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Abstract— A method for distributed parameter estimation of
a previously unknown wind field is described. The application
is dynamic soaring for small unmanned air vehicles, which
severely constrains available computing while simultaneously
requiring updates that are fast compared with a typical dynamic
soaring cycle. A polynomial parameterization of the wind field
is used, allowing implementation of a linear Kalman filter
for parameter estimation. Results of Monte Carlo simulations
show the effectiveness of the approach. In addition, in-flight
measurements of wind speeds are compared with data obtained
from video tracking of balloon launches to assess the accuracy
of wind field estimates obtained using commercial autopilot
modules.

I. INTRODUCTION

Dynamic soaring of birds was first described by Lord
Rayleigh in 1883 [1] and discussed in more detail in 1889
[2]. While it seems to be a much more recent idea, the
potential for dynamic soaring of aircraft has actually been
recognized since at least 1909 [3], and dynamic soaring
of full sized aircraft has been studied at several times
over the past century [4], [5], [6]. With the advent of low
cost electronics and the first demonstrations of radio-control
dynamic soaring, the potential for long duration flight by
unmanned aerial vehicles (UAVs) has recently become an
area of research [7]. The possibility of dynamic soaring in
the shear layer near the jet stream is discussed by Sachs and
da Costa [8].

An overview of the instrumentation required for full scale
dynamic soaring is discussed by Kiceniuk [9]. Detailed
results of dynamic soaring flight tests conducted at the
Dryden Flight Research Center are described by Gordon
[10].

Typically dynamic soaring is cast as a trajectory optimiza-
tion problem with an a priori known wind field [11]. Un-
fortunately this will not be available during flight; moreover,
to the authors’ knowledge there are currently no sensors that
can be carried on a small UAV that can measure the 3D
wind field ahead of the vehicle. A means of mapping or
predicting the wind field using only on-board measurements
is therefore required. There are two components to wind
mapping: first, estimating wind velocity given measurements
aboard the vehicle; second, incorporating these estimates in
a three-dimensional map of the mean wind field.

Since the purpose of the wind map is to enable real-time
trajectory planning it must satisfy several requirements, in-
cluding: (a) it must be updated in real time; (b) the trajectory
planner must be able to query the map very quickly; and (c)

uncertainty in the map must be computed to enable robust
trajectory planning.

In [12] Lawrance and Sukkarieh describe a method for
wind field estimation based on Gaussian Process Regression.
Their approach has the benefit of being applicable to arbitrary
wind fields, but suffers from slow updates, making real-time
implementation problematic. In contrast to that work, here
we seek to develop a method for wind field estimation that
uses known structure to simplify estimation.

During dynamic soaring, the cyclic trajectory implies that
the volume of air “inhabited” by the vehicle is limited in size,
with dimensions dependent on the trajectory parameters. For
soaring in the near-ground shear layer the vertical dimension
is of order 10–100m with similar scales for the cross-
wind and downwind dimensions. The preliminary results
described above for jet stream dynamic soaring show that
a volume approximately 1 km × 1 km × 1 km is required.
In addition, dynamic soaring (especially that employed by
albatrosses and human RC glider pilots) typically exploits
wind fields with fairly simple structure. This wind field
consists of a mean spatially varying component with tem-
porally varying terms (i.e. gusts) superimposed. Generally
the vertical gradient is significantly stronger than horizontal
gradients, and the rate of change of the mean wind field is
fairly slow compared with the time required to fly a single
cycle. Combined with the relatively limited volume occupied
during dynamic soaring, this structure can be exploited to
simplify the mapping problem, making it tractable for real-
time implementation. The estimation problem is thus cast as
a parameter estimation problem, where a smooth function
is used to model the wind field and the parameters of
this function are estimated using measurements obtained at
discrete, distributed points.

Since in-flight wind field estimation relies on in situ
measurements of wind speed, we also briefly discuss wind
velocity measurements. Results of in-flight measurements
are compared with measurements of wind velocity collected
using vision-based tracking of balloons. While time- and
space-synchronization of balloon and aircraft data is prob-
lematic, we show that the aircraft can obtain reasonable
measurements of wind velocity in-flight.

The remainder of this paper describes wind field estima-
tion (Section II), presents results of Monte Carlo simulations
(Section III), describes results of a hardware experiment
(Section IV) and presents concluding remarks (Section V).
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II. WIND FIELD ESTIMATION

The problem at hand is to estimate a continuous, smooth
function that captures the spatial variation of the mean wind
field. The mean wind field is assumed to vary slowly with
time: here slowly means that several DS cycles can be flown
before significant change in mean wind speed occurs.

