-thermal exploitation will provide some understanding as to if and when

such a risky cycle should be considered.

1.3 Related Work

This section will review some of the work that has either involved persistent mon-

itoring or assisted in its development.



5

(a) Michael Allen launching his RnR Prod-
ucts SB-XC glider [22].

(b) Orbiter mini uav system from Aeronau-
tics Defense Systems [23].

Figure 1.3. Glider launches.

1.3.1 Increasing Endurance with Thermal Exploitation

Thermal columns, or “thermals” for short, are ascending masses of air that act as

the primary convective units of the atmospheric boundary layer by equilibrating

the temperature and pressure gradients between the ground and atmosphere [20].

Some typical defining characteristics of thermals include the following: diameters

from less than 100 m to nearly 1000 m, heights of nearly 1500 m, vertical air

currents ranging from 1 to 4 m/s, and lifespans between 5 and 30 minutes [21].

These values, however, depend strongly on time of day and season; thermal activity

peaks between the hours of noon and sunset and the months of spring and summer

when the ground can become significantly warmer than the surrounding air.

Previous studies have established the e↵ectiveness of thermal exploitation for

both single aircraft and coordinated aircraft scenarios. Allen presents two impor-

tant facts derived from a uav simulation with thermals calculated from meteo-

rological data from Desert Rock, Nevada [24]. First, during summer and winter,

thermals can provide a 12 and 6 hour increase in endurance, respectively, for an

electric-powered suav with a nominal endurance of two hours. Second, “perfor-

mance increase has a low sensitivity to many key simulation parameters including

aircraft glide slope, number of updrafts, updraft lifetime, updraft velocity, and

height-above-ground upper limit.” Depenbusch and Langelaan [25] demonstrate

that, on average, with the goal of remaining airborne for as long as possible, a

single suav doubles its endurance when keeping a memory of discovered thermal
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locations, thermal strengths, and associated covariances. They also shows that,

compared to a single suav using thermal mapping, a 23% average increase in en-

durance, defined as the soaring time until one suav reaches the ground, is provided

by two coordinated suavs that explore the environment and share measurements

with each other. Furthermore, four coordinated suavs experience a 98% average

endurance increase over the two coordinated suavs .

1.3.2 Miscellaneous

Bethke et al. have examined persistent monitoring by a team of quad-rotors,

where periodic recharge at known “filling stations” is performed as part of the

mission [26–28]. Cutler et al. examine monitoring with a single uav that exploits

ridge lift, and develop a “seeability” metric as a means of quantifying video image

quality during search and rescue missions [29]. Patel and Kroo show that, for

suavs, pitch maneuvers can provide significant energy gains in turbulent air, thus

extending mission endurance [30]. Pippin et al. tackle the multi-robot patrolling

problem by periodically designating “shadower” agents that verify observations

and update trust models of the “patrollers” [31]. Nigam et al. provide simulations

of up to four uavs that focus on optimal trajectories and coordinated ground

coverage during persistent monitoring missions [32].

1.4 Contributions

The main contributions of this thesis are summarized below:

� Governing equations for persistent monitoring scenarios

Equations for the required number of agents in a cycle, the optimal airspeeds,

and the free resources are derived for the persistent monitoring scenarios.

The scenarios are divided into single-agent monitoring, multiple-agent mon-

itoring, single-thermal exploitation, and multiple-thermal exploitation.

� The definition of the aggregate thermal

The aggregate thermal is derived and its value as a metric in local monitoring

missions involving thermal exploitation is shown. It will also be evident how
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this aggregate rate can be applied to other fields where an energy source

must be chosen among many to continue some mission objective.

� Polar map visualization of multiple-thermal v.s. single-thermal ex-

ploitation

Polar graphs will illustrate scenarios where multiple-thermal exploitation

should be considered. These graphs will show the angular range that the

two thermals must fall between in order to be beneficial to the cycle. The

benefit will be meager in most scenarios but valuable in scenarios where an

extra agent is barely needed.

� Theory verification through Silent Wings soaring simulator

Results from a high fidelity flight simulator are compared against the ex-

pected results from theory.

1.5 Reader’s Guide

The remainder of this thesis is organized as follows:

� Chapter 2: The Persistent Monitoring Problem outlines the di↵erent

persistent monitoring scenarios and covers the assumptions used in the later

chapters. The chapter finishes with a note on integer optimization and a

discussion of the MacCready speed and its suboptimality in persistent mon-

itoring.

� Chapter 3: Governing Equations for Persistent Monitoring puts

forth the governing equations for the number of agents required in a persistent

monitoring cycle and the associated optimal airspeeds. This chapter includes

a derivation and discussion of the aggregate thermal, as well as polar maps

for multiple-thermal exploitation.

� Chapter 4: Simulation Results presents results from the Silent Wings

soaring simulator. The simulated results are compared to the expected the-

oretical results and the accuracy of the theory is assessed.
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� Chapter 5: Conclusion summarizes results and discusses areas of future

work.



Chapter 2
The Persistent Monitoring Problem

This chapter outlines the persistent monitoring scenarios and introduces the

theoretical background used throughout the thesis. First, the general coop-

erative soaring problem is presented and simplified into the persistent monitoring

problem. Next, in Section 2.2, the persistent monitoring problem is simplified and

the simplifying assumptions are reviewed. This is followed by a note on the di↵er-

ence between integer and non-integer optimization and its relevance to optimizing

the persistent monitoring problem. The MacCready speed is introduced in Sec-

tion 2.4 with a note on the fundamental di↵erence between cooperative soaring

and traditional cross-country soaring. A summary concludes the chapter.

2.1 Cooperative Soaring

As covered in section 1.3.1, thermal exploitation by a team of cooperating suavs

is a theoretically e↵ective way of extending mission endurance. The challenges

appear when the cooperative soaring system is implemented outside of simulation.

One challenge is in outlining the job transitions and interactions. There are

many possible tasks in cooperative soaring, mainly consisting of monitoring, local

and global exploration, thermalling, communication relaying, loitering, and mod-

erating. The timing and distribution of tasks are critical to mission endurance and

all possible scenarios must be covered by the assignment algorithm or behavior

controller. For example, which task should an agent be assigned if he has been

lost due to a communications dropout? Should he continue his current task or
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Figure 2.1. General cooperative soaring scenario with monitoring, exploration, and
thermalling jobs available for each cooperating agent.

should he cruise toward another agent or the ground station to regain connec-

tion? Should the algorithm plan future task assignments without including this

lost agent? Another consideration is in defining valid job transitions. Will an agent

ever be assigned to an exploration job after completing a monitoring job without

monitoring in between? Would it be beneficial to separate agents into monitor-

ing cycles (alternating between monitoring and thermalling jobs) and exploration

cycles (alternating between exploration and thermalling jobs) instead of allowing

monitoring agents to exit the monitoring cycle? How long should the planning

horizon be? Perhaps the least intuitive job in question is exploration. Which un-

explored areas will yield the highest reward? How is this reward measured? Should

the area be thoroughly or briefly explored?

The quantification of reward is another major challenge in implementing coop-

erative soaring missions. One possibility for quantifying the exploration reward is

by calculating the associated risk of completing the exploration and choosing the

minimum risk task [33]. A second possibility is to use reinforcement learning to

find a relationship between environmental parameters, e.g., the percentage of un-

explored area in the thermal map, the average thermal density in the thermal map,
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average thermal strength, etc., and the total altitude gained by the system from

the information provided by the exploration task. Another possibility is to avoid

the approximation of a reward function altogether and instead use reinforcement

learning to find a state-action policy dependent on the environmental parameters.

The takeaway message is that the general cooperative soaring system is very

complex. To gain an understanding of the system requires a simplification that

focuses on a smaller portion of the system. In this way, challenges are approached

gradually and complexity is added incrementally until the entire system is under-

stood. The reduced system in this thesis is one that is geared toward analyzing

the theoretical optimal cruising airspeed between the monitoring target and the

thermal and vice versa.

2.2 Persistent Monitoring

The reduced persistent monitoring system consists of only the monitoring and

thermalling jobs. An example monitoring cycle, Figure 2.2(a), would begin at the

top of the monitoring target, annotated by the “M”. An agent somehow arrives

at the top of the target and from then on does not utilize any onboard sources of

propulsion energy. The agent sinks at a constant rate and departs the target at

an altitude that enables it to reach the thermal at the fixed minimum allowable

altitude. The agent then rises at a constant rate and departs the thermal upon

reaching the top, the fixed inversion layer altitude, before arriving back at the

monitoring target to repeat the cycle. If atmospheric conditions are constant, the

agent would monitor the target indefinitely. If multiple agents are available, their

actions are coordinated so that an agent is arriving at the monitoring target at the

moment another agent is departing.

Multiple-thermal exploitation, Figure 2.2(b), is of interest because a flock may

encounter many scenarios where exploiting a combination of thermals would reduce

the number of agents required for a persistent monitoring cycle. Two interesting

cases are the presence of one thermal on the path toward another and the utilization

of a nearby thermal to reach a better thermal that would otherwise be too far given

the working altitude. The reader must note that multiple-thermal exploitation is

practical if and only if T
1

< T
2

, otherwise the second thermal would be avoided
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(a) Single-thermal exploitation. (b) Multiple-thermal exploitation.

Figure 2.2. The cooperative persistent monitoring cycle, consisting of only the moni-
toring and thermalling jobs.

altogether. Thus, thermal T
1

must be treated strictly as a via point that enables an

agent to leave the monitoring target at a later time with the intention of increasing

monitoring time at the cost of increasing transit time. It follows that an agent

arrives at thermal T
1

at the altitude floor and departs at the height needed for

reaching thermal T
2

at the altitude floor. The stronger T
2

is then exploited over

the full working altitude.

The persistent monitoring system requires a thermal map, i.e., the locations

of nearby thermals, to be provided by a third party, whether it be from weather

forecasting or a separate group of cooperating agents. A basic cooperative soar-

ing implementation would divide a cooperating flock into monitoring agents and

exploring agents because there is normally no reason for an exploring agent to

replace a monitoring agent unless either the monitoring agent had mechanically

failed, lost too much altitude to be recovered, or the exploring agent had found a

thermal nearer to the monitoring target than the location of one of the monitoring

agents. It would be more common for the monitoring cycle to hire an additional

agent from the exploration cycle during instances where the nearest thermals are

too far away for the monitoring agents at hand.

Therefore, the control schemes for the monitoring cycle and the exploration

cycle may be perfected separately and combined by defining the conditions under

which an agent from the exploration cycle would switch with an agent in the

monitoring cycle or vice versa. Later, it will be shown that two or three agents are

capable of persistently monitoring a target for a wide range of practical thermal
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separations. Thus, an exploration cycle in reality would require about three or

four monitoring agents, where at least one agent is designated as the moderator.

The moderator is an agent that loiters atop the nearest thermal to the monitoring

target and whose job is to enforce the persistent monitoring constraint of never

leaving the target unoccupied. The moderator intercedes for a late-arriving agent

in cycles that experience dissipating thermals, inaccurate thermal locations, regions

of unexpected sinking airmasses, or other manifestations of uncertainty. Note that

the complexity of the system greatly increases when the target is not required to

be constantly monitored. Without this constraint, the agents must decide on when

and for how long the target should be abandoned.

The environmental assumptions for the system in this thesis are as follows:

1. Wind gusts are absent in the environment.

2. Thermalling climb rate & target monitoring sink rate are constant with al-

titude.

3. The altitude floor and ceiling (inversion layer) are constant.

4. All agents have identical properties and capabilities.

5. Atmospheric conditions persist indefinitely.

6. The duration of transient maneuvers is negligible relative to the other phases

of flight.

7. Changes in altitude during transient maneuvers are negligible for suavs .

The resulting system is one in which thermalling and monitoring dynamics are

absent and atmospheric conditions are constant. One may think of thermalling

and monitoring as taking an elevator up or down at a constant rate, respectively.

Transient maneuvers refer to the actions needed for an agent to transition from

one job to another, resulting in a change in altitude due to a change in airspeed.

For example, an agent will lose altitude when departing the monitoring target if

the cruising airspeed toward the thermal is greater than the monitoring airspeed;

the agent must lose altitude (potential energy) to gain speed (kinetic energy). This

altitude conversion will be canceled upon arriving at the monitoring target if the
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cruising airspeed toward the thermal is equal to the cruising airspeed toward the

target. In spite of this, it will later be shown that the total number of transitions

in the monitoring cycle can produce a nonzero overall change in altitude, resulting

in an asymmetric system. Thus, the seventh assumption will be relied upon until

that discussion.

It is important to note that the assumptions allow one to fully define the

scenario and formulate governing equations. As the thesis progresses, it will be

shown how the results are not restricted to scenarios with these constraints and

each assumption will eventually be lifted.

2.3 Minimizing the Resources in a Cycle

The various monitoring scenarios will be compared with each other by the quan-

tification of the number of agents needed to achieve continuous or persistent mon-

itoring in a given scenario. The optimal cruising airspeed, as well as the optimal

airspeed held between thermals during multiple-thermal exploitation, can be found

by di↵erentiating this equation, where the resulting speed minimizes the number

of agents required for a persistent monitoring cycle. Minimizing the number of

agents is a way of minimizing the amount of resources required for a given cycle,

thus maximizing the e�ciency of the scenario. It will be shown that this is equiv-

alent to minimizing the ratio of the amount of time an agent spends away from

the monitoring target to the amount of time an agent spends at the monitoring

target.

Minimizing this ratio is of interest in many types of scenarios involving one or

more agents cruising between a thermal and some location requiring an extended

presence. Instead of cruising between one monitoring target and one or more

thermals, it may be necessary to alternate between multiple monitoring targets,

perimeter monitoring for instance, or between exploration targets. The optimal

airspeeds in these scenarios will take the same form because the objective is ul-

timately the same in each case: to gain altitude as quickly as possible without

compromising the time spent at the target.

As the analysis proceeds, one will see why this approach does not apply to all

scenarios. Specifically, minimizing the number of agents for a cycle is optimal for a
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Figure 2.3. The MacCready speed takes an agent from point a (an arbitrary altitude)
to point b (the top of the second thermal) the fastest.

system where only a single agent is available since this is equivalent to minimizing

the ratio of time spent spent away to the time spent at the target. However, the

system becomes fundamentally di↵erent when multiple agents are available: the

monitoring cycle will always contain more than enough agents because there can

only be an integer number of agents in reality. For example, a cycle requiring

2.5 agents in theory will need to employ 3 agents in reality. This fact requires

the multiple-agent scenarios to be treated as integer optimization problems, where

auxiliary quantities such as the loitering time and free exploration distance are

used to represent the di↵erence in resources between the integer and non-integer

monitoring cycles.

