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Coordinated soaring by a flock of small unmanned aerial vehicles (sUAVs) provides a
means of conserving fuel while performing aerial tasks. The ability to exploit thermal
columns in the atmospheric boundary layer allows sUAVs to remain airborne without
expending any onboard sources of energy, i.e., soaring flight. This paper presents an
analysis of the cruising phase during coordinated soaring where a flock of sUAVs relies on
thermal exploitation to maximize endurance for monitoring-type missions. To this end, a
maneuver is investigated that involves each sUAV repeating a round-trip between a thermal
and a monitoring/surveillance target so as to maintain continuous monitoring of the target.
The focus is on minimizing the number of agents required to maintain continuous, persistent
surveillance of the target for given atmospheric conditions (thermal strength and distance
between the thermal and monitoring target) and on maximizing a free parameter (time or
distance) when the number of agents is specified. It will be shown that the optimal cruising
speed for maximizing the endurance of monitoring-type missions varies between the best
L/D speed and the MacCready speed and depends on the “aggregate thermal strength”
of a given cycle, or equivalently, the ratio of the time that one sUAV spends away from
the target to the time that it spends at the target. An examination of multiple-thermal
exploitation is then presented, followed by an evaluation of the flight simulations used to
support the results.

Nomenclature

A,B Auxiliary variables for the optimal airspeed equations
a, b, c Coefficients for the quadratic fit of a sink polar
d Distance between a thermal and monitoring target in single-thermal exploitation
dc Combined length of the first and final leg in multiple-thermal exploitation
dfree Free exploration distance in multiple-agent scenarios
E Exploration job
∆h Global working altitude
L/D Lift-to-drag ratio
N Number of agents required for zero-altitude-loss continuous monitoring
N̄ Corrected N accounting for transition T →M
dNe Integer number of agents required for zero-altitude-loss continuous monitoring
M Monitoring job
s Cruising sink rate
s(L/D) Sink rate from cruising at vL/D

smin Minimum sink rate of an aircraft
ss Monitoring sink rate of an aircraft
T Expected climb rate in a thermal
taway Time spent away from the monitoring target
tc Cruising duration
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tfree Free loitering time in multiple-agent scenarios
tm Monitoring duration
tt Thermalling duration
ttm Transient maneuver duration
v Cruising airspeed
vc Optimal cruising airspeed for single-agent scenarios
vL/D Best L/D airspeed
vMc MacCready speed
vmin Cruising airspeed for smin

vopt Optimal cruising airspeed for multiple-agent scenarios
w Speed of sinking airmass

I. Introduction

Small unmanned aerial vehicles (sUAVs) excel at tasks unsuitable for their larger counterparts. During
the last 15 years, there has been an increasing interest in thermal exploitation strategies and controllers

as a means of mitigating the limited on-board fuel capacity of sUAVs.1–6 One area yet to be investigated
is the cruising stage during monitoring-type missions where a sUAV travels repeatedly between a thermal
column and a monitoring target. Here, this topic is explored with a focus on maximizing airborne time, i.e.,
endurance, for missions requiring continuous uninterrupted monitoring of a target.

Thermal columns, or “thermals” for short, are ascending masses of air that act as the primary convective
units of the atmospheric boundary layer by equilibrating the temperature and pressure gradients between the
ground and atmosphere.7 Some typical defining characteristics of thermals include the following: diameters
from less than 100 m to nearly 1000 m, heights of nearly 1500 m, vertical air currents ranging from 1 to 4
m/s, and lifespans between 5 and 30 minutes.8 These values, however, depend strongly on time of day and
season; thermal activity peaks between the hours of noon and sunset and the months of spring and summer
when the ground can become significantly warmer than the surrounding air.

Previous studies have established the effectiveness of thermal exploitation for both single aircraft and
coordinated aircraft scenarios. Allen presents two important facts for a single soaring aircraft. First, during
summer and winter, convective lift (thermals) can give a 12 and 6 hour increase in endurance, respectively,
for an electric-powered sUAV with a nominal endurance of two hours.5 Second, “performance increase has
a low sensitivity to many key simulation parameters including, aircraft glide slope, number of updrafts,
updraft lifetime, updraft velocity, and height-above-ground upper limit.”5 Depenbusch demonstrates that,
on average, with the goal of remaining airborne for as long as possible, a single sUAV doubles its endurance
when keeping a memory of discovered thermal locations, thermal strengths, and associated covariances.6 He
also shows that, compared to a single sUAV using thermal mapping, a 23% average increase in endurance,
defined as the soaring time until one sUAV reaches the ground, is provided by two coordinated sUAVs that
explore the environment and share measurements with each other. Furthermore, four coordinated sUAVs
experience a 98% average endurance increase over the two coordinated sUAVs.

Persistent monitoring soaring scenarios confine the aircraft to a specific region of a few square kilometers
around a monitoring target. Examples of monitoring targets are areas that require military surveillance,
search-and-rescue missions, or meteorological studies such as pollution studies, wind-gust modeling, and
weather monitoring. Bethke et al. have examined persistent surveillance by a team of quad-rotors, where
periodic recharge at known “filling stations” is performed as part of the mission.9–11 Cutler et al. examine
surveillance with a single UAV that exploits ridge lift, and develop a “seeability” metric as a means of
quantifying video image quality during search and rescue missions.12 When a flock of sUAVs is used in
conjunction with thermal lift, one aircraft is assigned to monitor the target while the other aircraft explore
and exploit the surrounding thermals, creating a map of thermal lift while maintaining altitude. In this
paper, the exploration stage is disregarded and it is assumed that the strengths and locations of thermals are
known. This results in a scenario where the aircraft are engaged in a cycle of monitoring a target, cruising
to a thermal, exploiting a thermal, and cruising back to the target in a way that keeps at least one agent at
the target at all times, resulting in continuous monitoring of the target. This scenario is restricted further
by requiring each cycle to begin at a fixed altitude, thus, if the conditions were theoretically constant, the
mission endurance would be infinite. In this fashion, focus is placed on maximizing mission endurance by
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optimizing the cruising phase of continuous monitoring missions. It is important to note that the altitude and
continuous monitoring constraints allow one to fully define the scenario and formulate governing equations;
it will become clear that the results in this paper are not restricted to scenarios with these constraints.

The various monitoring scenarios will be compared with each other by the quantification of the number
of agents needed to achieve continuous or persistent monitoring in a given scenario. The optimal cruising
airspeed, as well as the optimal airspeed held between thermals during multiple-thermal exploitation, can
be found by differentiating this equation, where the resulting speed minimizes the number of agents required
for a persistent monitoring cycle. Minimizing the number of agents is a way of minimizing the amount of
resources required for a given cycle, thus maximizing the efficiency of the scenario. It will be shown that this
is equivalent to minimizing the ratio of the amount of time an agent spends away from the monitoring target
to the amount of time an agent spends at the monitoring target. Minimizing this ratio is of interest in many
types of scenarios involving one or more agents cruising between a thermal and some location requiring an
extended presence. Instead of cruising between one monitoring target and one or more thermals, it may be
necessary to alternate between multiple monitoring targets, perimeter surveillance for instance, or between
exploration targets. The optimal airspeeds in these scenarios will take the same form because the objective
is ultimately the same in each case: to gain altitude as quickly as possible without compromising the time
spent at a target. In spite of this, as the analysis proceeds, one will see why this approach does not apply
to all scenarios and this will lead to the more general concept of the “aggregate thermal” of a given cycle,
for which the MacCready speed will prove to be optimal.

The remainder of this paper is organized as follows: Section II establishes the scenario and the simpli-
fying assumptions; Section III develops the theory for optimizing the cruising phase of monitoring missions
involving one agent , Section IV expands the theory to persistent monitoring missions where multiple agents
are involved; Section V presents simulation results from the Silent Wings Soaring Simulator; and Section VI
contains concluding remarks.