Note that direct measurements of wind velocity are not
available. Rather, these must be computed in-flight based on
data measured by an autopilot module onboard the aircraft.
The wind field is then estimated using the computed wind
velocities.

A. Wind velocity computation

A method for computing wind velocity and an associated
uncertainty analysis using sensors typically available in an
autopilot module (e.g. GPS position and velocity, air speed,
rate gyros, accelerometers) is given in [13]. For convenience
results are summarized here.

Components of the wind field can be computed from
ground-relative velocity (available from GPS) and air speed:

wix = ẋ− va cos γ cosβ cosψ

+va cos γ sinβ sinψ (1)
wiy = ẏ − va cos γ cosβ sinψ

−va cos γ sinβ cosψ (2)
wiz = ż − va sin γ (3)

Here wix, wiy, wiz are xyz components of the wind vec-
tor expressed in the inertial frame, ẋ, ẏ, ż are components of
aircraft velocity with respect to the inertial frame (obtained
from GPS), va is airspeed, γ is flight path angle with respect
to the air, β is sideslip angle, and ψ is heading. It is assumed
that the autopilot module provides estimates of angles.

For zero-mean Gaussian measurement noise the uncer-
tainty in computed wind field can be computed by linearizing
the above equations about the current flight condition so that

w ≈ g(z̄) + G(z− z̄) (4)

where w = [wix wiy wiz]
T , z = [ẋ ẏ ż va γ β ψ]T and

G = ∇g, the Jacobian of the wind computation equations
(Equation 1, 2, 3) with respect to the measurements z. Then
Σw = GΣzG

T , where Σz is the noise covariance associated
with ground speed, orientation and air data measurements.

As described in [13], a measure of the uncertainty in
horizontal magnitude is Rw = Σw(1, 1) + Σw(2, 2):

Rw = σ2
ẋ + σ2

ẏ + σ2
va cos2 γ

+σ2
γv

2
a sin2 γ + (σ2

β + σ2
ψ)v2

a cos2 γ (5)

This immediately shows that a significant contributor to
uncertainty in computed wind field is the vehicle’s airspeed
(through coupling with orientation uncertainty). The most
accurate way to obtain in situ wind measurements is thus
using a neutrally buoyant balloon!

Assuming that angles (flight path angle γ, heading ψ and
sideslip β) can be obtained to an accuracy of 1◦, at typical
dynamic soaring speeds (ranging from 50 m/s to 150 m/s)

the uncertainty in computed wind magnitude ranges from
σ = 1.26 m/s to σ = 3.71 m/s.

B. Wind field estimation as distributed parameter estimation

1) Wind field parameterization: If DS is limited to only
the boundary layer (so that only albatross-style DS is per-
formed) then one can impose empirically-derived functions
such as Prandtl’s power law relationship [14]:

u

U
≈
(
h

δ

)1/7

(6)

where u is the wind speed, U is the free stream velocity,
h is height above the surface and δ is the boundary layer
thickness.

In this case a first order polynomial function in lnh
can perfectly model the wind field. However, such specific
parameterizations can lead to inaccurate representations if
they are inappropriately applied. A more generically ap-
plicable parameterization is desirable: here a polynomial
representation is used.

2) Polynomial representation of wind fields: For conve-
nience the wind field is represented by three components:
horizontal magnitude, horizontal direction, and vertical com-
ponent. Each component is assumed to vary independently.

w(h) =

N∑
i=0

aih̃
N−i (7)

φw(h) =

N∑
i=0

bih̃
N−i (8)

wz(h) =

N∑
i=0

cih̃
N−i (9)

where h̃ = h−h0

∆h is altitude shifted to a reference datum
and non-dimensionalized by a scale factor. Dynamic soaring
typically exploits spatial (especially vertical) gradient in
magnitude, hence for compactness equations here will be
developed only for vertical variation in magnitude.

The task of the estimator is thus to compute estimates âi of
the polynomial parameters defining the wind field. Clearly
winds change with time as well as in space. The problem
of wind parameter estimation is thus a dynamic estimation
problem, and as formulated it is a linear parameter estimation
problem, well suited to implementation as a Kalman filter.

C. Kalman Filter Design

Without an accurate model for the time rate of change of
wind field, wind velocity is assumed to vary as a random
walk, so that

ak+1 = ak + n (10)

where a is the vector of parameters defining the wind
magnitude field and n = N (0,Q).