2.4 MacCready Speed

The MacCready airspeed and its suboptimality in persistent monitoring and co-

operative soaring scenarios must be discussed before moving on to the governing

equations in the next chapter. The MacCready speed is the speed that takes a

soaring aircraft from some arbitrary altitude to the top of the next thermal the

fastest, illustrated in Figure 2.3. If the speed were slower, the aircraft would cruise

for too long and would not make up that time in the thermal despite the smaller

altitude loss during cruise. If the speed were faster, the aircraft would thermal for

too long and would not regain that time despite the faster cruising time. It is for
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this reason that cross-country glider pilots rely on the MacCready speed to mini-

mize their flight times during races. Reichmann explains the MacCready speed by

the following: “what we’re trying to find out is the best speed to use when flying

toward a thermal of known strength in order to achieve the best cruise speed” [34].

The derivation of the MacCready speed is given below.

t = t
1

+ t
2

=
d

v
+

�h

T
2

=
d

v
+ s

d

vT
2

=
d

v
+ (av2 + bv + c)

d

vT
2

=
d

v
+
⇣
av + b+

c

v

⌘ d

T
2

(2.1)

where t
1

and t
2

are the cruising and thermalling durations, respectively. The

distance between point a and b is given by d and the cruising airspeed is v, with

an associated cruising sink rate of s. �h is the height lost during the cruise and T
2

is the expected climb rate inside the thermal. The sink rate’s dependence on the

cruising airspeed is included because the objective is to di↵erentiate t with respect

to v. For optimization calculations and controller design, this is expressed fairly

well with a quadratic fit: s = av2+bv+c [34]. The coe�cients a and c are positive,

whereas the coe�cient b is negative since the sign convention in this thesis is to

treat sink rates as positive quantities.

Di↵erentiating Equation 2.1 with respect to v, setting to zero, and solving for

v leads to

v =

r
c+ T

2

a
⌘ v

MC

(2.2)

where the subscript MC is used to denote the MacCready speed. Note that the

calculation of the MacCready speed depends only on the glider parameters and

the estimate of the climb rate in the next encountered thermal; the speed to fly

is independent of how far away the thermal is! One can see that it is in the best

interest of the glider to fly faster when high thermal climb rates are expected,

meaning that the altitude lost during a fast cruise will be recovered quickly by the

high thermal climb rates during exploitation. Conversely, the glider flies slower

on days with low expected thermal climb rates because the altitude lost during

cruise would be recovered too slowly during exploitation. MacCready speeds for

the Schleicher ASW-27B and the RnR Products SB-XC are shown in Figure 2.4.

If there is a constant airmass motion during the cruise, e.g., the gliders cruise
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Figure 2.4. MacCready speed vs. thermal climb rate for the ASW-27B (left y-axis,
solid blue) and the SB-XC (right y-axis, dashed green).

trajectory is through a sinking airmass, v
MC

becomes

v
MC

=

r
c+ T

2

+ s
am

a
(2.3)

where s
am

is the sink rate of the airmass, again treated as positive down. Thus,

it is in the best interest of the glider to fly faster through sinking air and slower

through rising air, as expected. If s
am

= T
2

, the MacCready speed becomes the

best l/d airspeed v
L/D ⌘

p
c/a. This implies that if the speed of the airmass and

the expected climb rate are zero, then the speed to fly is v
L/D. If sam = T

2

� s
min

,

where s
min

is the minimum sink rate of the glider, the MacCready speed becomes

the airspeed for minimum sink v
min

⌘ �b/2a. This implies that if the speed of the

airmass is zero and the expected thermal climb rate is equal to the minimum sink

rate of the glider, then the speed to fly is the minimum sink airspeed of the glider.

For head and tailwinds, the speed to fly is determined graphically (before flight) by

drawing lines originating from di↵erent points along the airspeed axis and running

tangent to the sink polar curve, illustrated in Figure 2.5 [34,35]. In this figure, the

origin is displaced up by 1m/s, right by 5m/s, and a line is then drawn tangent

to the sink polar. The MacCready speed becomes the x-coordinate of the tangent

point, approximately 17m/s. Note that the best l/d airspeed is found by drawing
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the tangent line from the undisplaced origin. As a further reading, John Cochrane

analyzes the inherent uncertainty in predicting thermal climb rates and the e↵ect

that this uncertainty has on cross-country speed [36].

The suboptimality of the MacCready speed in cooperative soaring missions is

seen when the number of agents required for a cycle is calculated under varying

environmental conditions, Figure 2.6. Figure 2.6 can be interpreted in two ways:

one, the number of agents required in a cycle for a thermal of a given climb rate and

distance, or two, the maximum distance away a thermal can be for a given number

of available agents. The graph on the left shows the case where the MacCready

speed is used to cruise toward the thermal and the best l/d speed is used to cruise

back to the monitoring target. The graph on the right shows the case where the

best l/d speed is held for both cruise segments.

The MacCready speed is immediately dismissed as the optimal cruising speed

because there are cases where weaker and farther thermals require the same number

of agents as stronger and nearer thermals. This e↵ect is dominant in thermals that

are greater than 6km away and is attributed to an ine�cient exchange between

an agent’s altitude loss and cruising time for stronger thermals whose MacCready

speeds are large. The larger altitude losses during cruise decrease the monitoring

duration of the target because the agent must depart at a higher altitude so that
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Figure 2.6. Number of agents required for single-thermal exploitation with the ASW-
27B for �h = 700m and a monitoring sink rate of 0.52m/s.

he remains above the minimum allowable altitude upon arriving at the thermal.

This is the fundamental di↵erence between cooperative soaring and cross-country

soaring: cross-country soaring does not take into account the e↵ect that the cruis-

ing airspeed has on the starting location, whereas cooperative soaring aims to

maximize the resources available at the starting location (monitoring target).

There is a subtlety that is not shown clearly in Figure 2.6: v
L/D is not always

more e�cient than v
MC

, particularly for distances less than 2km. This observation

that the monitoring cycle was not optimized by the MacCready speed nor the best

l/d speed sparked the progression of this research.

2.5 Summary

This chapter has outlined the di↵erent persistent monitoring scenarios, namely

single-thermal, multiple-thermal, single-agent, and multiple-agent. The complex

general cooperative soaring system was reduced to the persistent monitoring sys-

tem, which is a minimal system that allows generalizations of cruising airspeeds

to be made for the more complex system. For the time being, this system neglects
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thermalling and monitoring dynamics, assumes constant atmospheric conditions,

and requires a third party to provide the locations of prospective thermals.

The di↵erence between the resource optimization for single-agent scenarios and

multiple-agent scenarios arises from the fact that multiple-agent scenarios will al-

ways have either a greater or equal amount of agents than what is theoretically

required for the cycle, due to the integer number of agents required in real im-

plementations. It becomes necessary to treat multiple-agent cycles as integer

optimization problems where a free resource, e.g. loitering time or exploration

distance, is optimized instead of the number of agents. This will become clearer

in Section 3.3.

The chapter concluded with a discussion on the MacCready speed and its sub-

optimality in the persistent monitoring cycle. The suboptimality arises from an

ine�cient exchange between an agent’s altitude loss and cruising time in the air-

speed toward stronger thermals. This is expected because the MacCready speed is

defined as a racing speed that minimizes the time for a glider to cruise from some

arbitrary altitude to the top of a prospective thermal, irrespective of the distance

between the two locations. Nevertheless, the subtle observation that, for small

separations, the MacCready speed outperforms the best l/d speed meant that

neither speed was optimal for the monitoring cycle, necessitating the formulation

of the optimal cruising airspeed provided in the next chapter.



Chapter 3
Governing Equations for Persistent

Monitoring

This chapter covers the governing equations for the single-thermal, multiple-

thermal, single-agent, and multiple-agent persistent monitoring cycles. The

derivations will begin with the quantification of the number of agents required to

ensure uninterrupted monitoring of the target. Optimal airspeeds are then found

by di↵erentiating the equations for the number of agents with respect to the cruis-

ing airspeeds. An optimal airspeed will exist for each cruise segment found in the

monitoring cycles, which consist of target to thermal, thermal to target, and inter-

thermal segments. Section 3.3.3 gives a derivation and discussion of the aggregate

thermal, Section 3.4 provides insight on multiple-thermal exploitation with polar

map visualizations, and Section 3.5 gives equations for the single-thermal single-

agent cycle where transitional changes in altitude are accounted for. A comment

on assumptions and a summary conclude the chapter.

3.1 Single-Agent Single-Thermal

The persistent monitoring cycles are reproduced here for convenience in Figure 3.1.

Intuitively, the number of agents required for persistent monitoring is equal to the

time required for one agent to complete the circuit divided by the time that one
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(a) Single-thermal exploitation. (b) Multiple-thermal exploitation.

Figure 3.1. The cooperative persistent monitoring cycle.

agent spends monitoring the target:

N =
t
c

+ t
t

+ t
tm

+ t
m

t
m

⇡ t
c

+ t
t

t
m

+ 1 (3.1)

where t
c

, t
t

, t
m

, and t
tm

are the cruising, thermalling, monitoring, and transient

maneuver durations, respectively. Recall that the duration of transient maneuvers

will be neglected due to its insignificance when compared with t
c

, t
t

, and t
m

.

Substituting the system parameters and applying the environmental assump-

tions discussed in Chapter 2 gives

N =
d
v1

+ d
v2

+ �h
T

s�1

s

⇣
�h� s

1

d
v1

� s
2

d
v2

⌘ + 1 (3.2)

with distance d, expected thermal climb rate T , working altitude �h, monitoring

sink rate s
s

, the cruising airspeed and sink rate toward the thermal v
1

and s
1

, and

the cruising airspeed and sink rate toward the monitoring target v
2

and s
2

. The

working altitude is assumed to be constant and equal to the altitude ceiling minus

the altitude floor for the agents. It is temporarily assumed that the two cruising

paths are of the same distance d. The general case where the two cruising paths

di↵er, for example, when an aircraft diverts to explore the surroundings or when

multiple thermals are exploited, will be treated in Section 3.2.

To clarify Equation 3.2, the sum of the first two terms in the numerator rep-

resents the cruising duration of one agent for a given thermal with an expected
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climb rate T and a distance d away from the target. The third term in the numer-

ator of Equation 3.2 represents the time spent exploiting the thermal, t
t

. It will

be shown that minimizing N , i.e., maximizing e�ciency, translates to exploiting

the thermal over the entire working altitude �h, i.e., not departing the thermal

prior to reaching the altitude ceiling and not arriving at the thermal above the

altitude floor. Lastly, the denominator of Equation 3.2 represents the time, t
m

,

spent monitoring the target at the aircraft’s monitoring sink rate.The simplicity

of t
t

and t
m

amounts to an elevator model of thermalling and monitoring: once an

agent reaches either location, he sinks or rises at a constant rate until departing.

3.1.1 Maximizing the Working Altitude

To prove that the number of agents required for monitoring the target is minimized

when �h is maximized, start with the inequality N
1

< N
2

, where N
1

represents a

scenario with �h
1

and N
2

represents an identical scenario but with �h
2

such that

�h
1

> �h
2

. The goal is to reduce this inequality to show that N
1

< N
2

if and

only if �h
1

> �h
2

:

d
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Multiplying both sides by the product of the denominators, expanding, and can-
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The terms in the square brackets are equal and the inequality reduces to the

expected result

�h
2

< �h
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Thus, given the environmental assumptions, maximizing the working altitude

�h will always minimize the required number of agents. In the case of persistent

monitoring using a single thermal, optimal performance is obtained when agents

exploit the full height of the thermal: a “partial recharge” will necessarily result

in an increase in the number of agents. This, as discussed in Section 2.2, does

not hold in multiple-thermal cycles where partial exploitation assists an agent in

reaching a farther thermal.

3.1.2 Optimal Airspeeds

The optimal v
1

and v
2

can be found by di↵erentiating Equation 3.2 with respect

to v
1

and v
2

. To do this, the aircraft’s sink polar is expressed in terms of the

cruising airspeed via a quadratic fit, as was done with the MacCready speed in

Section 2.4. The flight path angle is assumed to be small, so that airspeed is equal

to the ground speed (for typical gliders the flight path angle is approximately two

degrees, which results in v
air

/v
ground

= 1.0006). The derivation for the optimal v
1

is as follows:
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Multiplying both sides by the inverse of the first term:
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and expanding:
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Invoking the auxiliary variables A
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and B
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for the leading coe�cients leaves
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Similarly, the equation for the optimal v
2

has an identical form due to the

structure of Equation 3.2:
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The variables t
c1

and t
c2

were introduced to represent the two segments comprising

t
c

. The time spent away from the target is represented by t
away

. The interdepen-

dence and identical form of v
1

and v
2

implies that v
1

= v
2

. Indeed, after con-

structing the constrained optimization problem for Equation 3.2 using MATLAB’s

fmincon function, it was observed that given any set of environmental conditions,

the optimal v
1

and v
2

were both equal to

v =
�2 +

p
4 + AB

A
(3.9)

where

A =
�h

Td
=

1

d
(t

away

� t
c

) (3.10)

B =
1

ad

✓
�h� 2bd+

c�h

T

◆
=

1

ad
(�h� 2bd) + A

c

a
(3.11)

Figure 3.3 plots values of v as a function of T and d with a working altitude of

700 and 350 meters for a Schleicher ASW-27 glider. The two graphs in the figure

converge to the same values as d approaches zero and as d approaches infinity. An
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Figure 3.2. Optimal cruising airspeed for single-agent scenarios with the ASW-27B
glider, s

s

= 0.52m/s.

alternative formulation in Section 3.3.1 will show that the limits of v are equal to

the MacCready speeds as d approaches zero and the best l/d speed as d approaches

infinity.

At first glance, it appears that this equation must be solved iteratively because

of the dependence on t
c

. This, however, is not the case because t
c

is included

in t
away

; subtracting t
c

eliminates the dependence on the two cruising segments.

Symmetry within the cycle is expected because flying away from the target a↵ects

the cycle in the same way as flying toward the target. Both airspeeds a↵ect the

time spent at the target, where v
1

a↵ects the departing altitude and v
2

a↵ects

the arriving altitude. Both airspeeds also a↵ect the time spent away from the

target with equal weight. Thus, the optimal v
1

that balances these two e↵ects

so as to minimize the N required for the system will equal the optimal v
2

. It is

worthwhile to mention that B may be rewritten using the relations v
L/D =

p
c/a,

v
min

= �b/2a, s
L/D = 2c + bv

L/D, and s
min

= bv
min

/2 + c, where v
L/D is the best

l/d speed, v
min

is the speed at the minimum sink rate of the aircraft, and s
L/D

and s
min

are their corresponding sink rates [34].