II. Problem Definition

The basic scenario is illustrated in Figure 1. A flock of sUAVs, hereafter referred to as “agents,” is
engaged in a cycle of monitoring a target and exploiting a thermal. Once an agent loses enough altitude
at the monitoring target, it cruises to a thermal to regain altitude before cruising back to the target to
resume monitoring. Continuous or persistent monitoring becomes possible when a new high flying agent
immediately replaces the previous low flying monitoring agent that has departed to regain altitude. An
altitude constraint is imposed to fully define the problem: altitude must be conserved in each cycle, that is,
each cycle must begin at the same altitude.

(a) Single-thermal exploitation (b) Multiple-thermal explotation

Figure 1. Persistent surveillance cycles. Single-thermal case shown on left; multiple-thermal case shown on
right.

Given a thermal’s strength and distance from a target, the problem is to compute the minimum number
of agents required for continuous, persistent monitoring of the target. For this, a number of environmental
assumptions are beneficial in simplifying the analysis:

1. Wind is absent in the environment.

2. Thermal exploitation is constant with altitude.
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3. The altitude floor is constant.

4. The altitude ceiling is constant.

5. All agents have identical properties and capabilities.

6. Atmospheric conditions persist indefinitely.

7. The duration of transient maneuvers is negligible compared with other phases of flight.

8. Changes in altitude during transient maneuvers are negligible for sUAVs.

This leaves a scenario where thermalling and monitoring dynamics are absent and atmospheric conditions
are constant. This allows one to focus entirely on the cruising phase during persistent monitoring missions
without altering the significance of the analytical results. Each of these assumptions will be lifted after the
introductory theory is established.

III. Minimizing the Number of Agents

A. Single-Thermal Exploitation

Intuitively, the number of agents required for persistent monitoring is equal to the time required for one
agent to complete the circuit divided by the time that one agent spends monitoring the target:

N =
tc + tt + ttm + tm

tm
≈ tc + tt

tm
+ 1 (1)

where tc, tt, tm, and ttm are the cruising, thermalling, monitoring, and transient maneuver durations,
respectively. Note that ttm represents the time required to transition between cruising and monitoring or
between thermalling and cruising and vice versa. The duration of transient maneuvers will be neglected due
to its insignificance when compared with tc, tt, and tm.

Substituting the system parameters and applying the environmental assumptions gives

N =
d
v1

+ d
v2

+ ∆h
T

s−1
s

(
∆h− s1

d
v1
− s2

d
v2

) + 1 (2)

with distance d, expected thermal climb rate T , working altitude ∆h, surveillance or monitoring sink rate
ss, the cruising airspeed and sink rate toward the thermal v1 and s1, and the cruising airspeed and sink
rate toward the monitoring target v2 and s2. The working altitude is assumed to be constant and equal to
the altitude ceiling minus the altitude floor for the agents. It is temporarily assumed that the two cruising
paths are of the same distance d. The general case where the two cruising paths differ, for example, when
an aircraft diverts to explore the surroundings or when multiple thermals are exploited, will be treated in
section B. To clarify equation (2), the sum of the first two terms in the numerator represents the cruising
duration of one agent for a given thermal with an expected climb rate T and a distance d away from the
target. Cruise airspeeds v1 and v2 are not assumed to be equal since it may be optimal to reach a thermal by
cruising at one speed, e.g., the MacCready speed vMc, whereas cruising back toward the monitoring target
may be optimized by cruising at another speed, e.g., the best L/D speed vL/D. Note that, in short, the
MacCready speed is the cruising airspeed that minimizes the time that an aircraft takes to reach the top
of a thermal given an estimated thermal climb rate. The MacCready speed is independent of distance and
is used by glider pilots during cross-country soaring races to cruise between thermals.13 The third term in
the numerator of equation (2) represents the time spent exploiting the thermal, tt. For the time being, it is
assumed that minimizing N , i.e., maximizing efficiency, translates to exploiting the thermal over the entire
working altitude ∆h, i.e., not departing the thermal prior to reaching the altitude ceiling and not arriving at
the thermal above the altitude floor; this will be proved in the following paragraph. Lastly, the denominator
of equation (2) represents the time spent monitoring the target tm at the aircraft’s minimum sink speed.The
simplicity of tt and tm amounts to an elevator model of thermalling and monitoring: once an agent reaches
either location, he sinks or rises at a constant rate until departing.

To prove that the number of agents required for monitoring the target is minimized when ∆h is maximized,
start with the inequality N1 < N2, where N1 represents a scenario with ∆h1 and N2 represents an identical
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scenario but with ∆h2 such that ∆h1 > ∆h2. The goal is to reduce this inequality to show that N1 < N2 if
and only if ∆h1 > ∆h2:

d
v1

+ d
v2

+ ∆h1

T

s−1
s

(
∆h1 − s1

d
v1
− s2

d
v2

) + 1 <
d
v1

+ d
v2

+ ∆h2

T

s−1
s

(
∆h2 − s1

d
v1
− s2

d
v2

) + 1 (3)

Multiplying both sides by the product of the denominators, expanding, and canceling like terms results in

ss∆h2d

(
1

v1
+

1

v2

)
− ∆h1d

T

(
s1

v1
+

s2

v2

)
< ss∆h1d

(
1

v1
+

1

v2

)
− ∆h2d

T

(
s1

v1
+

s2

v2

)
(4)

Collecting ∆h1-terms on the right-hand side and ∆h2-terms on the left-hand side gives

∆h2d

[
ss

(
1

v1
+

1

v2

)
+ T−1

(
s1

v1
+

s2

v2

)]
< ∆h1d

[
ss

(
1

v1
+

1

v2

)
+ T−1

(
s1

v1
+

s2

v2

)]
(5)

The terms in the square brackets are equal and the inequality reduces to the expected result

∆h2 < ∆h1 (6)

Thus, given the environmental assumptions, maximizing the working altitude ∆h will always minimize the
required number of agents. In the case of persistent surveillance using a single thermal optimal performance
is obtained when agents exploit the full height of the thermal: a “partial recharge” will necessarily result in
an increase in the number of agents. It will later be shown that this is not necessarily true in cases where
multiple thermals are exploited.

The optimal v1 and v2 can be found by differentiating equation (2) with respect to v1 and v2. To do this,
the aircraft’s sink polar must be expressed in terms of the cruising airspeed. For optimization calculations
and controller design, this can be expressed fairly well with a quadratic fit: s = av2 +bv+c.13 The constants
a and c are positive, whereas the constant b is negative since the sign convention in this paper is to assign
positive values to sink rates. Flight path angle is assumed to be small, so that airspeed is equal to the
horizontal speed (for typical gliders the flight path angle is approximately two degrees). The optimal v1 is
found to equal

v1 =
−1 +

√
1 + A1B1

A1
(7)

where

A1 =
1

d

(
d

v2
+

∆h

T

)
=

1

d
(taway − tc1) (8)

B1 =
1

ad

[
∆h− d

(
s2

v2
+ b

)
+ c(taway − tc1)

]
(9)

Similarly, the equation for the optimal v2 has an identical form due to the structure of equation (2):

v2 =
−1 +

√
1 + A2B2

A2
(10)

where

A2 =
1

d

(
d

v1
+

∆h

T

)
=

1

d
(taway − tc2) (11)

B2 =
1

ad

[
∆h− d

(
s1

v1
+ b

)
+ c(taway − tc2)

]
(12)

The variables tc1 and tc2 were introduced to represent the two segments comprising tc. The time spent away
from the target is represented by taway. The interdependence and identical form of v1 and v2 implies that
v1 = v2. Indeed, after constructing the constrained optimization problem for equation (2) using MatLab’s
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(a) ∆h = 700m
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(b) ∆h = 350m

Figure 2. Optimal cruising airspeed for single-agent scenarios with the ASW-27B glider, where d represents
the distance between T and M and ss = 0.52 m/s.

fmincon function, it was observed that given any set of environmental conditions, the optimal v1 and v2

were both equal to

v =
−2 +

√
4 + AB

A
(13)

where

A =
∆h

Td
=

1

d
(taway − tc) (14)