Measurements of wind speed are taken as altitude varies
with time, so that

wk = Hkak + v (11)
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where Hk =
[
h̃Nk h̃N−1

k . . . 1
]

(from Equation 7).
Measurement noise v is assumed to be zero-mean and

Gaussian, so that v = N (0, Rw + Rgust). The two com-
ponents reflect sensor dependent noise and the effect of
measured gusts. Recall that we seek to estimate the mean
wind field, and gusts are treated as noise superimposed on
the mean wind field.

Note that Rw will vary with time: it is computed using
Equation 5 and thus it depends on airspeed and flight path
angle.

The Kalman filter equations for this distributed parameter
estimation problem can now be summarized.

Prediction
âk|k−1 = âk−1|k−1 (12)

Pk|k−1 = Pk−1|k−1 + Q (13)

Correction

Pk|k =
(
P−1
k|k−1 + HT

k (Rw +Rgust)
−1Hk

)−1

(14)

Kk = Pk|kH
T
k (Rw +Rgust)

−1 (15)

âk|k = âk|k−1 + Kk

(
wk −Hak|k−1

)
(16)

Note that this is a 1D measurement update, requiring only
one (low order) matrix inverse to compute the covariance
update. This can be performed very quickly even on low-
power computation hardware.

D. Filter initialization

Under some conditions it may be possible to have an
a priori estimate of the wind field (e.g. from satellite
data). However, this will not always be the case and a
means to initialize the Kalman filter must be provided. Here
delayed initialization is performed: wind is measured at
several altitudes, the Vandermonde matrix is generated using
Equation 11 and a least squares solution of the wind field
parameters is used to initialize the Kalman filter.

III. SIMULATION RESULTS

To assess the wind field parameter estimation Monte Carlo
simulations of flight in a wind field typical of the shear layer
near the jet stream were conducted. A DS cycle for a wind
field defined by

w(h) = 0.01h− 100 (17)

with h in meters and w in m/s was computed using the
method described in [15] and the aircraft is assumed to
follow this trajectory exactly. At a rate of 10Hz the aircraft
uses autopilot data to compute wind speed and uncertainty
in wind speed using Equation 1 through 3 and Equation 5.
Sensor noise standard deviations are given in Table I. It is
assumed that the wind field is gust-free.

The wind field estimator uses a first order polynomial to
define the wind field (matching truth).
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Fig. 1. Two loops of dynamic soaring cycle. Wind blows in the positive
East direction, with magnitude increasing linearly with altitude.

TABLE I
SENSOR NOISE STANDARD DEVIATION FOR MONTE CARLO

SIMULATIONS

parameter variable 1σ noise/uncertainty
orientation φ, θ, ψ σφ = σψ = 0, σθ = 1◦

air data va, α, β σv = 0.2 m/s, σα = σβ = 1◦

ground speed ẋ, ẏ, ż 0.1 m/s

Results of a representative run illustrate wind field es-
timation. Two loops of cyclic dynamic soaring are shown
in Figure 1. A time history of the estimated wind field
parameters is shown in Figure 2, with a0 denoting the vertical
gradient of the horizontal wind and a1 denoting the wind
speed at the datum (in this case h0 = 0). The estimated
parameters are well within estimated error bounds, with good
convergence in parameters seen by about 0.4 loops. For
dynamic soaring the key parameter is wind gradient, and
this is well estimated.

Figure 3 shows the evolution of the estimated wind field
during DS cycles, with plot times coinciding with the open
symbols in Figure 1. The dotted red lines show the 2σ
envelope of the uncertainty in estimated wind field. At time
zero there is no estimate of the wind field. It is interesting
to note the change in wind field uncertainty: at integer times
(when the aircraft is at the bottom of a cycle) the wind field
uncertainty is lowest at the bottom. At half-integer times
(when the aircraft is at the top of the cycle) wind field
uncertainty is reversed.

Results of Monte Carlo simulations show that the parame-
ter estimation is consistent (i.e. the estimated error accurately
predicts the actual error).

A measure of the accuracy of estimating the wind field is
a mean error residual:

R =
1

N

N∑
i=1

|w(hi)− ŵ(hi)| (18)
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Fig. 3. Time history of wind field estimation for a representative run. Blue lines show the true wind velocity, solid red shows the estimated field and
dotted red shows 2σ uncertainty bounds on the estimated wind field.
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Fig. 2. Wind parameter estimation for a representative run. Blue lines
show true parameter values, solid red shows the estimated parameter and
dotted red shows 2σ bounds.

where hi ∈ {h1 h2 . . . hN}, a set of altitudes for evaluating
actual and predicted wind. Figure 4(bottom) shows the mean
residual (solid red) and the envelope of maximum/minimum
residuals (dotted red) as DS cycles are flown. The mean
error in wind magnitude for the estimated wind field is
approximately 2 m/s, consistent with the error in the wind
computation.