Table 3.1 lists the gains in the maximum allowable distance from using the
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Figure 3.3. Number of agents required for single-thermal exploitation cruising at the
optimal v for the ASW-27B, s

s

= 0.52m/s.

Table 3.1. The additional maximum allowable distance between M and T
provided by v

opt

as opposed to v
L/D given �h = 700m and s

s

= 0.52m/s.

Climb Rate
Number of Agents

2 3 4 5 10
0.5m/s na* 85 (1.5) 65 (0.8) 45 (0.5) 15 (0.1)
1m/s 205m (4.6%) 130 (1.5) 85 (0.8) 55 (0.5) 15 (0.1)
2m/s 290m (4.3%) 155 (1.5) 90 (0.8) 60 (0.5) 15 (0.1)
3m/s 325m (4.4%) 160 (1.5) 90 (0.7) 60 (0.5) 15 (0.1)
4m/s 340m (4.4%) 165 (1.5) 90 (0.7) 60 (0.5) 15 (0.1)
5m/s 345m (4.3%) 165 (1.5) 95 (0.8) 60 (0.5) 15 (0.1)

* not applicable, N > 2 for thermal climb rates of 0.5m/s.
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optimal airspeed as opposed to v
L/D given a working altitude of 700m. Values

within parenthesis represent the percentage gains in the maximum allowable dis-

tance with respect to the maximum allowable distance given by v
L/D.The first entry

is not applicable because thermals with climb rates of 0.5m/s require three agents

to complete a cycle regardless of their distance from the target. This is due to the

minimum sink rate, which was assumed to be the sink rate during monitoring, be-

ing slightly larger than 0.5m/s. The calculation of d cannot be carried out directly

by providing a value of N because the value of the optimal airspeed depends on

d. Instead, the calculation of d for a certain number of agents was carried out by

varying the distance from zero to sixteen kilometers in steps of five meters. The

distance was recorded when the value of N reached an integer number.

Table 3.1 shows that if the optimal airspeed is ever to be used instead of the best

l/d airspeed, it should be used in situations where N  2, otherwise, the gains in

distance do not justify the computational e↵ort after considering the uncertainty

of dynamic environments during real missions. It then becomes of interest to

quantify the benefit of cruising at the optimal airspeed when N  2. However,

the method of calculating the maximum distance away a thermal can be does not

apply for non-integer values of N , and calculating the di↵erence in the number

of agents required for a cycle is slightly non-intuitive. Instead, Equation 3.2 will

be reformulated in Section 3.3 to account for a savings in time by considering

exploration distance, d
free

, and loitering time, t
free

.

3.2 Single-Agent Multiple-Thermal

In the case of a two thermal persistent monitoring problem (Figure 3.1b) the

number of agents required for persistent monitoring is

N =
d1
v1

+ s2d2
v2T1

+ d2
v2

+ �h
T2

+ d3
v3

s�1

s

⇣
�h� s

1

d1
v1

� s
3

d3
v3

⌘ + 1 (3.12)

where d
1

, v
1

, and s
1

represent the first leg of the cycle between the target and

the first thermal, d
3

, v
3

, and s
3

represent the final leg of the cycle between the

second thermal and the target, and d
2

, v
2

, and s
2

represent the leg between the
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two thermals T
1

and T
2

. The second term in the numerator of Equation 3.12

represents the partial exploitation of thermal T
1

.

3.2.1 Optimal Airspeeds

After di↵erentiating Equation 3.12, the equations for the optimal v
1

and v
3

exhibit

the same properties as those in Section 3.1: both equations are identical in form

and dependent on each other and, as before, MATLAB’s fmincon confirms that

the optimal v
1

is equivalent to the optimal v
3

, so that v
1

= v
3

= v
c

:

v
c

=
�1 +

p
1 + AB

A
(3.13)

where

A =
1

d
c

(t
away

� t
c

) (3.14)

B =
1

ad
c

(�h� bd
c

) + A
c

a
(3.15)

where d
c

represents the total cruising distance minus the distance traveled between

thermals: d
c

= d
1

+ d
3

. In fact, Equation 3.13 is the general form of Equation 3.9

when d
1

6= d
3

and although the terms within t
away

and t
c

di↵er for di↵erent sce-

narios, this general form for the optimal airspeed remains the same. For instance,

if the cycle in Figure 3.1(b) was changed to M ! T
1

! T
2

! T
3

! E, where

E is an exploration job, the term “t
away

� t
c

” would now equal the sum of the

cruising times and exploitation times in T
1

! T
2

! T
3

, d
c

would be the sum

of the distances between M ! T
1

and T
3

! E, and Equation 3.13 determines

the new optimal airspeed. Note the di↵erence between d and d
c

: d represents the

distance between M and T in single-thermal exploitation, whereas d
c

represents

the sum of the lengths of the first and last legs in multiple-thermal exploitation.

If single-thermal exploitation is represented in the multiple-thermal formulation,

then d
c

/2 = d since the first and last cruise legs are identical.
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3.2.2 Inter-Thermal Cruising

Equation 3.12 may also be di↵erentiated with respect to v
2

to determine the opti-

mal cruising speed between thermals:

@N

@v
2

=
@

@v
2

2

4
d1
v1

+ s2d2
v2T1

+ d2
v2

+ �h
T2

+ d3
v3

s�1

s

⇣
�h� s

1

d1
v1

� s
3

d3
v3

⌘ + 1

3

5 =

@
@v2

⇣
s2d2
v2T1

+ d2
v2

⌘

s�1

s

⇣
�h� s

1

d1
v1

� s
3

d3
v3

⌘

Substituting a quadratic fit for s
2

and evaluating the derivative:

@
@v2

⇣
(av22+bv2+c)d2

v2T1
+ d2

v2

⌘

s�1

s

⇣
�h� s

1

d1
v1

� s
3

d3
v3

⌘ =
(a� c

v22
) d2T1

� d2
v22

s�1

s

⇣
�h� s

1

d1
v1

� s
3

d3
v3

⌘

Setting to zero, multiplying out the denominator, and expanding:

ad
2

T
1

� cd
2

v2
2

T
1

� d
2

v2
2

= 0

Multiplying by T
1

/d
2

and collecting like terms:

a� 1

v2
2

(c+ T
1

) = 0

which leaves the optimal cruising airspeed from T
1

to T
2

to be

v
2

=

r
c+ T

1

a
(3.16)

Surprisingly, the optimal cruising speed in T
1

! T
2

is equal to the MacCready

speed in reverse, i.e., the MacCready speed for T
1

rather than T
2

. Since T
1

< T
2

in scenarios involving multiple-thermal exploitation, the time spent exploiting T
1

should be minimized. The reversed MacCready speed is slower than the normal

MacCready speed in T
1

! T
2

and minimizes the height lost during this phase,

which translates to a lower required altitude for reaching T
2

.

The reader is reminded that if the cycle in Figure 3.1(b) is beneficial, i.e.,

N
M!T1!M

> N
M!T2!M

> N
M!T1!T2!M

, then the cycle N
M!T1!T2!T1!M

should

be taken instead of simply N
M!T1!T2!M

, provided that T
1

is available on the
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cruise back. That is, if T
1

decreases the number of agents required for a cycle by

acting as a via point between M and T
2

that allows an agent to depart M at a

lower altitude, then it must likewise be possible for T
1

to decrease the number of

agents by acting as a via point between T
2

and M that allows an agent to arrive

at M at a higher altitude.

Indeed, the optimal cruising speed in T
2

! T
1

is equal in value to the reversed

MacCready speed that optimized T
1

! T
2

. However, the di↵erence between the

two MacCready speeds is that the segment T
2

! T
1

is optimized by the forward

form of the MacCready speed, v
MC

=
p
(c+ T

1

)a�1, instead of the reversed form

v
MC

=
p

(c+ T
2

)a�1. To reiterate, in its normal form, the MacCready speed

optimizes a cruise to a thermal based on the thermal that the aircraft is traveling

to. In this paper, the MacCready speed is said to be reversed when the thermal

that the aircraft is starting from is used to optimize an inter-thermal cruise in

monitoring scenarios.

3.3 Optimizing Multiple Agents by Maximizing

a Free Parameter

The theory behind multiple-agent cycles was developed by considering an alter-

native way of representing the resources used in a monitoring cycle. It is slightly

unintuitive to compare monitoring cycles by a di↵erence in agents, e.g., claiming

that one cycle requires half of an agent less than another cycle. This section re-

formulates the governing equations to include a free resource, specifically, loitering

time and exploration distance. The connection to multiple-agent theory lies in the

fact that only multiple-agent cycles can possess free resources. Single-agent cycles

cannot have free resources because the objective is to minimize the duration that

the target is left unmonitored; the free resource is converted into minimizing the

ratio of the time spent away from the target to the time spent monitoring the

target. This is fundamentally di↵erent from the integer optimization treatment of

the multiple-agent cycles covered in Section 2.3.
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3.3.1 Free Time

Loitering time will be analyzed by considering the following equation:

N =
2d
v + �h

T + t
free

s�1

s

�
�h� s2d

v

� + 1 (3.17)

Equation 3.17 is a form of Equation 3.2 with an additional segment of T ! L,

where L represents a loitering period t
free

at the thermal. In this thesis, loitering

is restricted to an agent remaining at the altitude ceiling within a thermal. In

reality, atmospheric dynamics necessitate the prediction of dissipating thermals.

By remaining within a thermal for an extended period, the loitering agent has a

better sense of whether or not a thermal is dissipating, which becomes critical in the

decision making process for the subsequent agents seeking a thermal. Alternatively,

t
free

, along with d
free

, can be a way of measuring the margin of error within a cycle.

Equation 3.17 is utilized by solving for t
free

:

t
free

= (N � 1)

✓
�h� s

2d

v

◆
1

s
s

�
✓
2d

v
+

�h

T

◆
(3.18)

The way to solve this equation is to first calculate the optimal number of agents

without t
free

, i.e., by solving Equation 3.2 and Equation 3.9, and rounding up to

the nearest integer number of agents, dNe. Rounding N up to the nearest integer

is necessary to account for the additional t
free

since free time is available only if a

cycle has more than enough agents. A di↵erence in agents can now be interpreted

as a di↵erence in t
free

; this can be seen clearly if Equation 3.17 is rearranged in the

following manner:

dNe �
 

2d
v + �h

T

s�1

s

�
�h� s2d

v

� + 1

!
=

t
free

s�1

s

�
�h� s2d

v

� (3.19)

where the left-hand side equals the di↵erence between the integer number of agents

required in reality and the non-integer number of agents required in theory.

After comparing the values of t
free

given by v
c

to the values of t
free

given by v
L/D,

it was seen that v
c

did not always provide a larger t
free

than v
L/D despite requiring

a smaller N for a cycle. This result reinstated that maximizing the endurance of
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a coordinated soaring mission is an integer optimization problem; the objective is

to optimize the resources available, dNe, rather than minimizing the number of

resources, N . Thus, the optimal cruising airspeed during real missions involving

multiple agents must be derived by di↵erentiating Equation 3.18 with respect to v

instead of di↵erentiating Equation 3.2. The new optimal cruising airspeed is given

by Equation 3.20.

v
opt

=

r
c+ s

s

(dNe � 1)�1

a
(3.20)

where the calculation of v
opt

requires calculating v
c

and dNe. The value of v
c

actually converges to v
opt

as N approaches an integer value, showing that the two

optimization problems are related. In addition, v
opt

converges to v
L/D,

p
c/a, as

dNe tends to infinite (as was seen in Figure 3.3 of Section 3.1).

A pleasant consequence of Equation 3.20 is that v
opt

is constant for a given

dNe, which means that d can be divided into ranges of constant v
opt

rather than

calculating a di↵erent optimal airspeed for every value of d, as was done with v
c

.

The reader must keep in mind the di↵erence between v
c

and v
opt

: v
c

is the opti-

mal cruising airspeed in scenarios involving one agent, whereas v
opt

is the optimal

cruising airspeed for multiple-agent scenarios where the monitoring target can be

monitored indefinitely in theory. The reference cruising airspeed for any coordi-

nated soaring monitoring mission can equal up to about three or four di↵erent

values; thermals requiring dNe � 5 are rarely the best options and v
opt

changes

Table 3.2. The operating range for v
opt

in terms of d given six thermal climb rates
(m/s) for the ASW-27B, with �h = 700m and s

s

= 0.52m/s.

T
Optimal Airspeed

32.8m/s 30.2m/s 29.3m/s 28.9m/s 28.6m/s
dNe = 2 dNe = 3 dNe = 4 dNe = 5 dNe = 6

0.5 na* 0 - 5.88 5.89 - 8.69 8.70 - 10.35 10.36 - 11.44
1 0 - 4.64km 4.65 - 8.85 8.86 - 10.89 10.90 - 12.10 12.11 - 12.89
2 0 - 6.98km 6.99 - 10.36 10.37 - 12.00 12.01 - 12.97 12.98 - 13.61
3 0 - 7.77km 7.78 - 10.86 10.87 - 12.36 12.37 - 13.26 13.27 - 13.85
4 0 - 8.16km 8.17 - 11.10 11.11 - 12.55 12.56 - 13.40 13.41 - 13.97
5 0 - 8.39km 8.40 - 11.25 11.26 - 12.65 12.66 - 13.49 13.50 - 14.05

* not applicable, N > 2 for thermal climb rates of 0.5m/s.
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very slightly beyond that. Table 3.2 lists ranges of d for scenarios involving up to

5 agents given six di↵erent thermal climb rates.

3.3.2 Free Distance

Another way of quantifying the advantage of a cycle requiring less agents is through

exploration distance, d
free

. This can be thought of as an alternative to using t
free

as loitering time. An agent now has the option of cruising slightly o↵ course to

explore nearby regions, the advantage of which is a higher likelihood of locating

new thermals or identifying areas of sink to be avoided by subsequent agents.

Consider Equation 3.21:

N =
2d
v + �h

T + dfree
vfree

s�1

s

⇣
�h� s2d

v � s
free

dfree
vfree

⌘ + 1 (3.21)

Contrary to t
free

, d
free

a↵ects the arrival height at the monitoring target. This is

why d
free

appears in the denominator of N whereas t
free

does not. Nevertheless,

solving for d
free

and di↵erentiating with respect to v leads to the same optimal

airspeed that maximized t
free

. This is because d
free

can be thought of as an alter-

native usage of t
free

. Or in other words, the optimal airspeed maximizes the free

resource regardless of how the resource is used, so long as the integer number of

agents is kept constant.