B =
1

ad

(
∆h− 2bd +

c∆h

T

)
=

1

ad
(∆h− 2bd) + A

c

a
(15)

At first glance, it appears that this equation is circular because of the dependence on tc. This, however,
is not the case because tc is included in taway; subtracting tc eliminates the dependence on the two cruising
segments. Symmetry within the circuit is expected because flying away from the target affects the circuit in
the same way as flying toward the target. Both airspeeds affect the time spent at the target, where v1 affects
the departing altitude and v2 affects the arriving altitude. Both airspeeds also affect the time spent away
from the target with equal weight. Thus, the optimal v1 that balances these two effects so as to minimize the
N required for the system will equal the optimal v2. It is worthwhile to mention that B may be rewritten
using the relations vL/D =

√
c/a, vmin = −b/2a, sL/D = 2c + bvL/D, and smin = b

2vmin + c, where vL/D

is the best L/D speed, vmin is the speed at the minimum sink rate of the aircraft, and sL/D and smin are
their corresponding sink rates.13

Figure 2 plots values of v (later renamed to vc) as a function of T and d with a working altitude of 700
and 350 meters for a Schleicher ASW-27 glider. The two graphs in the figure converge to the same values as d
approaches zero and as d approaches infinity. An alternative formulation in Section IV.B using an aggregate
thermal will show that the limits of v are equal to the MacCready speeds as d approaches zero and the best
L/D speed as d approaches infinity.

An important observation is that the optimal airspeed does not equal vL/D, given by
√
c/a, nor does it

equal vMc. This fact became clear after comparing N using vMc with N using vL/D during single-thermal
exploitation. Equation (2) was solved for distances up to 15 km, a working altitude of 700 m, and thermal
climb rates up to 5 m/s for a Schliecher ASW-27B glider (all results presented in this paper are based on
the ASW-27B). The results are shown in Figure 3.
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(a) v1 = vMC and v2 = vL/D
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Figure 3. Number of agents required for single-thermal exploitation with a Schleicher ASW-27B glider with
∆h = 700m and ss = 0.52. Note the instances where stronger thermals are outperformed by weaker thermals
when vMc is used to cruise toward a thermal as opposed to vL/D.

Figure 3 can be interpreted in two ways: one, the number of agents required in a cycle for a thermal of a
given climb rate and distance, or two, the maximum distance away a thermal can be for a given number of
available agents. vMc is immediately dismissed as the optimal cruising speed because there are cases where
weaker and farther thermals require the same number of agents as stronger and closer thermals. This effect
is dominant in thermals that are greater than 6 km away and is attributed to an inefficient exchange between
an agent’s altitude loss and cruising time for stronger thermals whose MacCready speeds are large. There
is, however, a subtlety that is not shown clearly in Figure 3 which is that vL/D is not always more efficient
than vMc, particularly for distances less than 2 km, and it was this realization that first led to the theory
discussed in this section.

Table 1 lists the gains in the maximum allowable distance from using the optimal airspeed as opposed
to vL/D given a working altitude of 700 m. The first entry is not applicable because thermals with climb
rates of 0.5 m/s require three agents to complete a cycle regardless of their distance from the target. This
is due to the minimum sink rate, which was assumed to be the sink rate during monitoring, being slightly

Table 1. The additional maximum allowable distance between a monitoring target and a thermal
provided by vopt as opposed to vL/D given a working altitude of 700 m and a surveillance sink rate
or 0.52 m/s. The values in parenthesis represent the percentage gains in the maximum allowable
distance with respect to the maximum allowable distance given by vL/D.

Climb Rate
Number of Agents

2 3 4 5 10

0.5 m/s na* 85 m (1.5%) 65 m (0.8%) 45 m (0.5%) 15 m (0.1%)

1 m/s 205 m (4.6%) 130 m (1.5%) 85 m (0.8%) 55 m (0.5%) 15 m (0.1%)

2 m/s 290 m (4.3%) 155 m (1.5%) 90 m (0.8%) 60 m (0.5%) 15 m (0.1%)

3 m/s 325 m (4.4%) 160 m (1.5%) 90 m (0.7%) 60 m (0.5%) 15 m (0.1%)

4 m/s 340 m (4.4%) 165 m (1.5%) 90 m (0.7%) 60 m (0.5%) 15 m (0.1%)

5 m/s 345 m (4.3%) 165 m (1.5%) 95 m (0.8%) 60 m (0.5%) 15 m (0.1%)

* not applicable, N > 2 for thermal climb rates of 0.5 m/s.
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larger than 0.5 m/s. The calculation of d cannot be carried out directly by providing a value of N because
the value of the optimal airspeed depends on d. Instead, the calculation of d for a certain number of agents
was carried out by varying the distance from zero to sixteen kilometers in steps of five meters. The distance
was recorded when the value of N reached an integer number.

Table 1 shows that if the optimal airspeed is ever to be used instead of the best L/D airspeed, it should
be used in situations where N ≤ 2, otherwise, the gains in distance do not justify the computational effort
after considering the uncertainty of dynamic environments during real missions. It then becomes of interest
to quantify the benefit of cruising at the optimal airspeed when N ≤ 2. However, the previous method
of calculating the maximum distance away a thermal can be does not apply for non-integer values of N ,
and calculating the difference in the number of agents required for a cycle is slightly non-intuitive. Instead,
equation (2) is reformulated to account for a savings in time by considering exploration distance, dfree, and
loitering time, tfree (discussed in Section IV).

B. Multiple-Thermal Exploitation

Multiple-thermal exploitation is of interest because a flock may encounter many scenarios where exploiting
a combination of thermals would reduce the number of agents required for a persistent monitoring cycle.
Two interesting cases are the presence of one thermal on the path toward another and the utilization of a
nearby thermal to reach a better thermal that would otherwise be too far given the working altitude.

The number of agents required for persistent monitoring becomes

N =
d1

v1
+ s2d2

v2T1
+ d2

v2
+ ∆h

T2
+ d3

v3

s−1
s

(
∆h− s1

d1

v1
− s2

d3

v3

) + 1 (16)

As illustrated by Figure 1(b), d1, v1, and s1 represent the first leg of the cycle between the target and the
first thermal, d3, v3, and s3 represent the final leg of the cycle between the second thermal and the target,
and d2, v2, and s2 represent the leg between the two thermals T1 and T2. The second term in the numerator
of equation (16) represents a partial exploitation of thermal T1: multiple-thermal exploitation is practical if
and only if T1 < T2, otherwise T2 would be avoided altogether. Thus, thermal T1 must be treated strictly
as a via point that enables an agent to leave the monitoring target at a later time with the intention of
increasing monitoring time at the cost of increasing transit time. It follows that an agent arrives at thermal
T1 at the altitude floor and departs at the height needed for reaching thermal T2 at the altitude floor. The
stronger T2 is then exploited over the full working altitude.

After differentiating equation (16), the equations for the optimal v1 and v3 exhibit the same properties
as those in section A: both equations are identical in form and dependent on each other and, as before,
MatLab’s fmincon confirms that the optimal v1 is equivalent to the optimal v3. Their value is given by

vc =
−1 +

√
1 + AB

A
(17)

where

A =
1

dc
(taway − tc) (18)

B =
1

adc
(∆h− bdc) + A

c

a
(19)

where dc represents the total cruising distance minus the distance traveled between thermals: dc = d1 + d3.
In fact, equation (17) is the general form of equation (13) when d1 6= d3 and although the terms within
taway and tc differ for different scenarios, this general form for the optimal airspeed remains the same. For
instance, if the cycle in Figure 1(b) was changed to M → T1 → T2 → T3 → E, where E is an exploration job,
the term “taway−tc” would now equal the sum of the cruising times and exploitation times in T1 → T2 → T3,
dc would now be the sum of the distances between M → T1 and T3 → E, and equation (17) determines
the new optimal airspeed. Note the difference between d and dc: d represents the distance between M
and T for single-thermal exploitation, whereas dc represents the sum of the lengths of the first and last
legs in multiple-thermal exploitation. If single-thermal exploitation is represented in the multiple-thermal
formulation, then dc/2 would equal d since the first and last cruise legs are identical.
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Equation (16) may also be differentiated with respect to v2 to determine the optimal cruising speed
between thermals. Surprisingly, it is found that the optimal cruising speed between T1 → T2 is equal to
the MacCready speed in reverse, i.e., the MacCready speed for T1 rather than T2: v =

√
(c + T1)a−1.