IV. EXPERIMENTAL RESULTS

A. Aircraft Platform

The aircraft development platform used in this work was
designed and fabricated in-house at Lehigh University, and
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Fig. 4. Top: 2-norm of estimate error (mean: red; minimum/maximum:
grey) and mean estimated error (blue). Bottom: Time history of residual
error in estimated wind field.

is shown at Figure 5. The planform is based upon an inverse
Zimmerman design. It is made of two half ellipses, both
having the same minor axis but the forward ellipse having a
major axis that is three times that of the rear ellipse. A fixed
fin was used in conjunction with two elevons. The design
has very benign stall characteristics, is capable of operating
safely in turbulent air, and can glide down steeply to land
when required. Full stall landings at almost zero airspeed are
easy with this aircraft.

This is clearly not a dynamic soaring aircraft, but it is
suitable for collecting wind field data.
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Fig. 5. Uglo 6 development platform used in this work. During testing,
the aircraft was flown manually while telemetry data were logged via the
on-board Piccolo SL autopilot system.

B. Ground Truth Wind Velocity Estimation

As stated previously, one of the primary objectives of this
work was to demonstrate real-time wind mapping with an
actual aircraft. In order to characterize the performance of
the proposed approach, “ground truth” data were needed.
While these were readily available for simulated wind fields,
estimating wind velocities in proximity to an actual aircraft
during flight was significantly more challenging. To address
this requirement, we employed a vision-based approach for
ground truth wind field estimation.

During flight testing, brightly colored balloons containing
an air-helium mixture were released serially from the ground
so their trajectories would carry them in the vicinity of the
aircraft flight path. The balloons were then tracked over time
using what amounted to a wide baseline (e.g., 50-70 meter)
stereo vision system using a pair of Point Grey Chameleon
1280x960 video camera systems that logged images at a
rate of 2 Hz. Point correspondences between the two sets
of camera images were then recovered manually for each
balloon track during a post-processing phase. Using these
correspondences in conjunction with a three-dimensional re-
construction approach based upon Hartley’s method [16], the
relative position and orientation of both camera systems, as
well as the positions of the tracked balloons, were recovered
to a scale factor. The scale factor was obtained by measuring
the camera baseline. The balloon position estimates were
then transformed to an earth-centered coordinate frame using
GPS position estimates for the cameras, as well as measure-
ments of camera azimuth and elevation from a compass and
inclinometer, respectively. With the balloon positions known,
their velocities – and as a consequence the Northing/Easting
components of the wind field – were estimated using a finite
difference approach vs. time with temporal smoothing to help
mitigate high frequency noise.

To validate the the vision-based approach, initial experi-
ments involved tracking a tethered balloon rig carrying an
EagleTree eLogger V4 with a 10 Hz WAAS enabled GPS
module as payload [17]. The motivation was to use the
logged GPS velocities for benchmarking the vision system’s

tracking performance. A total of 6 launches were conducted
from different initial positions at standoff distances of ≈
110 − 180 meters from the camera systems. The balloon
rig was released at ground level, and allowed to rise with
minimal resistance while attached to a 125 meter long, 0.15
mm diameter tether. Each trial was considered completed
once the end of the tether was reached. Results from these
experiments showed that the mean absolute deviation be-
tween the two velocity estimates vs. time for all trials was
0.35 m/s (minimum 0.22 m/s, maximum 0.55 m/s). Results
from a single launch are shown at Figure 6 (right). Note
that these error levels represent the compounding of both the
vision tracker and GPS velocity errors. These results indicate
that the vision-based tracking system provides an effective
means for estimating the wind velocity at standoff distances
in excess of 200 meters.
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Fig. 6. Balloon horizontal velocity magnitude estimates vs. time for the
vision system (solid black line) and GPS (dashed blue line). In this trial,
the mean absolute deviation vs. time between the two approaches was 0.24
m/s.