Di↵erentiating for v
free

shows that v
free

is equal to the cruising speed that max-

imizes d
free

, given by Equation 3.20. This is expected since d
free

can be thought

of as an extension of the cruising segments, which implies that v
free

and v
c

have

identical e↵ects on the overall system.

Figure 3.4 and Figure 3.5 show the values of t
free

and d
free

, respectively. Solid

lines represent the additional times and distances provided by v
opt

compared to

v
L/D and belong to the left axis, whereas the dashed lines represent the total times

and distances provided by v
opt

and belong to the right axis; the dashed lines are

meant to put the solid lines into perspective. Breaks in the plots denote distances

where the number of agents changes; the graphs show distances that require up to

five agents. The dashed lines extend past the solid lines in all cases because the

values of the additional times and distances were not recorded after the t
free

from
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v
L/D became negative. In other words, the dashed lines extend past the solid lines

because the maximum d using v
opt

is larger than the maximum d using v
L/D. The

additional distance gained is constant given a certain number of agents since the

free time rises at a constant rate given a fixed optimal airspeed. The loitering time

gained is less than one minute for all three thermal strengths and the distance

gained is less than 700m. These gains become useful when N approaches an

integer value, i.e., toward the right sides of the dashed lines, where resources begin

to dwindle.

3.3.3 Aggregate Thermal

It is interesting to note that the second term in the numerator of Equation 3.20

represents a rate equal to the available altitude at the target divided by the time

spent away from the target:

s
s

dNe � 1
=

�h� s2d
v

2d
v + �h

T + t
free

(3.22)

The right-hand side of Equation 3.22 is a rate that can be thought of as an ag-

gregate thermal and the left-hand side is its relationship with N . The e↵ects of

d and �h are incorporated into the thermal climb rate for a more relevant metric

in describing thermals given a particular environmental scenario. Thus, the aggre-

gate thermal is a way of discounting a thermal’s strength by the energy required

to reach it.

This explains the resemblance of Equation 3.20 to the equation for the Mac-

Cready speed. Hence, if a cycle has an aggregate thermal strength of 0.5m/s, the

optimal cruising speed is equal to the MacCready speed for a thermal of strength

0.5m/s (32.8m/s for the ASW-27B).

The aggregate thermal concept exists in multiple-thermal cycles as well and is

a general way of combining multiple thermals, the distances between them, and

the lengths of the first and last legs of the cycle into one rate. The derivation steps

are identical to those in the single-thermal cycle: reformulate Equation 3.12 to

include a free resource, apply the ceiling operator on N , solve for the free resource,

and di↵erentiate with respect to a cruising speed. Here, the derivation is done in
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terms of free distance in the cycle N
M!T1!T2!T1!M

and with the knowledge that

v
1

= v
4

= v
c

(d
1

+ d
4

= d
c

), where v
1

is the crusing speed from M ! T
1

, v
4

is the

cruising speed from T
1

! M, and v
2

and v
3

are the inter-thermal cruising speeds:

dNe = 1 +
d1
v1

+ s2d2
v2T1

+ d2
v2

+ �h
T2

+ d3
v3

+ s3d3
v3T1

+ d4
v4

+ dfree
vfree

s�1

s

⇣
�h� s

1

d1
v1

� s
4

d4
v4

� s
free

dfree
vfree

⌘

= 1 +
dc
vc
+ s2d2

v2T1
+ d2

v2
+ �h

T2
+ d3

v3
+ s3d3

v3T1
+ dfree

vfree

s�1

s

⇣
�h� s

c

dc
vc
� s

free

dfree
vfree

⌘

Solving for d
free

:

d
free

=

vfree
1�(dNe�1)s�1

s sfree

h
dc
vc
+ s2d2

v2T1
+ d2

v2
+ �h

T2
+ d3

v3
+ s3d3

v3T1
� (dNe � 1)s�1

s

⇣
�h� s

c

dc
vc

⌘i

Di↵erentiating d
free

with respect to v
c

:

@d
free

@v
c

=
v
free

1� (dNe � 1)s�1

s

s
free


�d

c

v2
c

� (dNe � 1)s�1

s

✓
�d

c

(a� c

v2
c

)

◆�
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The utility of the aggregate thermal is that instead of thinking in terms of the

number of agents required for a particular cycle, one can think in terms of the ag-

gregate thermal for the cycle, avoiding confusion in scenarios where only one agent

is available or when the zero-altitude-loss and continuous monitoring constraints

do not apply. Equation 3.20 does not directly apply to scenarios with only one

agent because maximizing t
free

is no longer of interest since there is no free time

available. Instead, dNe is replaced by the non-integer N in Equation 3.20, where

the interest reverts to minimizing the ratio of the time spent away from the target

to the time spent at the target. This is precisely the reason why Equation 3.13

gives the same values for the optimal airspeed as Equation 3.20 without the ceiling

operator:

v
c

=
�1 +

p
1 + AB

A
=

r
c+ s

s

(N � 1)�1

a
(3.25)

This was a coincidental result that was realized by finding optimal speeds for

di↵erent conditions, calculating N , plugging N into Equation 3.25, and arriving at

the same optimal speed. Equation 3.25 shows that v
c

converges to v
L/D and v

MC

as d approaches infinity and zero, respectively. The critical di↵erence between the

two equations is that the latter equation, for the continuous monitoring scenario,

must be solved iteratively, i.e., v
c

depends on N , but N is a function of v
c

, and

cannot be used to find v
c

for single-agent cycles.

In spite of this, there are other scenarios where the optimal cruising speed is

known and the aggregate thermal strength can be determined. In any scenario, the

formulation of the aggregate thermal involves defining a resource gained in units of

distance, normally altitude, and the time it took to gain that resource. Consider a

scenario where the goal is to create a thermal map of a region. The available agents

explore the region, keeping a memory of thermal locations, strengths, uncertainty,

etc., until needing to gain altitude to continue exploration. Each agent can then

choose the thermal that benefits them the most by calculating aggregate thermal

strengths.

For this case, the aggregate thermal is equal to the estimated height gained

from a thermal, relative to an aircraft’s current altitude, divided by the estimated

time to gain that altitude given the thermal climb rate, the estimated final alti-

tude, the distance between an agent and a thermal, and the cruising speed. The
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optimal cruising speed, in this scenario, will reach the final altitude the fastest

and this speed is known as the MacCready speed, covered in Section 2.4. Note

that if the agent’s next exploration region is established before thermalling, then

the MacCready speed will not be optimal. Analogous to v
c

maximizing the ag-

gregate thermal, the MacCready speed optimizes the aggregate thermal strength

by minimizing the time to reach the final altitude. Knowing that the optimal air-

speed in this scenario is independent of N eliminates the circularity discussed in

the previous paragraph and allows the aggregate thermal strength to be used as a

metric for choosing the “strongest” thermal based on an agents relative position

to a thermal with respect to the target location.

3.4 Multiple-Thermals

In addition to the theory presented on multiple-thermal exploitation thus far, a

better intuitive understanding is sought as to when multiple-thermal exploitation

is preferred over single-thermal exploitation. It has been noted that, at the least,

multiple-thermal exploitation involves exploiting a weaker, but closer, T
1

as a via

point to a stronger, yet farther, T
2

. However, the importance of the location of

T
1

with respect to T
2

and M, the disparity between climb rate and distance, and

the benefit of multiple-thermal exploitation remains to be explored. For simplicity,

multiple-thermal exploitation cycles are limited to the partial cycle: M ! T
1

!
T

2

! M, or equivalently, M ! T
2

! T
1

! M; and the full cycle M ! T
1

!
T

2

! T
1

! M. As mentioned previously, though the full cycle is preferred over

the partial cycle, atmospheric dynamics will at times present the partial cycle as

the best option due to thermal creation and dissipation.

Figure 3.6 shows polar maps of regions indicating whether single-thermal ex-

ploitation is preferred over multiple-thermal exploitation. The location of T
2

and

M is constant in each map, where M is located at the origin and T
2

is located

along the 90� line at radius equal to d
3

and is represented by a star; the value

d
3

is indicated at the top of each map. Given T
1

, T
2

, d
3

, these maps were cre-

ated by choosing a location for T
1

, thus setting d
1

, d
2

, and calculating N for

the cycles M ! T
1

! M, M ! T
2

! M, and M ! T
1

! T
2

! T
1

! M,

represented by N
T1 , NT2 , and N

T1+T2+T1 , respectively. If the location of T
1

re-
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sulted in N
T2 > N

T1 < N
T1+T2+T1 , where single-thermal exploitation of T

1

re-

quires the least N , then the location was given a red marker. If the location

of T
1

resulted in N
T1 > N

T2 < N
T1+T2+T1 , where single-thermal exploitation of

T
2

requires the least N , then the location was given a blue marker. Similarly,

if the location of T
1

resulted in N
T1 > N

T1+T2+T1 < N
T2 , where the full cycle,

M ! T
1

! T
2

! T
1

! M, requires the least N , then the location was given a

black marker. Finally, regions of white within the radius d
3

represent locations

where the zero-altitude-loss constraint could not be satisfied. In this manner, the

maps were populated by choosing all possible locations of T
1

within d
3

and assign-

ing the appropriate marker. Distance d
3

increases from left to right and top to

bottom.

As expected, it becomes less beneficial to exploit T
2

as d
3

increases. The maps

show that at close distances, d
3

< 1350m, exclusively exploiting T
2

is desired over

multiple-thermal exploitation; note that there are no red or black points in the

first map, dummy points were plotted solely to produce a complete legend. The

next map to the right shows a developing circular red region around the origin.

With the development of the red region, a developing black region begins slightly

within the red circle and extends to the location of T
2

. As d
3

increases, the circular

red region grows while the blue and black regions shrink, where the black region

always “connects” the red region to T
2

. Thus, exploiting T
1

as a via point is a

maneuver that is present at larger distances of d
3

and d
1

and is beneficial even if

T
2

can be “easily” reached.

The third row of maps extend to distances where exploiting T
2

alone would

result in a loss of altitude within a cycle. The map to the left shows a region where

multiple-thermal exploitation would be beneficial if T
1

was su�ciently far away

from the origin, whereas the map to the right no longer has this region because

d
3

has become too large. These observations imply that if the zero-altitude-loss

constraint cannot be satisfied for a thermal T
2

, then multiple-thermal exploitation

with T
1

is not worth considering because T
1

would also need to be very far away

and the uncertainty in thermal dynamics during the cruising time would be too

risky; it would probably be more practical to explore the region for a better option.
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Figure 3.6. The polar maps of multiple-thermal exploitation for �h = 350m, s
s

=
0.52m/s, T

1

= 1.5m/s, and T
2

= 3m/s.
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Figure 3.7. The polar maps of multiple-thermal exploitation for �h = 200m, T
1

=
1m/s, and T

2

= 4.5m/s and the corresponding d
3

annotated along the 90� line.
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Another interesting observation is that the maximum angular range of the black

region for all maps, not only the maps pictured in Figure 3.6, between d
3

= 0m and

d
3

= 10, 000m is approximately 75�. The largest angular range for other conditions

was roughly equal to 95�, where the maximum range occurs very close to the

origin in all maps. As a general rule, multiple-thermal exploitation is potentially

beneficial if T
1

is located within a 75� region on the path to T
2

, or 37.5� to both

sides of T
2

.

Figure 3.7 shows the scenario described by �h = 200m, T
1

= 1m/s, and

T
2

= 4.5m/s for three di↵erent values of d
3

. The graphs on the right correspond

to the polar plots on the left and plot N as a function of d
1

, where d
1

is the

distance between M and T
1

along the 90� line. The solid blue lines represent the

exploitation of T
2

and are horizontal because d
3

is constant in each scenario. The

solid red lines represent the exploitation of T
1

, the dashed black lines represent

the partial cycle, and the solid black lines represent the full cycle. The important

message in this figure is that there will be scenarios where full-cycle exploitation

will significantly change the number of agents required for a cycle: the scenario

in the second row, starting from d
1

⇡ 1650m and ending at d
1

⇡ 2050m, would

require two agents (dNe) for full-cycle multiple-thermal exploitation, whereas the

other cycles would require three agents.

Replacing the full cycle in Figure 3.6 with a partial cycle a↵ects the polar

maps by changing only the black region. The e↵ect is a flattening of the bottom

rounded region, resulting in a relatively straight line between the two endpoints

of the previously circular curve. As examples, the black region of the fourth polar

map in Figure 3.6 would be roughly half as long due to the flattening of the circular

curve and the black region of the fifth polar plot would disappear entirely. Thus,

a partial cycle decreases the area where multiple-thermal exploitation is optimal

and enlarges the area where single-thermal exploitation of T
1

is optimal.

3.5 Transitional Altitude Change

Transitional changes in altitude occur when an agent transitions between jobs. The

transition involves a change in airspeed and, since the topic is on soaring gliders,

this change involves a conversion to or from potential energy. The transitional



45

altitude change decreases in significance as the size of the glider decreases, since

smaller gliders have smaller cruising airspeeds. Comparing a 5m/s change in the

lower range of airspeeds for the ASW-27B vs. the same change in the SB-XC:

�h
ASW

=
v2
1

� v2
2

2g
=

352 � 302

2g
= 16.6m

�h
SBXC

=
v2
1

� v2
2

2g
=

182 � 132

2g
= 7.9m

The behavior controller must take these changes into account so that the min-

imum allowable altitude constraint is not violated. Because the agents are lowest

when arriving at thermals, a potential violation exists if the controller does not

include the two transitional changes within M ! T
1

(and T
1

! T
2

during multiple-

thermal exploitation) in calculating the departing altitude from M (and T
1

during

multiple-thermal exploitation).

The following equations employ new variables: g is the acceleration due to

gravity, v
s

and v
T

are the monitoring and thermalling airspeeds respectively, �h
S

and �h
T

are the transitional changes in altitude at the monitoring and thermalling

locations respectively, and an underbar and overbar represent the bottom and top

of the location respectively. Thus, �h
S

is the transitional change in altitude at

the bottom of the monitoring target, which is the change in altitude due to a

di↵erence between the monitoring airspeed v
s

and the cruising airspeed v
1

toward

the thermal. �h
T

is the change at the bottom of the thermal, which is due to

the di↵erence between the cruising airspeed v
1

and the thermalling airspeed v
T

.

Whereas �h
T

is the change due to the di↵erence between v
T

and v
2

.

If v
1

� v
T

:
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d1
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+ d2
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+
⇣
�h�
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where �h
T

a↵ects (decreases) t
T

but not the departing altitude at M.

If v
1

< v
T

:

N = 1 +
d1
v1

+ d2
v2

+�h/T
h
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v1
s
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s
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+ (◆◆v
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s�1

s

where �h
T

now a↵ects (raises) the departing altitude at M but not t
T

.