Since T1 < T2 in scenarios involving multiple-thermal exploitation, the time spent exploiting T1 should be
minimized. The slower, reversed MacCready speed in T1 → T2 will minimize the height lost during this
phase, which translates to a lower required altitude for reaching T2.

The reader is reminded that if the cycle in Figure 1(b) is beneficial, i.e., NM→T1→M > NM→T2→M >
NM→T1→T2→M , then the cycle NM→T1→T2→T1→M should be taken instead of simply NM→T1→T2→M . That
is, if T1 decreases the number of agents required for a cycle by acting as a via point between M and T2 that
allows an agent to depart M at a lower altitude, then it must likewise be possible for T1 to decrease the
number of agents by acting as a via point between T2 and M that allows an agent to arrive at M at a higher
altitude. Indeed, the optimal cruising speed in T2 → T1 is equal in value to the reversed MacCready speed
that optimized T1 → T2. However, the difference between the two MacCready speeds is that the segment
T2 → T1 is optimized by the forward form of the MacCready speed, vMc =

√
(c + T1)a−1, instead of the

reversed form vMc =
√

(c + T2)a−1. To reiterate, in its normal form, the MacCready speed optimizes a cruise
to a thermal based on the thermal that the aircraft is traveling to. In this paper, the MacCready speed is
said to be reversed when the thermal that the aircraft is starting from is used to optimize an inter-thermal
cruise in monitoring scenarios.

IV. Maximizing a Free Parameter

Rather than minimizing the number of agents, this section seeks to maximize a free parameter for a given
(but sufficient to perform continuous surveillance) number of agents. This free parameter (time or distance)
can be used to perform other tasks such as exploration.

A. Free time

Loitering time will be analyzed by considering the following equation:

N =
2d
v + ∆h

T + tfree

s−1
s

(
∆h− s 2d

v

) + 1 (20)

Equation (20) is a form of equation (2) with an additional segment of T → L, where L represents a loitering
period tfree at the thermal. In this paper, loitering is restricted to an agent remaining at the altitude ceiling
within a thermal. In reality, atmospheric dynamics necessitate the prediction of dissipating thermals. By
remaining within a thermal for an extended period, the loitering agent has a better sense of whether or not
a thermal is dissipating, which becomes critical in the decision making process for the subsequent agents
seeking a thermal. Alternatively, tfree, along with dfree, can be a way of measuring the margin of error
within a circuit.

Equation (20) is utilized by solving for tfree:

tfree = (N − 1)

(
∆h− s

2d

v

)
1

ss
−
(

2d

v
+

∆h

T

)
(21)

The way to solve this equation is to first calculate the optimal number of agents without tfree, i.e., by solving
equations (2) and (13), and rounding up to the nearest integer number of agents, dNe. Rounding N up to
the nearest integer is necessary to account for the additional tfree since free time is available only if a circuit
has more than enough agents. A difference in agents can now be interpreted as a difference in tfree; this can
be seen clearly if equation (20) is rearranged in the following manner:

dNe −

(
2d
v + ∆h

T

s−1
s

(
∆h− s 2d

v

) + 1

)
=

tfree

s−1
s

(
∆h− s 2d

v

) (22)

where the left-hand side equals the difference between the integer number of agents required in reality and
the non-integer number of agents required in theory.

After comparing the values of tfree given by vc to the values of tfree given by vL/D, it was seen that vc did
not always provide a larger tfree than vL/D despite requiring a smaller N for a circuit. This result reinstated
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Figure 4. Number of agents required for single-thermal exploitation with vopt for the Schleicher glider with a
surveillance sink rate of 0.52 m/s.

that maximizing the endurance of a coordinated soaring mission is an integer optimization problem; the
objective is to optimize the resources available, dNe, rather than minimizing the number of resources,
N .Thus, the optimal cruising airspeed during real missions involving multiple agents must be derived by
differentiating equation (21) with respect to v instead of differentiating equation (16). The new optimal
cruising airspeed is given by equation (23).

vopt =

√
c + ss(dNe − 1)−1

a
(23)

where the calculation of vopt requires calculating vc and dNe. The value of vc actually converges to vopt as
N approaches an integer value, showing that the two optimization problems are related. In addition, vopt
converges to vL/D,

√
c/a, as dNe tends to infinite. A pleasant consequence of equation (23) is that vopt

is constant for a given dNe, which means that d can be divided into ranges of constant vopt rather than
calculating a different optimal airspeed for every value of d, as was done with vc. The reader must keep in
mind the difference between vc and vopt: vc is the optimal cruising airspeed in scenarios involving one agent,
whereas vopt is the optimal cruising airspeed for multiple-agent scenarios where the monitoring target can

Table 2. The operating range for vopt in terms of d given six thermal climb rates for the Schleicher ASW-27B,
a working altitude of 700 m, and a surveillance sink rate of 0.52 m/s.

Climb Rate

Optimal Airspeed

32.8 m/s 30.2 m/s 29.3 m/s 28.9 m/s 28.6 m/s

dNe = 2 dNe = 3 dNe = 4 dNe = 5 dNe = 6

0.5 m/s na* 0 - 5.88 km 5.89 - 8.69 km 8.70 - 10.35 km 10.36 - 11.44 km

1 m/s 0 - 4.64 km 4.65 - 8.85 km 8.86 - 10.89 km 10.90 - 12.10 km 12.11 - 12.89 km

2 m/s 0 - 6.98 km 6.99 - 10.36 km 10.37 - 12.00 km 12.01 - 12.97 km 12.98 - 13.61 km

3 m/s 0 - 7.77 km 7.78 - 10.86 km 10.87 - 12.36 km 12.37 - 13.26 km 13.27 - 13.85 km

4 m/s 0 - 8.16 km 8.17 - 11.10 km 11.11 - 12.55 km 12.56 - 13.40 km 13.41 - 13.97 km

5 m/s 0 - 8.39 km 8.40 - 11.25 km 11.26 - 12.65 km 12.66 - 13.49 km 13.50 - 14.05 km

* not applicable, N > 2 for thermal climb rates of 0.5 m/s.
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be monitored indefinitely in theory. The reference cruising airspeed for any coordinated soaring monitoring
mission can equal up to about three or four different values; thermals requiring dNe ≥ 5 are rarely the best
options and vopt changes very slightly beyond that. Table 2 lists ranges of d for scenarios involving up to 5
agents given six different thermal climb rates. Figure 4 plots N versus d when the cruising airspeed is vc,
also for six values of T .

B. The “Aggregate Thermal”

It is interesting to note that the second term in the numerator of equation (23) represents a rate equal to
the available altitude at the target divided by the time spent away from the target:

ss
dNe − 1

=
∆h− s 2d

v
2d
v + ∆h

T + tfree
(24)

The right-hand side of equation (24) is a rate that can be thought of as an aggregate thermal and the
left-hand side is its relationship with N . The effects of d and ∆h are incorporated into the thermal climb
rate for a more relevant metric in describing thermals given a particular environmental scenario. Thus, the
aggregate thermal is a way of discounting a thermal’s strength by the energy required to reach it. This
explains the resemblance of equation (23) to the equation for the MacCready speed. Hence, if a circuit has
an aggregate thermal strength of 0.5 m/s, the optimal cruising speed is equal to the MacCready speed for a
thermal of strength 0.5 m/s: 32.8 m/s. The aggregate thermal concept exists in multiple-thermal scenarios
as well and is a general way of combining multiple thermals, the distances between them, and the lengths of
the first and last legs of the circuit into one rate.