C. Wind field estimation using flight data

To assess the performance of wind field estimation, a flight
test was conducted using the Uglo 6 aircraft. The aircraft
was flown manually (radio controlled) while telemetry data
were logged via the on-board Piccolo SL autopilot system.
During the approximately 6.5 minute flight, 9 balloons were
launched and tracked with the vision system to estimate the
wind field. Figure 7 shows the aircraft flight path, as well as
the balloon tracks.

When post-processing the aircraft telemetry data, we ob-
served GPS velocity drops during significant portions of
the flight. These drops compromised the aircraft velocity
estimates, and as a result the algorithm’s ability to estimate
wind velocity. As a result, we constrained our analysis to a 80
second window where GPS velocity estimates were mostly
available.

Figure 8 shows a composite of the wind velocity estimates
vs. altitude from portions of 3 balloon tracks that overlapped
in time with the flight window. The discrete velocity esti-
mates are shown as red “x” markers. The solid blue line
shows a quadratic fit of the data which was used as ground
truth for comparison with wind field estimation conducted
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Fig. 7. Aircraft flight path (black solid line) and balloon tracks (dotted color
lines) from flight testing. The latter were recovered by the vision tracking
system

Fig. 8. Wind velocity magnitude vs. altitude as estimated by the vision
tracking system. Discrete measurements are shown, as well as a quadratic
fit to the data.

using post-processed data from the Piccolo SL autopilot
module.

The relevant portion of the flight path is shown in Figure 9.
Note that this is not a typical DS trajectory: rather it consists
of orbits with slowly changing altitude.

Flight data from the autopilot was post-processed to com-
pute the 3D wind vector and compute an estimate of the
wind field using a second order polynomial fit. At the end
of the flight window the estimated wind profile was

wf (h) = −2.2631× 10−4h2 + 0.0272h+ 1.262 (19)

with h height above ground in meters and wf is wind speed
in m/s. The standard deviations of the terms above are 4.14×
10−4 for the quadratic term, 0.037 for the linear term and
0.769 for the constant term. The balloon-derived velocity
profile is

wb(h) = −3.259× 10−4h2 + 0.04940h+ 1.261 (20)

This is well within the range predicted by the post-
processed in-flight measurements.

Figure 10 show convergence of the estimated parameters
over time. Because the flight path changed altitude slowly
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Fig. 9. Portion of flight path used for wind field estimation.
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Fig. 10. Wind parameter estimation from flight. Blue lines show parameter
values obtained from balloon tracking data, solid red shows the estimated
parameter and dotted red shows 2σ bounds.

over time, the temporal convergence of the parameter esti-
mates is quite slow. More dramatic altitude variation would
allow faster convergence.

A time history of the estimated wind field is shown in
Figure 11. The balloon-obtained second order polynomial
curve fit is shown in blue, and shows higher wind speed
than obtained from in-flight data. As before, at time zero
there is no estimate of wind field. As time progresses one
can see the estimated wind field approach ground truth (the
balloon data). With a longer flight window, we would expect
to see further convergence with the ground truth estimate.
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Fig. 11. Time history of wind field estimation from flight data. Blue lines show curve fit of wind velocity obtained from balloon data, solid red shows
the estimated field and dotted red shows 2σ uncertainty bounds on the estimated wind field. Times coincide with open blue circles in the flight path of
Figure 9.

V. DISCUSSION AND CONCLUSIONS

With an eye to enabling autonomous dynamic soaring on a
small unmanned aircraft, this paper has: (a) presented results
comparing wind measurements using a vision-based balloon
tracking system with wind measurements obtained using an
aircraft in flight; (b) described a method based on distributed
parameter estimation to compute a map of a wind field; (c)
presented results of a Monte Carlo simulation to assess the
effectiveness of the parameter estimation.

The wind field is represented using a polynomial approx-
imation. This is well suited to shear layers in the vicinity of
the jet stream and the atmospheric boundary layer, however
this method may be subject to errors related to both under-
approximation and over-approximation. While performance
of the wind estimator is good in the linear wind shear
case examined here (both the gradient and the wind speed
at a reference altitude were well-estimated), some tuning
of parameters in the Kalman filter should further improve
performance. Future work will focus on using splines to
parameterize the wind field. This will obviate potential
issues with scaling and will allow parameterization of more
complex wind fields than those found near the jet stream or
the atmospheric boundary layer (for example, shear layers
caused by temperature inversions or flow separation in the
lee of a ridge).

With the availability of a wind field estimator that includes
estimates of parameter uncertainty, robust dynamic soaring
trajectories can be generated without a priori knowledge of
the wind field (although clearly exploration will be required
to generate the wind field estimate).
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