Equation 3.27 reduces to Equation 3.2 and the optimal airspeed for v
1

and v
2

is

given by Equation 3.25. Unfortunately, the optimal airspeed toward the thermal

will almost always be larger than the airspeed within the thermal and thus the

optimal airspeed must be found from Equation 3.26. Di↵erentiating with respect

to v
2

gives an optimal airspeed equivalent to Equation 3.25, whereas di↵erentiating

with respect to v
1

no longer results in a quadratic function:

v4
1

✓
a

2gT

◆
+ v3

1

✓
b

gT
+

d
2

s
2

d
1

gTv
2

+
d
2

d
1

gv
2

◆
+

v2
1
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3c

2gT
+

3

2g
+

ad
2

v
2

+
a�h

T
+

av2
T

2gT

◆
+ v

1

(2ad
1

) + Z = 0 (3.28)

where Z = ��h + bd
1

+ s
2

d
2

/v
2

� v2
T

/2g � cd
2

/v
2

� c�h/T � cv2
T

/2gT . The

optimal airspeed for v
1

becomes cumbersome to solve for in closed-form and may

instead be solved for by a constrained optimization function such as fmincon and

the result can then be approximated by a quadratic fit. Appendix B.4 plots the

e↵ect of these altitude changes on the optimal airspeed and the estimated number

of agents for the ASW-27B and SB-XC.

3.6 A Comment on Assumptions

This section discusses lifting the assumptions listed in Chapter 2.

Winds can be treated in the same way as in MacCready theory. Tailwind speeds
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are subtracted from the reference cruising airspeed, whereas headwind speeds are

added to the reference cruising airspeed. The speed of sinking air masses are added

to the c term in Equations 3.20 and 3.25, where sinking speeds are positive and

increase the reference cruising airspeed. In relation to Equation 3.12, the speed of

sinking air masses is also added to the c term in B:

B =
1

ad
c

(�h� bd
c

) + A
c+ w

a
(3.29)

where w is the speed of the sinking air mass. This was calculated by adding w to

s
1

and s
3

in Equation 3.12.

Assumptions 2 and 3 may be lifted as long as these quantities can be estimated;

all that is required to calculate the optimal airspeed is to estimate the time of a

circuit and the resulting altitude left over for monitoring, i.e., the ratio between

the resource gained and the time it took to gain it.

To simplify calculations in this thesis, the maximum allowable altitude is set to

the altitude where the thermal strength begins dissipating. Exploitation into the

dissipation (altitudes closer to the actual inversion layer) may be included in the

N calculations with an estimated function for the thermal strength as a function

altitude. The question arises of how far up an glider should exploit the dissipating

region of a thermal. The answer is found by applying a fact from MacCready

theory to the aggregate thermal theory: the MacCready setting (expected thermal

strength in cross-country soaring) is the minimum rate of climb a glider is willing

to exploit. Thus, if a cross-country soaring glider is thermalling and expects the

next encountered thermal to have a strength of 3m/s, then the glider should depart

the current thermal when the climb rate is lower than 3m/s. Likewise, in scenarios

where the aggregate thermal is applicable, a glider should depart a thermal once

the climb rate is lower than the aggregate thermal strength of the cycle, regardless

of whether this occurs above the maximum allowable altitude or not. This can

be deduced from an analyses provided in Appendix B and leads to the following

conclusion: with the goal of maximizing a free resource during multiple-agent

scenarios, a glider should at least exploit a thermal to an altitude where the rate

of climb is equal to the monitoring sink rate of the glider.

Assumption 4, homogeneous agents, may be lifted by keeping track of the sink



48

polar fit coe�cients and monitoring/thermalling sink rates for each agent in a

system of inhomogeneous agents.

Dealing with assumption 5, atmospheric dynamics, is an obstacle for any real-

world scenario, irrespective of the cruising airspeed. Traveling at v
L/D to a dissi-

pating thermal will leave an agent just as stranded as if the agent had traveled

at v
opt

. The di↵erence between the two cases is that traveling at v
L/D lessens the

altitude loss during cruise, hence, more time at the monitoring target. This, how-

ever, comes at the cost of flying slowly toward a thermal that may be dissipating,

increasing the chances of arriving at a dead thermal. Should an aircraft arrive at a

dead thermal or be stuck midway up the working altitude due to thermal dissipa-

tion, a new minimum allowable altitude should be established and the aggregate

thermal metric should be used to choose the next thermal.

The e↵ects of the duration of transient maneuvers and the changes in altitude

during transient maneuvers will be discussed further in Chapter 4. As a supple-

ment, Reichmann presents an important graphical analysis of the losses due to

an incorrect expected climb rate in a thermal; he notes that the cruise speed will

not be significantly a↵ected until rather large errors are made and that the zero

setting, for which the airspeed is v
L/D, should be avoided whenever possible [34].

3.7 Summary

This chapter put forth the equations for the number of agents and the optimal

airspeeds for the di↵erent persistent monitoring scenarios: single-agent single-

thermal, single-agent multiple-thermal, and multiple-agent. The chapter began

with a simple proof showing that the number of agents in a monitoring cycle is

minimized when the working altitude is maximized, meaning that it is subopti-

mal to both depart the thermal lower than the altitude ceiling and to depart the

monitoring target higher than the minimum altitude required for reaching the first

thermal. Following this, it was found that the optimal airspeeds toward the thermal

and toward the target for the single-agent single-thermal scenario were equivalent

and formulated in terms of two auxiliary variables A and B. Additionally, for the

single-agent multiple-thermal scenario, the inter-thermal airspeed from T
1

! T
2

was found to equal the reversed MacCready airspeed, i.e., the MacCready airspeed
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toward T
2

is dependent on T
1

and independent of T
2

. And the optimal airspeed

from T
2

! T
1

on the path back toward the monitoring target reverts back to the

normal MacCready speed, i.e., the MacCready speed is calculated based on T
1

.

The aggregate thermal was derived by maximizing a free resource (loitering time

and exploration distance) for when multiple agents are available. This approach

is preferred over minimizing the number of agents because the real-life number

of agents will always be an integer number; including a free resource allows the

agents to convert an extra non-integer number of agents into a usable resource.

The airspeed that maximizes the free resources in a monitoring cycle was found to

be given by the MacCready speed for the aggregate thermal, where the aggregate

thermal is essentially a discounted thermal strength that can also condense multiple

thermals into one rate. It was noted that the optimal airspeed in single-agent

scenarios is equivalent to the MacCready speed for the aggregate thermal without

the ceiling operator acting on the number of agents.

The formulation of the aggregate thermal allows one to regard the monitoring

cycle more intuitively. Two cycles di↵ering by a certain number of agents can in-

stead be expressed by a di↵erence in their aggregate thermal strengths. In general,

the aggregate strength is way of quantifying the rate at which a resource is gained

relative to the location where the resource is used, e.g., for persistent monitoring,

the aggregate thermal is equivalent to the ratio between the workable altitude at

the monitoring target and the time needed to gain that workable altitude, where

workable altitude is dependent on the proximity of the thermal or thermals.

Equations for the number of agents required in a cycle where transitional

changes in altitude are included show that the optimal airspeed toward the thermal

is no longer equal to the optimal airspeed toward the monitoring target. While

the optimal airspeed toward the target is equal to the aggregate MacCready speed,

the optimal airspeed toward the thermal is too complicated to solve in closed-form

and must be approximated by a lower order function after being solved for by

a constrained optimization routine. Finally, even if these transitional changes in

altitude are negligible, they must be accounted for by the behavior controller in

calculating the departure altitude from the target, as well as the departure altitude

from the first thermal in multiple-thermal exploitation, if the minimum allowable

altitude constraint is considered inviolable.
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A comment on lifting the theoretical assumptions concluded the chapter. Ad-

justing the optimal airspeed in the presence of headwinds, tailwinds, and sinking

air masses parallels the adjustments made in MacCready theory. Environmental

quantities like �h and T need not be constant and systems of inhomogeneous

agents are possible but require stricter bookkeeping of sink polar fit coe�cients

and monitoring/thermalling sink rates.



Chapter 4
Simulation Results

Chapter 4 presents flight simulation results for single-agent single-thermal per-

sistent monitoring. The purpose of this chapter is to both assess the accuracy

of the governing equations covered in Chapter 3 and to append these equations to

better match flight results, where unmodeled dynamics and simplifying assump-

tions are potential sources of error.

The Schleicher ASW-27B (m = 320kg, S = 9m2), representative of large uavs

, and the RnR Products SB-XC glider (m = 10kg, S = 1m2, representative of

small uavs , are flown under four fixed exploitation scenarios. Each scenario is

simulated multiple times with the airspeed set at the optimal cruising airspeed, v
c

,

and with the airspeed set at the best l/d airspeed, v
L/D. The number of agents

required in flight is found graphically by noting the durations of the monitoring,

cruising, and thermalling stages in the cycle.

It will be shown that, under most conditions, cruising at the optimal airspeed

provides only a modest improvement to the monitoring cycle. However, depend-

ing on the importance of the minimum allowable altitude for the agents, these

improvements are potentially critical for cycles requiring a slightly non-integer

(N � dNe) number of agents when flown at v
L/D, where a small improvement

translates into saving an entire additional agent. Simulations show that the ther-

malling/monitoring departure controller and an accurate estimate of the working

altitude at the monitoring target are vital in predicting these potentially critical

improvements in flight.

Jack Langelaan

Jack Langelaan
extra space before comma
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(a) Original departure controller (b) Modified departure controller

Figure 4.1. Silent Wings simulation flight paths during single-thermal exploitation with
an ASW-27B glider.

4.1 Simulation Setup

The four chosen scenarios are summarized in Table 4.1. The interface with Silent

Wings was established via MATLAB’s Simulink, where UDP was used to receive

aircraft states and to autonomously send control commands to the glider. The

Simulink model and the Silent Wings Simulator were run from separate computers

to facilitate the addition of agents in future simulations involving multiple agents.

In each simulation, the environment was set to be windless except for one fixed

thermal set at a known gps position with a chosen climb rate and an inversion layer

set at 2070 meters above sea level. The altitude ceiling for the glider was chosen

to be 2000 meters above sea level, where the interaction with the inversion layer

began at 1980 meters, i.e., 20 meters were allotted for “realizing” the dissipation

before exiting the thermal.

The glider’s initial behavior was set to cruise to the thermal and climb to

the altitude ceiling, where the altitude ceiling was chosen as the starting location

for the cycles in the results. Upon reaching the ceiling, the glider began to roll

and change airspeed before cruising with the proper heading and airspeed toward

the monitoring target, which was assigned a gps position to match the distance

specified by the scenario. The glider would then monitor the target until sinking

to the departure altitude and cruising back to the thermal to repeat the cycle.

Silent Wings screenshots show an example flight path in Figure 4.1.
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The thermalling and monitoring controllers were simple radius hold controllers,

for which the circling radius within the thermal and monitoring target was 150

meters and 500 meters, respectively. The respective commanded airspeeds for the

ASW-27B were 31m/s and 27.78m/s, where v
L/D = 27.78m/s, and the respec-

tive commanded airspeeds for the SB-XC were both equal to v
L/D = 13.14m/s.

The radii at these two locations were taken into account in the distance setting,

thus, the 2km separation setting corresponded to a separation of 2.65km with the

circling radii included. A switch-case block was used for gain scheduling in the

airspeed controller, where the gains were determined through trial and error. The

polar fit coe�cients required for calculating the optimal airspeeds were found by

flying the glider in Silent Wings at the operating altitudes instead of consulting

a documented source. The gliders were flown with flaps fully retracted and the

polar fit coe�cients were a = 0.001559, b = �0.06475, and c = 1.174055, for the

ASW-27B and a = 0.020057, b = �0.4831, and c = 3.3843 for the SB-XC, with

sink rate taken as positive with units of m/s, depicted in Figure 4.2. Black circles

represent the flight data obtained from the simulator, red filled circles represent

the points chosen for the quadratic fit sink polars, and the red curves represent

the quadratic fit sink polars. Three points, as opposed to a least squares fit, were

chosen so that the lower range of estimated airspeeds had lower errors compared

to the higher range of airspeeds, since the environmental conditions in simulation

required lower airspeeds.

4.2 Initial Simulation Results for the ASW-27B

Figure 4.3 represents key information from a representative simulation. The top

graph shows the actual height of the glider during simulation and the expected

height, whereas the bottom graph shows the response of the airspeed controller.

Red lines represent expected altitude and commanded airspeed in the first and

second graph, respectively, and blue lines represent the actual values during sim-

ulation. Shaded green regions represent the transitions and cruise within T ! M

and shaded yellow regions represent transitions and cruise within M ! T transi-

tions.This figure represents the scenario �h = 350m, d = 1km, and T = 4m/s,

which had the strongest theoretical aggregate thermal of 2.14m/s given the optimal
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Figure 4.2. Polar fits for the ASW-27B and the SB-XC.

airspeed obtained from Equation 3.13, 46.35m/s. These graphs were generated for

all 24 simulations and were used to obtain the information presented in Table 4.2

(discussed later in this section). It is important to understand that the actual and

commanded airspeeds correspond to the

The stages illustrated in the height plot will now be explained from left to right.

The shaded green region contains three stages. First, the glider starts at the top

of the thermal at 2000 meters and enters a transition to begin cruising at v
c

. This

transition consists of rolling into the proper heading while simultaneously losing

altitude to reach the desired airspeed, i.e., converting potential energy to kinetic

energy. The glider then cruises at v
c

until reaching the monitoring target, where

it again enters a transition to reach the desired circling airspeed, this time trading

kinetic energy for potential. Thus, the three stages in the green region are the

two transitions with the one cruising stage in between them. Following the green

region, the white region represents the monitoring stage where the glider holds

a fixed radius and airspeed around the target. The glider eventually losses too

much altitude and cruises back to the thermal, represented by the yellow region.

Similar to the previous transition, the glider trades altitude for speed, cruises

Jack Langelaan
sentence ends
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Figure 4.3. Simulation plot of the scenario �h = 350m, d = 1km, and T = 4m/s,
whose theoretical aggregate thermal strength is 2.14m/s.

to the thermal, and trades speed for altitude before reaching the thermal. The

cruising stage is seen clearly here as the straight line with a slope a bit less than -1

and lasting for approximately 45 seconds. Finally, the glider regains altitude at a

relatively constant rate until repeating the cycle. The final, right-most point shown

in the graph represents the bottom of the thermal of the second cycle, 1650 meters

above sea level, where the actual arrival time is sooner than the expected arrival

time. Note that the final yellow region does not include the second transition

experienced just before starting the thermalling stage.