The utility of this is that instead of thinking in terms of the number of agents required for a particular
circuit, one can think in terms of the aggregate thermal for the circuit, avoiding confusion in scenarios where
only one agent is available or when the zero-altitude-loss and continuous monitoring constraints do not apply.
Equation (23) does not directly apply to scenarios with only one agent because maximizing tfree is no longer
of interest since there is no free time available. Instead, dNe is replaced by the non-integer N where the
interest reverts to minimizing the ratio of the time spent away from the target to the time spent at the
target, which is equivalent to the approach for finding vc in Section III.A. This is precisely the reason why
equation (17) gives the same values for the optimal airspeed as equation (23) without the ceiling operator:

vc =
−1 +

√
1 + AB

A
=

√
c + ss(N − 1)−1

a
(25)

This was a coincidental result that was realized by finding optimal speeds for different conditions, cal-
culating N , plugging N into equation (25), and arriving at the same optimal speed. Equation (25) shows
that vc converges to vL/D and vMc as d approaches infinite and zero, respectively, pictured in Figure 2.
The critical difference between the two equations is that the latter equation, for the continuous monitoring
scenario, is circular, i.e., vc depends on N , but N is a function of vc, and cannot be used to find vc for
single-agent circuits.

In spite of this, there are other scenarios where the optimal cruising speed is known and the aggregate
thermal strength can be determined. In any scenario, the formulation of the aggregate thermal involves
defining a resource gained in units of distance, normally altitude, and the time it took to gain that resource.
Consider a scenario where the goal is to create a thermal map of a region. The available agents explore the
region, keeping a memory of thermal locations, strengths, uncertainty, etc., until needing to gain altitude to
continue exploration. Each agent can then choose the thermal that benefits them the most by calculating
aggregate thermal strengths. For this case, the aggregate thermal is equal to the estimated height gained
from a thermal, relative to an aircraft’s current altitude, divided by the estimated time to gain that altitude
given the thermal climb rate, the estimated final altitude, the distance between an agent and a thermal, and
the cruising speed. The optimal cruising speed, in this scenario, will reach the final altitude the fastest and
this speed is known as the MacCready speed.13 Note that if the agent’s next exploration region is established
before thermalling, then the MacCready speed will not be optimal, evident from Figure 3. Analogous to
vc maximizing the aggregate thermal, the MacCready speed optimizes the aggregate thermal strength by
minimizing the time to reach the final altitude. Knowing that the optimal airspeed in this scenario is
independent of N eliminates the circularity discussed in the previous paragraph and allows the aggregate
thermal strength to be used as a metric for choosing the “strongest” thermal based on an agents relative
position to a thermal.
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C. Free distance

It has been mentioned that another way of quantifying the advantage of a circuit requiring less agents is
through exploration distance, dfree. This can be thought of as an alternative to using tfree as loitering
time. An agent now has the option of cruising slightly off course to explore nearby regions, the advantage of
which is a higher likelihood of locating new thermals or identifying areas of sink to be avoided by subsequent
agents. Consider equation (26):

N =

2d
v + ∆h

T +
dfree

vfree

s−1
s

(
∆h− s 2d

v −
dfree

vfree

) + 1 (26)

Contrary to tfree, dfree affects the arrival height at the monitoring target. Nevertheless, solving for dfree and
differentiating with respect to v leads to the same optimal airspeed that maximized tfree; this is expected
since dfree can be thought of as an extension of the cruising legs.

Figure 5 and Figure 6 show the values of tfree and dfree, respectively. Solid lines represent the additional
times and distances provided by vopt compared to vL/D, whereas the dashed lines represent the total times
and distances provided by vopt; the dashed lines are meant to put the solid lines into perspective. Breaks in
the plots denote distances where the number of agents changes; the graphs show distances that require up to
five agents. The dashed lines extend past the solid lines in all cases because the values of the additional times
and distances were not recorded after the tfree from vL/D became negative. In other words, the dashed lines
extend past the solid lines because the maximum d using vopt is larger than the maximum d using vL/D. The
additional distance gained is constant given a certain number of agents since the free time rises at a constant
rate given a fixed optimal airspeed. The loitering time gained is less than one minute for all three thermal
strengths and the distance gained is less than 700 m. These gains become useful when N approaches an
integer value, i.e., toward the right sides of the dashed lines, where resources begin to dwindle.

D. Multiple Thermals

In addition to the theory presented on multiple-thermal exploitation thus far, a better intuitive understanding
is sought as to when multiple-thermal exploitation is preferred over single-thermal exploitation. It has been
noted that, at the least, multiple-thermal exploitation involves exploiting a weaker, but closer, T1 as a via
point to a stronger, yet farther, T2. However, the importance of the location of T1 with respect to T2

and M , the disparity between climb rate and distance, and the benefit of multiple-thermal exploitation
remains to be explored. For simplicity, multiple-thermal exploitation cycles are limited to the partial cycle:
M → T1 → T2 → M , or equivalently, M → T2 → T1 → M ; and the full cycle M → T1 → T2 → T1 → M .
As mentioned previously, though the full cycle is preferred over the partial cycle, atmospheric dynamics will
at times present the partial cycle as the best option due to thermal creation and dissipation.

Figure 7 shows polar maps of regions indicating whether single-thermal exploitation is preferred over
multiple-thermal exploitation. The location of T2 and M is constant in each map, where M is located
at the origin and T2 is located along the 90◦ line at radius equal to d3 and is represented by a star; the
value d3 is indicated at the top of each map. Given T1, T2, d3, these maps were created by choosing a
location for T1, thus setting d1, d2, and calculating N for the cycles M → T1 → M , M → T2 → M , and
M → T1 → T2 → T1 → M , represented by NT1

, NT2
, and NT1+T2+T1

, respectively. If the location of T1

resulted in NT2
> NT1

< NT1+T2+T1
, where single-thermal exploitation of T1 requires the least N , then the

location was given a red marker. If the location of T1 resulted in NT1 > NT2 < NT1+T2+T1 , where single-
thermal exploitation of T2 requires the least N , then the location was given a blue marker. Similarly, if the
location of T1 resulted in NT1

> NT1+T2+T1
< NT2

, where the full cycle, M → T1 → T2 → T1 →M , requires
the least N , then the location was given a black marker. Finally, regions of white within the radius d3

represent locations where the zero-altitude-loss constraint could not be satisfied. In this manner, the maps
were populated by choosing all possible locations of T1 within d3 and assigning the appropriate marker.
Distance d3 increases from left to right and top to bottom.

As expected, it becomes less beneficial to exploit T2 as d3 increases. The maps show that at close
distances, d3 < 1350m, exclusively exploiting T2 is desired over multiple-thermal exploitation; note that
there are no red or black points in the first map, dummy points were plotted solely to produce a complete
legend. The next map to the right shows a developing circular red region around the origin. With the
development of the red region, a developing black region begins slightly within the red circle and extends
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Figure 5. The tfree gained from cruising at vopt instead of vL/D. The solid lines represent the additional tfree
provided by vopt and belong to the left axis, whereas the dashed lines represent the total tfree from vopt and
belong to the right axis. Top to bottom, the three thermal strengths are 1 m/s, 2 m/s, and 3 m/s. The
working altitude is 700 m and the monitoring sink rate is 0.52 m/s.
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Figure 7. The polar maps of multiple-thermal exploitation for ∆h = 350m, ss = 0.52m/s, T1 = 1.5m/s, and
T2 = 3m/s. The monitoring target is located at the origin and the location of T2 is represented by a star along
the 90◦ line at a radius equal to d3. The distance d3 varies for each map and is displayed at the top of each
map. The maps were created by choosing locations for T1 until populating the entire map and calculating
the number of agents, NT1

, NT2
, and NT1+T2+T1

required for the cycles M → T1 → M , M → T2 → M , and
M → T1 → T2 → T1 → M , respectively. Red represents regions where exploitation of T1 requires the least
number of agents, blue represents regions where exploitation of T2 requires the least number of agents, black
represents regions where exploitation of T1 → T2 → T1 requires the least number of agents, and the white within
d3 represents regions where a cycle that conserves altitude cannot exist.
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corresponding d3 annotated along the 90◦ line.
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to the location of T2. As d3 increases, the circular red region grows while the blue and black regions shrink,
where the black region always “connects” the red region to T2. Thus, exploiting T1 as a via point is a
maneuver that is present at larger distances of d3 and d1 and is beneficial even if T2 can be “easily” reached.
The third row of maps extend to distances where exploiting T2 alone would result in a loss of altitude within
a cycle. The map to the left shows a region where multiple-thermal exploitation would be beneficial ifT1

was sufficiently far away from the origin, whereas the map to the right no longer has this region because d3

has become too large. These observations imply that if the zero-altitude-loss constraint cannot be satisfied
for a thermal T2, then multiple-thermal exploitation with T1 is not worth considering because T1 would also
need to be very far away and the uncertainty in thermal dynamics during the cruising time would be too
risky; it would be more efficient to explore the region for a better option. Another interesting observation is
that the maximum angular range of the black region for all maps, not only the maps pictured in Figure 7,
between d3 = 0m and d3 = 10, 000m is approximately 75◦. The largest angular range for other conditions
was roughly equal to 95◦, where the maximum range occurs very close to the origin in all maps. As a general
rule, multiple-thermal exploitation is potentially beneficial if T1 is located within a 75◦ region on the path
to T2, or 37.5◦ to both sides of T2 (varying ss does not affect the shapes in Figure 7 so long as N remains
greater than 1).

Figure 8 shows the scenario described by ∆h = 200m, T1 = 1m/s, and T2 = 4.5m/s for three different
values of d3. The graphs on the right correspond to the polar plots on the left and plot N as a function of d1,
where d1 is the distance between M and T1 along the 90◦ line. The solid blue lines represent the exploitation
of T2 and are horizontal because d3 is constant in each scenario. The solid red lines represent the exploitation
of T1, the dashed black lines represent the partial cycle, and the solid black lines represent the full cycle. The
important message in this figure is that there will be scenarios where full-cycle exploitation will significantly
change the number of agents required for a cycle: the scenario in the second row, starting from d1 ≈ 1650m
and ending at d1 ≈ 2050m, would require two agents (dNe) for a full-cycle multiple-thermal exploitation,
whereas the other cycles would require three agents.

Replacing the full cycle in Figure 7 with a partial cycle affects the polar maps by changing only the black
region. The effect is a flattening of the bottom rounded region, resulting in a relatively straight line between
the two endpoints of the previously circular curve. As examples, the black region of the fourth polar map
in Figure 7 would be roughly half as long due to the flattening of the circular curve and the black region
of the fifth polar plot would disappear entirely. It is then concluded that a partial cycle decreases the area
where multiple-thermal exploitation is optimal and enlarges the area where single-thermal exploitation of T1

is optimal.

E. Effect of Winds

This section is concluded by commenting on the assumptions made in Section III.A. Winds can be treated in
the same way as in MacCready theory. Tailwind speeds are subtracted from the reference cruising airspeed,
whereas headwind speeds are added to the reference cruising airspeed. The speed of sinking air masses are
added to the c term in equations (23) and (25), where sinking speeds are positive and increase the reference
cruising airspeed. In relation to equation (16), the speed of sinking air masses is also added to the c term in
B:

B =
1

adc
(∆h− bdc) + A

c + w

a
(27)

where w is the speed of the sinking air mass. This was calculated by adding w to s1 and s3 in equation (16).
Assumptions 2, 3, and 4 may be lifted as long as these quantities can be estimated; all that is required
to calculate the optimal airspeed is to estimate the time of a circuit and the resulting altitude left over
for monitoring, i.e., the ratio between the resource gained and the time it took to gain it. Assumption 5
may be lifted by keeping track of the a, b, c, and ss for a nonhomogenous system of agents. Dealing with
assumption 6, atmospheric dynamics, is an obstacle for any real-world scenario, irrespective of the cruising
airspeed. Traveling at vL/D to a dissipating thermal will leave an agent just as stranded as if the agent had
traveled at vopt. The difference between the two cases is that traveling at vL/D would lessen altitude loss
during cruise, hence, more time at the monitoring target. This, however, comes at the cost of flying slowly
toward a thermal that may be dissipating, increasing the chances of arriving at a dead thermal. Should an
aircraft arrive at a dead thermal or be stuck midway up the working altitude due to thermal dissipation,
a new minimum allowable altitude should be established and the aggregate thermal metric should be used
to choose the next thermal. The effects of atmospheric dynamics, the duration of transient maneuvers, and

16 of 24

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 J

ac
k 

L
an

ge
la

an
 o

n 
Ja

nu
ar

y 
17

, 2
01

4 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
4-

02
61

 



Figure 9. Silent Wings simulation flight paths during single-thermal exploitation with an ASW-27B glider.

the changes in altitude during transient maneuvers will be discussed further in Section V. As a supplement,
Reichmann presents an important graphical analysis of the losses due to an incorrect expected climb rate in
a thermal; he notes that the cruise speed will not be significantly affected until rather large errors are made
and that the zero setting, for which the airspeed is vL/D, should be avoided whenever possible.13

V. Simulation Results

Simulations were carried out in the Silent Wings Soaring Simulator where the ASW-27B glider was used
in each of the 24 autonomous real-time simulations. The aim of these simulations was to assess whether the
discussed theory matched the behavior in reality, where unmodeled dynamics and simplifying assumptions
are potential sources of error. Four single-thermal exploitation scenarios were chosen and each scenario
was simulated six times: three times with the airspeed set at the optimal cruising airspeed, vc, and three
times with the airspeed set at the best L/D airspeed, vL/D. The four chosen scenarios are summarized in
table 3. Each simulation was initialized at a random altitude and location to cover a variety of thermal-
departure/monitoring-departure headings. The interface with Silent Wings was established via MatLab’s
Simulink, where UDP was used to receive aircraft states and to autonomously send control commands to the
glider. The Simulink model and the Silent Wings Simulator were run from separate computers to facilitate
the addition of agents in future simulations involving multiple agents.

In each simulation, the environment was set to be windless except for one fixed thermal set at a known
GPS position with a chosen climb rate and an inversion layer set at 2070 meters above sea level. The altitude
ceiling for the glider was chosen to be 2000 meters above sea level, where the interaction with the inversion
layer began at 1980 meters, i.e., 20 meters were allotted for “realizing” the dissipation before exiting the
thermal.

The glider’s initial behavior was set to cruise to the thermal and climb to the altitude ceiling, where the
altitude ceiling was chosen as the starting location for the cycles in the results. Upon reaching the ceiling,
the glider began to roll and change airspeed before cruising with the proper heading and airspeed toward
the monitoring target, which was assigned a GPS position to match the distance specified by the scenario.
The glider would then monitor the target until sinking to the departure altitude and cruising back to the
thermal to repeat the cycle. Silent Wings screenshots show the typical flight path in Figure 9.

The thermalling and monitoring controllers were simple radius hold controllers, for which the circling
radius within the thermal and monitoring target was 150 meters and 500 meters, respectively; the respective
commanded airspeeds were 31 m/s and 27.78 m/s, where 27.78 m/s equals the vL/D for the ASW-27B.
The radii at these two locations were taken into account in the distance setting, thus, the 2 km setting
corresponds to a separation of 2.65 km with the circling radii included. A switch case block was used for
gain scheduling in the airspeed controller, where the gains were determined through trial and error. The
polar fit coefficients required for calculating the optimal airspeeds were found by flying the glider in Silent
Wings instead of consulting a documented source. The glider was flown with its flaps fully retracted and the
coefficients were a = 0.001559, b = −0.06475, and c = 1.174055, with sink rate taken as positive with units
of m/s.
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Figure 10. Simulation plot of the scenario ∆H = 350m, d = 1km, and T = 4m/s, whose theoretical aggregate
thermal strength is 2.14 m/s. The two graphs depict the gliders altitude and airspeed, where red lines
represent expected altitude and commanded airspeed in the first and second graph, respectively, and blue
lines represent the actual values during simulation. Shaded green regions represent T → M transitions and
shaded yellow regions represent M → T transitions.