A couple of subtle points remain to be discussed. Starting from the first green

region, one sees that the height lost during the initial transition is approximately

entirely regained during the second transition. However, the same cannot be said

of the two transitions in the first yellow region, where the height gained is about

half of the height lost. This imbalance has to do with the characteristic region

of sinking air surrounding all thermals. The reason why only half of the height is

regained is because the glider enters a region of sinking air that was not encountered

at the initial transition in the yellow region. In the green region, the reason why

Jack Langelaan
The red speed line doesn’t match the red altitude line…
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Figure 4.4. Simulation flight path for run 1 of case 3 with v
c

.

roughly all of the height is regained is because the glider spends extra time within

the thermal during the initial transition, i.e., the glider engages in a banked turn

while still within the region of lift. In addition, a small amount of the imbalance in

the yellow region is attributed to the di↵erence in airspeeds: the initial transition

loses the altitude required to reach v
c

from a speed of 27.78m/s, whereas the final

transition gains the altitude required to reach 31m/s from v
c

.

The final point to note is the di↵erence in cruise durations: the first and fi-

nal cruises required about half of the time required for the middle two cruises.

Consider the flight path shown in Figure 4.1a where the glider exits the thermal

and monitoring target already in the direction of travel. Most of the simulations

did not work out as fortuitously, i.e., the glider engaged in a banked turn in or-

der to reach the proper heading. The banked turns lasted up to ten seconds and

would manifest as circular curves stemming o↵ from the reference radius at either

the thermal or the monitoring target. This acted as an extension of the cruising

segment and is the main cause for the di↵erence in transit times. Figure 4.4 and

Figure 4.5 illustrate these cruise extensions and are discussed after the next few

paragraphs.

Table 4.1 describes the scenario settings for each of the four simulated cases

and is used in conjunction to Table 4.2. Table 4.2 lists the N for each of the

24 simulated cycles, half with v
c

(values without parenthesis) and half with v
L/D

(values within parenthesis). The four values of N in Table 4.2 correspond to four
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Table 4.1. The case descriptions of the four di↵erent scenarios tested in
simulation.

Scenario Description
Case �h, m d, km T , m/s v

c

, m/s N N̄

1 350 1 4 46.35 1.28 (1.31) 1.35 (1.30)*

2 350 2 4 39.76 1.47 (1.52) 1.53 (1.50)*

3 350 1 1 35.08 1.81 (1.82) 1.84 (1.80)*

4 350 2 1 33.28 2.08 (2.11) 2.12 (2.07)*

* v
L/D outperforms v

c

Table 4.2. This table lists the number of agents required in 24
simulations.

Number of Agents from Simulations
Case N

1

N
2

N
3

N
4

1 1.36 (1.38) 1.40 (1.41) 1.41 (1.44) 1.43 (1.42)*

1 1.41 (1.37)* 1.42 (1.39)* 1.43 (1.43) 1.41 (1.43)
1 1.39 (1.37)* 1.39 (1.41) 1.38 (1.46) 1.39 (1.39)
2 1.61 (1.53)* 1.59 (1.51)* 1.61 (1.54)* 1.56 (1.52)*

2 1.63 (1.53)* 1.66 (1.52)* 1.72 (1.55)* 1.67 (1.53)*

2 1.57 (1.51)* 1.58 (1.51)* 1.59 (1.51)* 1.58 (1.52)*

3 1.90 (1.93) 1.94 (1.94) 2.01 (2.03) 2.00 (1.98)*

3 1.89 (1.93) 1.91 (1.95) 1.95 (2.04) 1.93 (1.98)
3 1.89 (1.92) 1.93 (1.96) 1.99 (1.94)* 1.97 (1.93)*

4 2.36 (2.11)* 2.31 (2.10)* 2.24 (2.10)* 2.23 (2.10)*

4 2.23 (2.12)* 2.21 (2.12)* 2.21 (2.12)* 2.22 (2.11)*

4 2.32 (2.11)* 2.29 (2.13)* 2.24 (2.12)* 2.23 (2.11)*

* v
L/D outperforms v

c



58

di↵erent starting points for a cycle calculation: N
1

is for the cycle starting and

ending at the altitude ceiling, N
2

is for the cycle starting and ending at the top of

M, N
3

is for starting and ending at the bottom of M, and N
4

is for starting and

ending at the altitude floor. These N should be compared to the N predicted by

theory, shown in Table 4.1, to get a sense of the accuracy of the theoretical model.

Note that the expected values of N in Table 4.1 were calculated with s
s

= 0.6m/s.

Equation 3.22 may be used to convert these values to aggregate thermal strengths.

Lastly, asterisks were placed wherever v
L/D outperformed v

c

. Note that the values

within parenthesis have no relation to the values without parenthesis, except for

case number, due to the random starting altitude and location in each simulation

run. This means that, for example, the first row of values within parenthesis (or

without) may be switched with the second row, which may lead to the asterisks

being omitted or located at di↵erent locations. Thus, the asterisks simply provide

a “first-glance” comparison in performance between v
c

and v
L/D. Instead, all of

the values without parenthesis should be compared with all of the values with

parenthesis within a given case.

A new variable, N̄ , was introduced to quantify the e↵ect of an asymmetric

transition in the cycles involving v
c

, where the cruising airspeed is larger than

the reference airspeed at either T or M. The altitude lost during the transition

when entering M is balanced by the transition when leaving M, i.e., the gain in

potential energy upon entering M is lost upon exiting M. Unfortunately, the same

cannot be said for the transitions around T. Entering T results in an altitude

gain that shortens the exploitation time of the thermal. This e↵ect is not canceled

because the transitional loss of potential energy at the altitude ceiling does not

necessarily mean that the exploitation time is extended. For the exploitation time

to increase, the glider would need to continue thermalling until the transitional

loss has been regained, i.e., the transition would need to occur within the thermal.

Nevertheless, this may have been inadvertently accounted for since the glider does,

at times, remain within the thermal during its transition trajectory. In any case,

N̄ introduces a transitional correction factor by decreasing the working altitude

by an amount equal to the transitional altitude loss from exiting T. The implicit

assumption here is that the transitional altitude loss is not at all regained at the

top of T. This correction factor appears to decently match the simulation results,
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N1 N2

N3 N4

Figure 4.5. Simulation flight path for run 1 of case 3 for v
c

divided into the individual
N

1

through N
4

.

presumably because of the surrounding area of sinking air around the thermals

adding to the negative e↵ect of shortening the monitoring time.

Figures 4.4 and 4.5 suggest an important change to the departure controller is

necessary. Both of these figures show run 1 of case 3 cruising at v
c

. Figure 4.4 shows

the flight path for the entire simulation, whereas Figure 4.5 divides the simulation

run into the four segments tabulated in Table 4.2. In Figure 4.4, the thermalling

stage is shown in black with the smaller radius and the monitoring stages are shown

in blue and a thick red. The monitoring stage in blue preceded the monitoring

stage in red, meaning that the monitoring in blue came before thermalling and the

monitoring in red came after the thermalling (recall that the simulations started

at the thermal inversion layer). The di↵erent departure trajectories depicted in

Figure 4.5 account for a large portion of the error and variation seen in Table 4.2.

The colors represent the task order within the calculations of N
1

through N
4

.

Green, blue, black, and red correspond to orders one, two, three and four. In the

plot showing N
1

, the agent began by departing the thermal at the inversion layer

and cruising to the monitoring target. From there on, the agent monitored the
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Figure 4.6. Simulation flight path for run 3 of case 2 for v
L/D with the superposition

of N
1

through N
4

.

target, departed the target and arrived at the thermal, and finished at the top of

the thermal. In the plot showing N
2

, the agent began by monitoring the target

and finished by cruising back to the top of the monitoring target. The important

distinction between N
1

and N
2

in this run is the departure angle from the thermal.

In N
1

, the agent departs in a shorter trajectory while being near the outer region

of lift. In N
2

, the agent departs the thermal in a much longer trajectory in addition

to being away from the region of lift. This is presumed to be exactly why N
1

is

less than N
2

in run 1 of case 3. In N
3

, the agent now must su↵er the consequences

introduced in N
2

by monitoring from a lower starting altitude, hence the lower

red segment in Figure 4.4. This compounding of error is presumably why N
3

and

N
4

perform even worse than N
2

. The modified departure controller would either

delay or prematurely end the thermalling or monitoring stages to minimize the

length of the departing trajectory. Such a controller would cause the trajectories

to be similar to the ones seen in run 3 of case 2 flown at v
L/D, shown in Figure 4.6.

These trajectories are near perfect and have nearly identical values for N
1

through

N
4

that agree with the predicted N for v
L/D.
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4.3 ASW-27B Simulations with Transitional Al-

titude Changes

The simulations presented in this section are based on the theory discussed in

Section 3.5 and were conducted prior to implementing a new departure controller.

As discussed in Section 3.5, accounting for the transitional changes in altitude

results in v
1

6= v
2

due to the asymmetric e↵ect that the cruising stage toward the

thermal has on the system. v
2

remains equal to v
c

, whereas v
1

must be solved for

by a constrained optimization routine such as MATLAB’s fmincon. Generally, v
1

is significantly slower than v
2

because, with slower airspeeds toward the thermal,

less altitude is lost during the transition at the bottom of the monitoring target

and less altitude is gained during the transition at the bottom of the thermal.

Thus, a slower v
1

extends the monitoring duration and also utilizes more of the

thermal.

Simulation results are listed in Table 4.4, with Table 4.3 listing the associated

scenario conditions, where values within parenthesis correspond to v
L/D simulations

(copied from Table 4.1). It is observed that, for the most part, including the

transitional changes has a positive impact on the cycle, as expected due to the more

accurate optimal airspeeds. The inclusion provides a 4.2% average improvement

to the results in Table 4.2, but the error relative to the expected N is still 4.1%

on average, down from 8.8% in the previous simulations.

Despite the considerable improvement, the variance in the results remains un-

satisfactory. Less varied results are desired for better predictability in flight and

the necessary changes are implemented into the SB-XC simulations of the next

section.

4.4 SB-XC Simulations with a Modified Depar-

ture Controller

The modified departure controller changes the glider flight paths from the paths

seen in Figures 4.1a and 4.5 to the minimum distance path constrained by a mini-

mum turn constraint [37], seen in Figure 4.1b. Thermalling departure is triggered
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Table 4.3. Case descriptions for the simulation results with transitional
altitude changes included in the airspeed calculation.

Scenario Description
Case �h, m d, km T , m/s v

c1

, m/s v
c2

, m/s N
1 350 1 4 32.27 46.35 1.28 (1.31)
2 350 2 4 31.00 39.76 1.47 (1.52)
3 350 1 1 31.00 35.08 1.81 (1.82)
4 350 2 1 31.00 33.28 2.08 (2.11)

Table 4.4. Simulation results with transitional altitude changes
included in the airspeed calculation.

Number of Agents from Simulations
Case N

1

N
2

N
3

N
4

1 1.37 (1.38) 1.38 (1.41) 1.39 (1.44) 1.35 (1.42)
1 1.33 (1.37) 1.31 (1.39) 1.29 (1.43) 1.35 (1.43)
1 1.34 (1.37) 1.32 (1.41) 1.31 (1.46) 1.35 (1.39)
2 1.47 (1.53) 1.45 (1.51) 1.47 (1.54) 1.50 (1.52)
2 1.53 (1.53) 1.50 (1.52) 1.51 (1.55) 1.53 (1.53)
2 1.49 (1.51) 1.50 (1.51) 1.51 (1.51) 1.53 (1.52)*

3 1.92 (1.93) 1.93 (1.94) 1.96 (2.03) 1.94 (1.98)
3 1.93 (1.93) 1.92 (1.95) 1.91 (2.04) 1.92 (1.98)
3 1.96 (1.92)* 1.94 (1.96) 1.96 (1.94)* 1.95 (1.93)*

4 1.94 (2.11) 2.15 (2.10)* 2.15 (2.10)* 2.15 (2.10)*

4 2.16 (2.12)* 2.16 (2.12)* 2.16 (2.12)* 2.18 (2.11)*

4 2.15 (2.11)* 2.14 (2.13)* 2.14 (2.12)* 2.14 (2.11)*

* v
L/D outperforms v

c
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Figure 4.7. Silent Wings SB-XC screenshot.

when the glider is within a set of gps coordinates and above the inversion layer al-

titude. This way the glider continues exploiting the thermal until reaching a viable

departure point instead of banking away from the thermal and as in the previous

simulations. Monitoring departure functions the similarly except the controller

must check whether or not the glider can circle the target without violating the

minimum altitude constraint when arriving at the thermal. Departure is triggered

when the glider arrives within the set of viable departure coordinates and an ad-

ditional circle cannot be completed.

A level of complexity is added with the variance decrease in flight paths. The

working altitude is no longer equal to the inversion layer minus the minimum allow-

able altitude because the agents will most likely never reach the minimum altitude

due to the early departure from the monitoring target. At a 500 meter monitoring

radius, the ASW-27B and the SB-XC lose 68 and 128 meters, respectively, ev-

ery time they complete one full circle around the monitoring target (estimated to

within 3.8% by 2⇡Rs
s

/v
s

: 65.44m and 123.25m respectively). Therefore, a consid-

erable price is paid, in terms of not utilizing the entire working altitude, with the

departure controller considered in this thesis. A more appropriate controller may

allow for the glider to depart the monitoring target by turning into the monitoring

zone instead of departing tangent to it, allowing the agent to depart from any

point around the monitoring target.

In any case, the working altitude was found graphically after running a few trial
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simulations with the desired airspeeds by noting the thermal arrival and departure

altitudes, which remained constant within each case. The starting gps position

for each simulation from here on in was kept constant with the exception of the

starting altitude, which also varied only between cases. The length of the cruis-

ing stages are now equal to the actual distances traveled by the glider, 1.530km

and 2.585km, instead of the separation between target and thermal minus the cir-

cling radii. Calculating �h and d
c

in this way lowers the discrepancy between

simulation results and expected results but simultaneously complicates physical

implementation due to the level of estimation involved. Considering the purpose

of this thesis, accurately setting �h and d
c

assists in pinpointing the sources of

error in the governing equations.

Initial simulation results are shown in Table 4.6 and described in Table 4.5.

The important observations are that cases 3 and 4 have an error of approximately

3%, whereas case 1 has an error of approximately 6% and case 2 is completely o↵

from the expected result. Case 2 can be explained by a poorly predicted monitoring

cycle in that the glider remained in the thermal for less time than expected. Recall

that simulation calculations begin at the top of the thermal. Thus, before the

calculations begin, the glider enters the thermal at some altitude and exploits

it until reaching a departure point from which the N calculations begin. If the

arrival altitude is di↵erent the next time the glider exploits the thermal, then the

thermalling durations may di↵er and the departure altitude may change. Because

of the high thermal strength in case 2, circling the thermal an extra time around

translates to a large gain in departure altitude. This has a positive e↵ect on the

system in terms of reducing N , but a negative e↵ect on accurately predicting N .