Figure 10 presents all of the important information obtained from one simulation. The top graph shows
the actual height of the glider during simulation and the expected height from the theory discussed in section
III.A, whereas the bottom graph shows the response of the airspeed controller. This figure represents the
scenario ∆H = 350m, d = 1km, and T = 4m/s, which had the strongest theoretical aggregate thermal of
2.14 m/s given the optimal airspeed obtained from equation (17), 46.35 m/s. These graphs were generated
for all 24 simulations and were used to obtain the information presented in table 4 (discussed later in this
section).

The stages illustrated in the height plot will now be explained from left to right. The shaded green region
contains three stages. First, the glider starts at the top of the thermal at 2000 meters and enters a transition
to begin cruising at vc. This transition consists of rolling into the proper heading while simultaneously losing
altitude to reach the desired airspeed, i.e., converting potential energy to kinetic energy. The glider then
cruises at vc until reaching the monitoring target, where it again enters a transition to reach the desired
circling airspeed, this time trading kinetic energy for potential. Thus, the three stages in the green region
are the two transitions with the one cruising stage in between them. Following the green region, the white
region represents the monitoring stage where the glider holds a fixed radius and airspeed around the target.
The glider eventually losses too much altitude and cruises back to the thermal, represented by the yellow
region. Similar to the previous transition, the glider trades altitude for speed, cruises to the thermal, and
trades speed for altitude before reaching the thermal. The cruising stage is seen clearly here as the straight
line with a slope a bit less than -1 and lasting for approximately 45 seconds. Finally, the glider regains
altitude at a relatively constant rate until repeating the cycle. The final, right-most point shown in the
graph represents the bottom of the thermal of the second cycle, 1650 meters above sea level, where the
actual arrival time is sooner than the expected arrival time. Note that the final yellow region does not
include the second transition experienced just before starting the thermalling stage.
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Table 3. The case descriptions of the four different scenarios tested in
simulation. The values in parenthesis are the values associated with the
scenarios for which the reference cruising airspeed was vL/D.

Scenario Description

Case ∆h, m d, km T , m/s vc, m/s N N̄

1 350 1 4 46.35 1.28 (1.31) 1.35 (1.30)*

2 350 2 4 39.76 1.47 (1.52) 1.53 (1.50)*

3 350 1 1 35.08 1.81 (1.82) 1.84 (1.80)*

4 350 2 1 33.28 2.08 (2.11) 2.12 (2.07)*

* vL/D outperforms vc

Table 4. This table lists the number of agents required for all
24 simulations. Values in parenthesis correspond to simulations
where vL/D was set as the reference cruising airspeed. In each
case, the four values of N came from different starting points in
the cycle calculations. Specifically, N1 is for the cycle starting
and ending at the altitude ceiling, N2 is for the cycle starting
and ending at the top of M , N3 is for starting and ending at the
bottom of M , and N4 is for starting and ending at the altitude
floor. Note that each N may be converted to an aggregate
thermal strength via equation (24).

Number of Agents from Simulations

Case N1 N2 N3 N4

1 1.36 (1.38) 1.40 (1.41) 1.41 (1.44) 1.43 (1.42)*

1 1.41 (1.37)* 1.42 (1.39)* 1.43 (1.43) 1.41 (1.43)

1 1.39 (1.37)* 1.39 (1.41) 1.38 (1.46) 1.39 (1.39)

2 1.61 (1.53)* 1.59 (1.51)* 1.61 (1.54)* 1.56 (1.52)*

2 1.63 (1.53)* 1.66 (1.52)* 1.72 (1.55)* 1.67 (1.53)*

2 1.57 (1.51)* 1.58 (1.51)* 1.59 (1.51)* 1.58 (1.52)*

3 1.90 (1.93) 1.94 (1.94) 2.01 (2.03) 2.00 (1.98)*

3 1.89 (1.93) 1.91 (1.95) 1.95 (2.04) 1.93 (1.98)

3 1.89 (1.92) 1.93 (1.96) 1.99 (1.94)* 1.97 (1.93)*

4 2.36 (2.11)* 2.31 (2.10)* 2.24 (2.10)* 2.23 (2.10)*

4 2.23 (2.12)* 2.21 (2.12)* 2.21 (2.12)* 2.22 (2.11)*

4 2.32 (2.11)* 2.29 (2.13)* 2.24 (2.12)* 2.23 (2.11)*

* vL/D outperforms vc
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Figure 11. Simulation flight path for run one of case
three for vc. The thermalling stage is shown by the nar-
rower spiral in black and the two monitoring stages are
shown in blue and bold red, where the blue monitoring
stage occurs before the thermalling stage and the red
monitoring stage.

There are a couple of subtle points that remain
to be discussed. Starting from the first green re-
gion, one sees that the height lost during the initial
transition is approximately entirely regained during
the second transition. However, the same cannot be
said of the two transitions in the first yellow region,
where the height gained is about half of the height
lost. This imbalance has to do with the character-
istic region of sinking air surrounding all thermals.
The reason why only half of the height is regained
is because the glider enters a region of sinking air
that was not encountered at the initial transition
in the yellow region. In the green region, the rea-
son why roughly all of the height is regained is be-
cause the glider spends extra time within the ther-
mal during the initial transition, i.e., the glider en-
gages in a banked turn while still within the region
of lift. In addition, a small amount of the imbal-
ance in the yellow region is attributed to the dif-
ference in airspeeds: the initial transition loses the
altitude required to reach vc from a speed of 27.78
m/s, whereas the final transition gains the altitude required to reach 31 m/s from vc.

The final point to note is the difference in cruise durations: the first and final cruises required about
half of the time required for the middle two cruises. This is most likely caused by a difference in transition
durations. Take the flight path, shown in Figure 9, where the glider exits the thermal and monitoring target
already in the direction of travel. Most of the simulations did not work out as nicely, i.e., the glider had
to engage in a banked turn to reach the proper heading. The banked turns could take up to ten seconds
and would manifest as circular curves stemming off from the reference radius at either the thermal or the
monitoring target. This acted as an extension of the cruising segment and is the main cause for the difference
in transit times. Figure 11 and Figure 12 illustrate these cruise extensions and are discussed after the next
few paragraphs.

Table 3 describes the scenario settings for each of the four simulated cases and is used in conjunction to
table 4. Table 4 lists the N for each of the 24 simulated cycles, half with vc (values without parenthesis)
and half with vL/D (values within parenthesis). The four values of N in table 4 correspond to four different
starting points for a cycle calculation: N1 is for the cycle starting and ending at the altitude ceiling, N2 is
for the cycle starting and ending at the top of M , N3 is for starting and ending at the bottom of M , and N4

is for starting and ending at the altitude floor. These N should be compared to the N predicted by theory,
shown in Table 3, to get a sense of the accuracy of the theoretical model. Note that the expected values of
N in table 3 were calculated with ss = 0.6. Equation (24) may be used to convert these values to aggregate
thermal strengths. Lastly, asterisks were placed wherever vL/D outperformed vc. Note that the values in
parenthesis have no relation to the values without parenthesis except for case number, due to the random
starting altitude and location in each simulation run. This means that, for example, the first row of values
within parenthesis (or without) may be switched with the second row, which may lead to the asterisks being
omitted or located at different locations. Thus, the asterisks simply provide a “first-glance” comparison in
performance between vc and vL/D. Instead, all of the values without parenthesis should be compared with
all of the values with parenthesis within a given case.

A new variable, N̄ , was introduced to quantify the effect of an asymmetric transition in the cycles
involving vc, where the cruising airspeed is larger than the reference airspeed at either T or M . The altitude
lost during the transition when entering M is balanced by the transition when leaving M , i.e., the gain
in potential energy upon entering M is lost upon exiting M . Unfortunately, the same cannot be said for
the transitions around T . Entering T results in an altitude gain that shortens the exploitation time of the
thermal. This effect is not canceled because the transitional loss of potential energy at the altitude ceiling
does not necessarily mean that the exploitation time is extended. For the exploitation time to increase, the
glider would need to continue thermalling until the transitional loss has been regained, i.e., the transition
would need to occur within the thermal. Nevertheless, this may have been inadvertently accounted for
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N1 N2

N3 N4

Figure 12. Simulation flight path for run one of case three for vc divided into the individual N1 through
N4. The colors of the segments represent chronological order: green, blue, black, and red represent the first,
second, third, and fourth segments to occur. These departure trajectories are suboptimal and deviate from
the estimated N .

since the glider does, at times, remain within the thermal during its transition trajectory. In any case, N̄
includes a transitional correction factor by subtracting the transitional altitude loss from exiting T . The
implicit assumption here is that the transitional altitude loss is not at all regained at the top of T . This
correction factor appears to decently match the simulation results, presumably because of the surrounding
area of sinking air around the thermals adding to the negative effect of shortening the monitoring time.
The inaccuracy, however, necessitates a change to the calculation of N , at least for gliders as large as the
ASW-27B.

A new calculation of N would account for the asymmetric transitional loss. This would add a dependency
on the airspeeds at M and T , in addition to increasing the dynamics of the problem. The end result would
be a change in the optimal airspeeds, which appears to be necessary judging by the performance of vL/D

in simulation. Faster airspeeds would be preferred when cruising toward S because the transitional altitude
gain would increase monitoring time, provided that reaching the faster airspeed does not have an overall
negative effect on the system. Conversely, slower airspeeds would be preferred when cruising toward T
because less altitude would be lost during the M → T transition and more altitude would be gained within
T . One consequence of this may be to rely on the thermalling controller to reach the cruising airspeed upon
reaching the top of the thermal. In this way, the transitional altitude loss from exiting the thermal would
be entirely regained and its effect on the monitoring time would diminish.

Aside from a modification to the thermalling controller, Figure 11 and Figure 12 point toward an im-
portant change to the departure controller. Both of these figures show run one of case three cruising at vc.
Figure 11 shows the flight path for the entire simulation, whereas Figure 12 divides the simulation run into
the four segments tabulated in table 4. In Figure 11, the thermalling stage is shown in black with the smaller
radius and the monitoring stages are shown in blue and a thick red. The monitoring stage in blue preceded
the monitoring stage in red, meaning that the monitoring in blue came before thermalling and the monitoring
in red came after the thermalling (recall that the simulations started at the inversion layer). The different de-
parture trajectories depicted in Figure 12 account for a large portion of the error and variation seen in table 4.
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Figure 13. Simulation flight path for run three of case
two for vL/D with the superposition of N1 through N4.
These departure trajectories are near perfect and agree
with the estimated N .

The colors represent the task order within the cal-
culations of N1 through N4. Green, blue, black, and
red correspond to orders one, two, three and four.
In the plot showing N1, the agent began by depart-
ing the thermal at the inversion layer and cruising
to the monitoring target. From there on, the agent
monitored the target, departed the target and ar-
rived at the thermal, and finished at the top of the
thermal. In the plot showing N2, the agent began by
monitoring the target and finished by cruising back
to the top of the monitoring target. The important
distinction between N1 and N2 in this run is the de-
parture angle from the thermal. In N1, the agent
departs in a shorter trajectory while being near the
outer region of lift. In N2, the agent departs the
thermal in a much longer trajectory in addition to
being away from the region of lift. This is presumed
to be exactly why N1 is less than N2 in run one of
case three. In N3, the agent now must suffer the
consequences introduced in N2 by monitoring from a lower starting altitude, hence the lower red segment
in Figure 11. This compounding of error is presumably why N3 and N4 perform even worse than N2. The
modified departure controller would either delay or prematurely end the thermalling or monitoring stages to
minimize the length of the departing trajectory. Such a controller would cause the trajectories to be similar
to the ones seen in run three of case two flown at vL/D, shown in Figure 13. These trajectories are near
perfect and have nearly identical values for N1 through N4 that agree with the predicted N for vL/D.

Smaller, lower wing-loading aircraft more representative of small UAVs (e.g. the RnR Products SB-XC)
are likely to be less influenced by the effects of transitions: flight speeds are lower and the difference in speed
between thermalling/surveillance and the cruise flight conditions are smaller than for full-sized sailplanes.
As a result the altitude changes at transitions (as kinetic and potential energy is exchanged) are smaller.

The flight paths between thermalling and surveillance suggest that some improvement in overall per-
formance (i.e. closing the gap between analytical results and higher-order simulation results) can also be
achieved if optimal flight paths are computed. For example, a transition flight path that is tangent to both
the thermal and the surveillance paths will be significantly shorter in length than the current paths, resulting
in both reduced flight-time during the transition and reduced altitude loss during transition.

VI. Conclusion

This paper has presented a means to optimize persistent, continuous surveillance by a flock of soaring-
capable autonomous aircraft. The minimum number of agents required to maintain persistent, continuous
surveillance is computed by optimizing cruise speeds between the monitoring target and the energy source
(in this case a thermal) and between the energy source and the monitoring target. These optimal speeds
depend on thermal strength and distance to the target, and interestingly are generally not equal to either
the speed for best L/D (which would minimize altitude loss during the cruise segment) or the MacCready
speed (which minimizes the time required to fly some distance to a thermal and then climb back up to the
starting altitude).

In addition to the case of single-thermal exploitation, the problem of exploiting multiple thermals (e.g.
using a ”mid-stage” thermal to enable exploitation of a stronger, but more distant, thermal) is addressed.
Both optimal cruise speeds and conditions under which a multiple thermal cycle should be taken is ad-
dressed. The concept of an aggregate thermal is introduced as a unified metric for energy exploitation
during surveillance, and the use of this aggregate thermal for other tasks (such as exploration) is discussed.

Finally, a method to maximize a free parameter (such as time or distance) is discussed. This free
parameter can be used to complete a secondary task (such as exploration) during the surveillance cycle.

Results of simulations using both MatLab and a high fidelity soaring simulator (Silent Wings) illustrate
the results.

Generally the gain obtained by flying at the optimal airspeed is quite small when compared with flying at
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the speed for best L/D (i.e. best range). However, this gain can become important in resource-constrained
situations (for example, when thermal conditions are such that an additional aircraft is required if optimal
speeds are not flown).

In practice, secondary effects (such as optimal flight paths between thermals and the surveillance target)
are very important, and naive approaches to the cruise portion of the mission can have a significant adverse
impact on mission performance.
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Appendix

Table 5. Properties of ASW-27B.14

Parameter Value

Span including winglets 15 m (49.22 ft)

Wing area 9 m2 (96.88 ft2)

Aspect ratio 25

Fuselage length 6.55 m (21.49 ft)

Cockpit height 0.80 m (2.62 ft)

Cockpit width 0.64 m (2.10 ft)

Height at tail unit 1.30 m (4.27 ft)

Wing airfoils DU 89-134/14 and DU 92-131/14MOD

Empty mass 235 kg (518 lb)

Flight mass max. 500 kg (1102 lb)

Mass of one wing 58 kg (128 lb)

Wing loading max. 55.56 kg/m2 (11.38 lb/ft2)

Wing loading min. 32.80 kg/m2 (6.7 lb/ft2)

Water ballast max. 165 L (43.59 US Gal)

Useful load max. 130 kg (287 lb)

Useful load in pilot seat 115 kg (254 lb)

For m=320 kg:

Max. speed 285 km/h (154 kts)

Max. maneuver speed 215 km/h (116 kts)

Min. speed 70 km/h (37.8 kts)

Min. sink 0.52 m/s (102 ft/min)

Best L/D 28 at 100 km/h (54 kts)
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