The next set of simulations change the initial thermal arrival altitude in case 2 so

that �h is equal for both halves of the simulations.

The error in case 1, on the other hand, is explained by the strong area of sink

around the 4m/s thermal in the simulation. This sink translated to an approxi-

mate 20m altitude loss upon entering the thermal. This was found by noting the

monitoring departure altitude, subtracting from it the altitude lost during cruise

given v
c

and s
c

, and noting the actual arrival altitude at the thermal. The di↵er-

ence between the expected thermal arrival and the actual thermal arrival is the

altitude loss due to the surrounding area of sink. To reduce error, the variable
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Table 4.5. Case descriptions for the initial SB-XC simulations
with a modified departure controller.

Scenario Description
Case �h, m d, km T , m/s v

c

, m/s �h
T

, m N
1 350 1.530 4.00 14.36 0 1.69
2 300 2.585 4.00 13.41 0 3.32
3 325 1.530 1.05 13.71 0 2.33
4 275 2.585 1.05 13.22 0 5.30

Table 4.6. Initial SB-XC simulations with a modified
departure controller.

Number of Agents from Simulations
Case N

1

N
2

N
3

N
4

1 1.82 1.82 1.81 1.81
1 1.83 1.82 1.81 1.81
1 1.83 1.83 1.83 1.83
2 4.40 4.41 2.29 2.30
2 4.70 4.88 2.30 2.30
2 4.43 4.44 2.30 2.30
3 2.39 2.37 2.39 2.39
3 2.39 2.40 2.40 2.40
3 2.39 2.39 2.39 2.39
4 5.44 5.41 5.44 5.44
4 5.48 5.49 5.47 5.47
4 5.48 5.48 5.27 5.27
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Table 4.7. Case descriptions for the SB-XC simulation results with a modified
departure controller and �h

T

compensation.

Scenario Description
Case �h, m d, km T , m/s v

c

, m/s �h
T

, m N
1 350 (344) 1.530 4.00 14.22 20 1.75 (1.79|1.77)
2 300 (308) 2.585 4.00 13.33 20 3.88 (3.85|4.13)
3 325 (319) 1.530 1.05 13.71 0 2.33 (2.37|2.34)
4 275 (274) 2.585 1.05 13.22 0 5.30 (5.35|5.30)

Table 4.8. SB-XC simulations with a modified departure con-
troller and �h

T

compensation.

Number of Agents from Simulations
Case N

1

N
2

N
3

N
4

1 1.84 (1.88) 1.84 (1.90) 1.84 (1.91) 1.84 (1.91)
1 1.84 (1.90) 1.84 (1.90) 1.84 (1.90) 1.84 (1.90)
1 1.83 (1.90) 1.83 (1.90) 1.83 (1.90) 1.83 (1.90)
2 3.93 (4.06) 3.92 (3.99) 3.92 (3.97) 3.92 (3.97)
2 3.96 (4.05) 3.93 (4.02) 3.91 (4.02) 3.90 (4.03)
2 3.93 (4.03) 3.91 (4.03) 3.91 (4.03) 3.91 (4.03)
3 2.39 (2.44) 2.37 (2.44) 2.39 (2.44) 2.39 (2.44)
3 2.39 (2.43) 2.40 (2.43) 2.40 (2.43) 2.40 (2.43)
3 2.39 (2.44) 2.39 (2.44) 2.39 (2.44) 2.39 (2.44)
4 5.44 (5.47) 5.41 (5.48) 5.44 (5.54) 5.44 (5.54)
4 5.48 (5.47)* 5.49 (5.48) 5.47 (5.51) 5.47 (5.50)
4 5.48 (5.49) 5.48 (5.47) 5.27 (5.47) 5.27 (5.47)
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�h
T

was included in the calculations and represents this expected altitude loss.

The derivation for v
c

is included in Appendix B.2 and amounts to subtracting a

�h
T

-term in the auxiliary variable B in Equation 3.13. The new calculations and

simulations are shown in Tables 4.7 and 4.8.

The average error improved to 2.8% for all of the cases flown at v
c

. Average

error in cases flown with v
L/D (values within parenthesis) is slightly higher at

4.0% due to the actual �h
T

being a couple of meters larger than the �h
T

values

in Table 4.7; a glider remains in the region of sink for a longer period of time

when flying at a slower airspeed. A more sophisticated controller would hold a

higher speed through the region of sink, with the speed adjustment discussed in

Section 2.4.

The reader must note that the decrease in error is due to a better estimate of

N and not better performance from v
c

. In fact, the updated v
c

(slightly slower)

performed either equally or worse than the v
c

in Table 4.6. This observation points

to an unfavorable quadratic fit of the sink polar, seen in Fig. 4.2b. A more favorable

polar fit would be shaped so that slightly faster speeds are given in the calculation

of v
c

.

One final note is made on the sensitivity of N with respect to �h. If �h were

25m smaller in case 4, N would jump to 7.1 (v
c

= 13.15m/s) from 5.3. And if �h

dropped to 291m from 350m in case 1, N would equal 2 (v
c

= 13.95m/s) instead

of 1.75; N = 3 (v
c

= 13.47m/s) if �h drops to 209m. The conclusion is that N is

highly sensitive to �h in weaker cycles of N > 4.

4.5 ASW-27B Simulations with a Modified De-

parture Controller

Updated ASW-27B simulations with the new departure controller are shown in

Tables 4.9 and 4.10. The average error for the v
c

cases is 1.2% and 1.8% for the

v
L/D (values within parenthesis), again marginally higher presumably due to �h

T

being slightly larger when cruising at slower airspeeds through the area of sink

surrounding a thermal. The lower average error relative to the SB-XC simulation

results in Table 4.8 is assumed to be the result of a more favorable sink polar fit;
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Table 4.9. Case descriptions for the ASW-27B simulation results with a mod-
ified departure controller and �h

T

compensation.

Scenario Description
Case �h, m d, km T , m/s v

c

, m/s �h
T

, m N
1 358 (322) 1.530 4.00 42.20 10 1.36 (1.44|1.41)
2 300 (365) 2.585 4.00 35.21 10 1.76 (1.65|1.83)
3 315 (323) 1.530 1.05 34.00 0 1.92 (1.93|1.95)
4 280 (297) 2.585 1.05 31.67 0 2.48 (2.43|2.52)

Table 4.10. ASW-27B simulations with a modified departure
controller and �h

T

compensation.

Number of Agents from Simulations
Case N

1

N
2

N
3

N
4

1 1.40 (1.45) 1.38 (1.46) 1.38 (1.45) 1.38 (1.45)
1 1.38 (1.45) 1.38 (1.45) 1.38 (1.45) 1.38 (1.45)
1 1.38 (1.45) 1.38 (1.45) 1.38 (1.36)† 1.38 (1.35)†

2 1.77 (1.64)† 1.77 (1.64)† 1.77 (1.64)† 1.77 (1.64)†

2 1.77 (1.64)† 1.77 (1.64)† 1.77 (1.64)† 1.77 (1.64)†

2 1.77 (1.64)† 1.77 (1.64)† 1.76 (1.64)† 1.76 (1.64)†

3 1.93 (1.97) 1.93 (1.97) 1.93 (1.97) 1.93 (1.97)
3 1.93 (1.97) 1.93 (1.97) 1.93 (1.97) 1.93 (1.97)
3 1.93 (1.97) 1.93 (1.97) 1.93 (1.97) 1.93 (1.97)
4 2.53 (2.61) 2.53 (2.61) 2.54 (2.60) 2.54 (2.58)
4 2.53 (2.60)* 2.53 (2.60)* 2.54 (2.59) 2.54 (2.58)
4 2.53 (2.60) 2.53 (2.60)* 2.54 (2.59) 2.54 (2.58)

† v
L/D outperforms v

c

due to an additional �h > 35m
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a slightly di↵erent fit may have produced larger errors.

The v
L/D results for the second half of run 3 of case 1 reflects the same issue

discussed in Section 4.4, namely that of a di↵erence in thermal arrival altitudes

amounting to a di↵erence in exploitation duration. The second half of this run

experienced �h = 393m, for which N is expected to equal 1.38.

A final note on the sensitivity of N with respect to �h. If �h were 60m smaller

in case 4, N would increase from 2.48 to 3 (v
c

= 30.60m/s). And if �h dropped

to 137m from 358m in case 1, N would equal 2 (v
c

= 33.50m/s) instead of 1.36;

N = 3 (v
c

= 30.60m/s) if �h drops to 100m. These observations support the

conclusion made in Section 4.4: N is highly sensitive to �h only in weaker cycles

(approximately N > 3 for the ASW).

4.6 Summary

This chapter presented Silent Wings flight simulation results for single-agent single-

thermal persistent monitoring with the ASW-27B, representative of medium to

large sized gliders, and the SB-XC, representative of small sized gliders. The

aim of these simulations was to assess the accuracy of the equations given in

Chapter 3 and compare performance to the best l/d airspeed by having the glider

cruise between monitoring and thermalling jobs given various fixed environmental

settings.

Initial flight results with the ASW-27B shed light on the importance of a so-

phisticated departure controller in minimizing the cruise distances and lowering

the variance of the required number of agents to ensure uninterrupted monitoring

of a target. The initial simulations triggered monitoring departure upon hitting

the minimum altitude required for reaching the fixed thermal above the minimum

allowable altitude constraint for the system; thermalling departure was triggered

upon reaching the thermal inversion layer, where this “inversion layer” was 70m

below the actual inversion layer and provided the glider approximately 20m of

altitude in realizing thermal dissipation. The bearing of the glider relative to the

subsequent target location was neglected, often resulting in a suboptimal trajec-

tory that nearly doubled cruise duration and unnecessarily separated the glider

from the previous target by banking away instead of into the target. The average
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error for these simulations dropped from 8.8% to 4.1% when transitional altitude

changes were included in calculating the optimal airspeeds.

The modified departure controller was first tested on the SB-XC. Cruise dura-

tions were minimized and the variance in the required number of agents decreased

significantly but an added degree of di�culty was introduced in cycle consistency:

it was now possible for the glider to circle the thermal or monitoring target an

extra time around because of the limited number of viable departure points in the

controller. The glider departed within a very small range of gps coordinates that

aligned the glider with the arrival gps coordinates of the subsequent job. It was

seen that the first completed cycle could require two fewer agents than the next

completed cycle. Thus, if such a departure controller were implemented, unneces-

sary attention would be required in predicting the number of agents to assign to

monitoring cycles. Additional departure points must be made available by allowing

agents to bank into their current targets instead of departing strictly tangential

to them. This provides fuller utilization of the working altitude at the cost of in-

creasing variance from cycle to cycle. Additional improvements exist in increasing

the airspeed when the glider flies through regions of sink around a thermal and

exiting the dissipating thermal at the optimal altitude (Appendix B.1).

However, these shortcomings in the controller did not compromise the goal of

assessing accuracy and predictability. The initial SB-XC simulations also showed

that the simulations flown with T = 4m/s were about half as accurate than those

with T = 1m/s. This was concluded to be caused by the stronger area of sink

around the 4m/s thermal and thus an additional term, �h
T

(Appendix B.2), was

added to compensate for this loss. The consequent airspeeds di↵ered slightly but

the estimated N better matched simulation results and the error dropped to 2.8%

for the SB-XC and 1.2% for the ASW-27B. It was noted that sensitivity to the

predicted working altitude was high for N > 4 for the SB-XC and N > 3 for the

ASW-27B.



Chapter 5
Conclusion

5.1 Summary of Contributions

Mission endurance is a primary challenge for flocks of cooperating small un-

manned aerial vehicles. The exploitation of atmospheric thermal columns

is one way of extending mission endurance and involves each agent alternating

between energy expenditure at a mission target (weather monitoring, forest fire

detection, load transport, etc.) and energy gain at a thermal.

Given a map of thermal strengths and locations, a flock can coordinate itself

into a cycle that ensures a mission target remain occupied at all times by at least

one agent. As the agent nears a predefined minimum allowable altitude, it departs

the target to cruise to the best available thermal while the next agent in the cycle

arrives upon its departure. In this way, mission endurance persists so long as a

populated thermal map exists and a su�cient number of agents is available for the

set of environmental conditions at hand.

The challenges in implementing such a system are numerous and include path

planning, thermal detection, thermal centering, and optimal job allocation. This

thesis focused on the challenge of optimizing monitoring cycles with respect to

the number of agents required for continuous monitoring of a ground target. The

agents considered in this thesis were soaring gliders which contained no onboard

sources of propulsion energy. A set of assumptions simplified the environmental

conditions and led to a fully defined and constrained system from which a simple

equation for the number of required agents was formulated. Gradually, this equa-



72

tion was manipulated and appended to handle a variety of scenarios and this led to

the discovery of optimal cruising airspeeds, optimal thermal departure altitudes,

an increased understanding of multiple-thermal exploitation, and the aggregate

thermal concept.

The scenarios considered involved either a single agent or multiple agents ex-

ploiting either a single thermal or multiple thermals. Equations for the number

of agents were di↵erentiated with respect to the cruising airspeeds and resulted

in closed-form equations for the optimal airspeeds toward the monitoring target,

toward the thermal, and during inter-thermal cruise. Inter-thermal cruises were

optimized by the forward and reversed MacCready speeds, where the reversed Mac-

Cready speed was defined as the MacCready speed calculated based on the initial

thermal instead of final thermal. The optimal cruising airspeed toward a ther-

mal was found to equal the optimal cruising airspeed toward the monitoring and

both were functions of thermalling duration, polar fit coe�cients, and separation

between thermal and target. Both airspeeds were equivalent unless transitional

changes in altitude were included in the calculation for the number of agents. In

that case, the form for the airspeed toward the target remained unchanged and the

airspeed toward the thermal became a fourth order function for which a numerical

solution was required.

A short proof showed that the number of agents required for a persistent mon-

itoring cycle is minimized when the exploitable altitude range in a thermal is

maximized. An supplementary proof showed that the optimal thermal departure

altitude has a thermal climb rate equal to the aggregate thermal strength of the

cycle, regardless of how the thermal decay is modeled. This implies that, for

monitoring cycles with multiple agents seeking to maximize a free resource, the

minimum optimal thermal departure altitude has a thermal climb rate equal to

the monitoring sink rate of a glider.

The aggregate thermal concept was discovered with the maximization of a free

resource in multiple-agent scenarios. Optimal airspeeds were of the same form as

MacCready airspeeds with the thermal climb rate replaced by a rate equal to the

altitude available at the monitoring target divided by the time required to gain

that altitude given the thermal climb rate and distance away from the target. The

aggregate thermal can be thought of as a general way of discounting energy sources



73

by their accessibility and proximity relative to a target of interest. It was found

that minimizing the number of agents in a cycle was equivalent to maximizing the

aggregate thermal strength of the cycle and that it was trivial to convert between

the two quantities.

Multiple-thermal exploitation was briefly covered by polar map plots of regions

where multiple-thermal exploitation was preferred over single-thermal exploitation.

Multiple-thermal exploitation was potentially beneficial if the two thermal were

positioned roughly within 37.5� to both sides of the monitoring target. Analytical

results showed that the number of agents can be decreased significantly in cycles

requiring a high number of agents (N � 4). However, the risk of performing such

maneuvers under uncertain atmospheric conditions remains to be analyzed.

Silent Wings flight simulation results were run with a single agent and a single

fixed thermal in an environment absent of wind gusts. The Schleicher ASW-27B

and the RnR Products SB-XC were chosen to represent large and small scale uavs

, respectively, and repeatedly cruised between a thermal at fixed gps coordinates

and an arbitrary fixed point away from the thermal which represented the mon-

itoring target. The progression of simulation results showed that a sophisticated

monitoring departure controller is required for maximal utilization of the working

altitude and minimal variance in error, where the error refers to the di↵erence

between analytic results and simulation results. Additionally, it was observed that

cycles involved with strong thermal climb rates had approximately double the er-

ror relative to cycles with weaker thermals. This was concluded to be caused by

the area of sink around a thermal and an additional term was included in the

calculation of the number of agents to account for this loss. Final simulation re-

sults contained average errors of 2.8% for the SB-XC and 1.2% for the ASW-27B,

down from average initial errors of 8.8% for the ASW-27B. The error was highly

sensitive to the working altitude at the monitoring target for cycles with N > 3.

Simulation results supported analytical results in that optimal airspeeds provided a

meager improvement over the best l/d airspeed and added a considerable amount

of complexity in terms of the amount of estimation required in calculations. Nev-

ertheless, these improvements are capable of salvaging an entire agent from a cycle

when cruising at the best l/d airspeed requires a slightly non-integer (N � dNe)
number of agents.

Jack Langelaan

Jack Langelaan
extra space before comma
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5.2 Recommendations for Future Work

5.2.1 Increased Complexity in Simulations

Additional areas of complexity remain to be added to flight simulations including

wind gusts, non-stationary thermals, and thermals with limited lifetimes. Knowl-

edge of the e↵ect that each of these has on the estimate for the required number of

agents would be helpful in assessing the risk of misallocating a su�cient number

of agents to a monitoring cycle. A behavior controller that handles unexpected

dissipating thermals and unexpectedly strong thermals encountered during cruise

is absolutely crucial in minimizing the resources required for a cycle.

Multiple-agent simulations are needed for understanding the added complexity

of properly coordinating the agents. Once a system of multiple-agents is controlled

properly, the monitoring group of agents must be coupled with the exploring group

of agents so that the entire system remains self-su�cient. The hiring of additional

agents into either one of the job groups should create an interesting dynamic and

a complex behavioral control problem.

5.2.2 Multiple-Thermal Exploitation

A deeper analysis of multiple-thermal exploitation is desired. Possible examina-

tions include the completion rate of full multiple-thermal exploitation cycles and

the relationship between the thermal separations and the angular range for which

multiple-thermal exploitation is beneficial.

5.2.3 Departure and Arrival Controllers

Further treatment of departure and arrival controllers is another area of future

work. The degree of e↵ects from cruising faster through the areas of sink around

strong thermals and departing lower or higher than the optimal departure altitude

should be studied.



Appendix A
Vehicle Properties

Table A.1. Properties of the Schleicher ASW-27B glider [2].

Parameter Value
Span including winglets 15m (49.22ft)

Wing area 9m2 (96.88ft2)
Aspect ratio 25

Fuselage length 6.55m (21.49ft)
Cockpit height 0.80m (2.62ft)
Cockpit width 0.64m (2.10ft)

Height at tail unit 1.30m (4.27ft)
Wing airfoils DU 89-134/14 and DU 92-131/14MOD
Empty mass 235kg (518lb)

Flight mass max. 500kg (1102lb)
Mass of one wing 58kg (128lb)
Wing loading max. 55.56kg/m2 (11.38lb/ft2)
Wing loading min. 32.80kg/m2 (6.7lb/ft2)
Water ballast max. 165L (43.59US Gal)
Useful load max. 130kg (287lb)

Useful load in pilot seat 115kg (254lb)
For m=320kg:

Max. speed 285km/h (154kts)
Max. maneuver speed 215km/h (116kts)

Min. speed 70km/h (37.8kts)
Min. sink 0.52m/s (102ft/min)
Best L/D 28 at 100km/h (54kts)
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Table A.2. Properties of the RnR Products SB-XC glider [3].

Parameter Value
Span 170.0in

Flying weight 158oz
Wing area 1656in2

Aspect ratio 19.8
Stab span 36.5in
Stab area 135in2

Wing loading 13.6oz/ft2

Wing Airfoil SD-2048



Appendix B
Supplementary Material

B.1 Exploitation During Dissipation

This section derives the optimal departure altitude for a glider exploiting a dissi-

pating thermal, referred to in Section 3.6. Section 3.1.1 provided a proof showing

that, given the assumptions in Section 2.2, a monitoring cycle is optimized when

the working altitude �h is maximized. In reality, however, thermal dissipation ex-

ists and the question arises of when it is optimal to leave a thermal whose strength

is decreasing.

Here, the answer is found by appending Equation 3.17 to include the time

spent in the dissipating lift and the altitude reached by exploiting this lift. The

appending may be done by assuming a region of constant lift that endures for�h/T

seconds, followed by the region of dissipation for which the climb rate is a function

of altitude. This climb rate function is approximated and it is shown that the

optimal thermal departure altitude, independent of the approximated climb rate

function, has a climb rate equal to the aggregate thermal strength of the cycle. It

follows that the minimum thermal departure altitude for gliders in multiple-agent

scenarios is the altitude where the climb rate equals the monitoring sink rate, since

the maximum aggregate thermal strength equals s
s

/(dNe � 1) = s
s

/(2� 1) = s
s

.

Start with a linear decay model for a thermal with a climb rate of 4m/s that

decays to 0m/s after 75m beyond the altitude of constant lift :

T
d

(h) = 4� 4

75
h (B.1)
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where T
d

is the climb rate in the dissipating thermal and h is the altitude above

the region of constant lift. The total time spent exploiting a thermal is then

t
t

=
�h

T
+

Z hd

0

T�1

d

dh (B.2)

where �h is the working altitude and T is the constant thermal climb rate of

a glider. The optimal departure altitude for single-agent scenarios is found by

di↵erentiating N with respect to h
d

, whereas the optimal departure altitude for

multiple-agent scenarios is found by di↵erentiating a free resource with respect to

h
d

.

The derivation below works with t
free

because the math is less tedious and the

answer is in the form of the aggregate thermal. The aggregate thermal result can

then be applied to single-agent scenarios by omitting the ceiling operator on N .

The validity of this was covered by Equation 3.25, where the aggregate thermal

strength without the ceiling operator on N determines the optimal airspeed in

single-agent scenarios. It is expected that di↵erentiating N with respect to h
d

will

produce a less elegant result, but that this result is necessary if h
d

is to be found

non-iteratively.

Appending N to include the exploitation of a dissipating thermal region above

a certain altitude:

N =
dc
vc
+ �h

T +
R hd

0

T�1

d

dh+ t
free

s�1

s

⇣
�h+ h

d

� s
c

dc
vc

⌘ + 1 (B.3)

Solving for t
free

:

t
free

= (dNe � 1)

✓
�h+ h

d

� s
c

d
c

v
c

◆
1

s
s

�
"
d
c

v
c

+
�h

T
+

Z hd

0

✓
4� 4

75
h

◆�1

dh

#

(B.4)

Di↵erentiating with respect to h
d

:

@t
free

@h
d

= (dNe � 1)
1

s
s

�
✓
4� 4

75
h
d

◆�1

(B.5)
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Setting to zero and solving for h
d

gives

h
d

= �75

4
(dNe � 1)�1s

s

+ 75 (B.6)

Evaluating Equation B.6 for s
s

= 0.5m/s and dNe = 2 gives h
d

= 65.625m.

Plugging this back into Equation B.1 gives T
d

(h) = 0.5m/s.

In general, given a linear decay model, the optimal departure altitude is

h
d

= � 1

m
(dNe � 1)�1s

s

+ a (B.7)

where m is the slope of the linear decay, a is the x-intercept, and (N � 1)�1s
s

is

the aggregate thermal. The corresponding linear climb rate decay function is

T
d

(h) = m(a� h) (B.8)

Plugging the former equation into the latter produces

T
d

(h) = m

✓
a� 1

m
(dNe � 1)�1s

s

+ a

◆
= (dNe � 1)�1s

s

(B.9)

which proves that the optimal departure altitude has a climb rate equal to the

aggregate thermal strength of the cycle regardless of m and a, i.e., regardless of

the thermal model.

If an exponential decay model is used, then:

T
d

(h) = N
0

e��h (B.10)

t
free

= (dNe � 1)

✓
�h+ h

d

� s
c

d
c

v
c

◆
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@t
free

@h
d

= (dNe � 1)
1

s
s

�
�
N

0

e��hd
��1

(B.12)

h
d

= �1

�
ln

✓
1

N
0

(dNe � 1)�1s
s

◆
(B.13)

T
d

(h) = N
0

e
��
h
� 1

� ln

⇣
1

N0
(dNe�1)

�1ss
⌘i

= (dNe � 1)�1s
s

(B.14)

The same result is reached here and it is deduced that the optimal departure
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altitude in all one-to-one thermal decay functions has a climb rate equal to the

aggregate thermal strength for that cycle. This is the more general form than that

seen in MacCready theory for cross-country soaring, which states that a thermal

should be departed when the climb rate drops below the next MacCready setting.

B.2 Accounting for the Area of Sink Around a

Thermal

Given below is the derivation for including an expected altitude loss due to the

surrounding area of sink around a thermal,�h
T

, in the optimal cruising airspeed

calculation, v
c

. �t
T

is included for completeness and represents the duration of �h
T

.

Note that this quantity was set to zero in the simulations presented in Chapter 4

because it is contained within the quantity s
c

d
c

/v
c

. The derivation is given in

the context of multiple-thermal exploitation, for which �h
T

occurs when T
1

is

entered while cruising away from M. The derivation steps are identical to those in

Chapter 3 and result in subtracting a �h
T

-term in the auxiliary variable B:
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Simplifying and setting to zero:
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B.3 Novel Thermalling Controller Equations

Section 3.5 presented equations that include the transitional altitude changes aris-

ing from job transitions, where changes in airspeed result in changes in altitude.

This section presents similar equations but for the novel thermalling controller

discussed in Chapter 5.

If v
1

� v
T

and v
2

 v
T

:

N = 1 +

d1
v1

+ d2
v2

+
⇣
H �

�hT � 0z }| {
v2
1

� v2
T

2g

⌘
T�1

h
H � d1

v1
s
1

� d2
v2
s
2

+ (◆◆v
2

2

� ◆◆v
2

s| {z }
�hS

+◆◆v
2

s

� v2
1| {z }

�hS

+ v2
T

� ◆◆v
2

2| {z }
�hT � 0

)/2g
i
s�1

s

(B.19)

where �h
T

a↵ects (decreases) the thermal exploitation duration but not the depar-

ture altitude at the monitoring target; and where �h
T

a↵ects (raises) the arrival

altitude at the monitoring target but not the thermal exploitation duration.
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where �h
T

a↵ects (decreases) the thermal exploitation duration but not the depar-

ture altitude at the monitoring target; where �h
T

a↵ects (increases) the thermal

exploitation duration but not the arrival altitude at the monitoring target; and

where v
T

and s
T

are the final increased thermalling airspeed and sink rate, respec-

tively.
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where the thermal exploitation duration is una↵ected and �h
T

and �h
T

both de-

crease the monitoring duration.
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where �h
T

a↵ects (increases) the thermal exploitation duration but not the arrival

altitude at the monitoring target; where �h
T

raises the departure altitude at the

monitoring target; and where v
T

and s
T

are the final increased thermalling airspeed

and sink rate, respectively.
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B.4 E↵ect of Transitional Altitude Changes

The figures on the next few pages show the e↵ect of including transitional altitude

changes in the calculation of the optimal airspeed and number of agents for a

cycle, covered in Section 3.5. Solid blue represents values derived from ignoring the

transitional altitude changes, solid green represents values derived from including

transitional altitude changes, and dashed red represents values derived from the

novel thermalling controller discussed in Section B.3 and briefly in Chapter 5.

The graphs in the left column of both figures represent cruising airspeeds toward

thermals, whereas the right column in both figures represents cruising airspeeds

toward the monitoring target.

As expected, transitional altitude changes are much less significant for the SB-

XC due to the lower operating airspeeds, seen when comparing Figure B.1 to

Figure B.2. As discussed in Section 3.5, including transitional changes modifies

the equation for the cruising airspeed toward the thermal and not the cruising

airspeed toward the monitoring target, which is seen in the second column in both

figures. The estimated and transitionally-derived airspeeds toward the thermals

di↵er strongly for the ASW-27B and slightly for the SB-XC but both exhibit

the same pattern: increasing airspeed with increasing thermal strengths, where

the estimated airspeeds act as a strict upper bound for the transitionally-derived

airspeeds and the thermalling airspeed acting as the loose lower bound until the

thermalling airspeed merges with the estimated airspeeds. Note that the red curves

represent the airspeeds derived from the novel thermalling controller equations; the

thermalling airspeed is the airspeed held while exploiting a thermal and was set

to 27.78m/s for the ASW-27B and 14m/s for the SB-XC in each respective plot;

monitoring airspeeds were 27.78m/s and 12m/s respectively; the working altitude

was 350m. Including the thermalling controller has a significant impact on the

airspeeds toward the monitoring target and closely matches the transitionally-

derived airspeed toward the thermal.

Figures B.3 and B.4 show that none of the airspeeds present a significant ad-

vantage over the best l/d airspeed, especially for the SB-XC, which agrees with

the simulation results in Chapter 4.
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Figure B.1. A comparison of the estimated, transitionally-derived, and novel ther-
malling controller-derived cruising airspeeds for the ASW-27B.
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Figure B.2. A comparison of the estimated, transitionally-derived, and novel ther-
malling controller-derived cruising airspeeds for the SB-XC.
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