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Abstract

Disorganized convective structures in the lower part of the atmospheric boundary layer
(sometimes called microlift) are recognized as a viable source of energy for manned
ultralight sailplanes and high performance hang gliders, and species of soaring birds
have been observed to make use of microlift. However, this source of energy remains
largely underutilized by autonomous soaring aircraft, and the techniques used to (often
incidentally) exploit it are not specifically designed for microlift soaring. Analyzing
surveys of the atmosphere and large eddy simulations of the convective boundary
layer indicate the presence of long, linear regions of lift that are a potential significant
source of energy and present the opportunity for energy extraction without the need
to loiter.

This thesis investigates techniques for energy extraction from these structures
- referred to as spoke-like structures, thermal walls, thermal streams, or thermal
stands - that can be implemented onboard an autonomous microlift soaring aircraft.
The primary focus of this thesis is a Kalman filter designed to estimate the location,
orientation, and characteristics of a thermal strand. This estimator was then integrated
into a flight controller and tested in a realistic wind field obtained from a large eddy
simulation of the convective boundary layer.

The choice of a Kalman filter is supported in this thesis by showing that several
basic techniques for following a thermal strand are unstable. Furthermore, an idealized
model of a thermal strand is developed for estimator and controller design, and
various methods of estimating the initial thermal strand state for the Kalman filter
are developed and tested in simulation.
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meters. σstr = 94 meters, ḣmax = 1.75 meters per second . . . . . . . 33

2.6 African White-Backed Vulture [11] . . . . . . . . . . . . . . . . . . . 45
2.7 Black Vulture [12] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.8 Turkey Vulture [13] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.9 Estimated sink rate and lift to drag ratio of the White-Backed Vulture

using Pennycuick’s sink polar and the corrected sink polar . . . . . . 48
2.10 Estimated sink rates and lift to drag ratios of White-Backed Vultures,

Black Vultures, and Turkey Vultures . . . . . . . . . . . . . . . . . . 51
2.11 The author launching the Vulture UAV. Photo by Jack Langelaan. . . 52
2.12 Comparison of the sink polars of the Vulture UAV, a Turkey Vulture,

and the Carbon Dragon ultralight sailplane. . . . . . . . . . . . . . . 53

3.1 Vertical wind velocity and roll disturbance encountered by the simulated
Vulture UAV when flying across an ideal thermal strand at 90 degrees
to the strand axis. σstr = 45 meters, ḣmax = 1.5 meters per second. . 57
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Chapter 1 |

Introduction

1.1 Overcoming the Limitations of Small

Unmanned Aerial Vehicles

Small unmanned aerial vehicles (UAVs) are widely used for recreational, commercial,

and military operations, and the FAA predicts that over the next decade the use of

UAVs will dramatically increase. However, when compared to manned aircraft the

majority of small UAVs have severely limited internal energy storage capacity, which

in turn limits their capability - either in terms of payload, range, endurance, or some

combination of the three. While it is not always possible or practical to increase

the internal energy storage of a small UAV, the application of biomimetic behaviors

can allow the UAV to extract energy from its environment and extend its range and

endurance. Furthermore, it is highly desirable for these behaviors to be executed

entirely onboard the aircraft, as this eliminates the limitations imposed by requiring a

connection to an off-board flight computer.

When attempting to extend the range and endurance of a UAV through envi-

ronmental energy extraction, it makes sense to provide the vehicle with as diverse a
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toolbox of energy extraction techniques as possible. Soaring birds use an extremely

wide range of techniques to maintain flight including thermal soaring, slope soaring,

dynamic soaring, and the exploitation of small turbulent structures [14,15]. Most of

these techniques have been studied and applied to small UAVs either in simulation or

on a physical vehicle; however, the exploitation of convective structures unique to the

lower third of the atmospheric convective boundary layer has so far escaped study.

The majority of autonomous soaring research thus far has been focused on thermal,

slope, and dynamic soaring - likely because these sources of energy can be utilized by

manned sailplanes, and the techniques required to extract energy are well understood.

Reichmann’s book on soaring describes methods for extracting energy from each of

the aforementioned types of lift [16].

Sources of lift that are too small or low for the average manned sailplane to safely

exploit are termed "microlift" and are generally ignored by the soaring community.

Only recently has the introduction of ultralight sailplanes allowed practical manned

exploitation of microlift: most notably Gary Osoba and his Carbon Dragon (see Figure

1.1) [1, 17–19].

Figure 1.1. Gary Osoba flying the prototype Carbon Dragon. Photo from the Carbon
Dragon Technical Website (http://www.carbondragon.us/) [1]

The area of microlift soaring has not entirely gone unnoticed by those working on
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autonomous soaring; however, this research has tended to be focused on gust soaring

and extracting energy from wind turbulence [20–22]. The small amount of energy that

can be extracted from wind gusts places gust soaring on the "micro" end of microlift

soaring.

Manned and unmanned aircraft are not the only things that make use of microlift.

Many times have this author and others observed Turkey Vultures and Black Vultures

soaring at various altitudes over gently rolling fields, making only slight corrections

while flying a linear course, and all with no apparent loss of altitude. Investigation of

the structure of the atmospheric boundary layer at low altitudes reveals the presence of

long linear regions of lift [23], referred to as thermal walls or thermal strands, and it is

likely that these birds are making use of these thermal strands to soar without circling.

In addition, Gary Osoba has soared in microlift with birds and has noted that soaring

birds "frequently and skillfully make use of these minor ... energy sources" [17].

1.2 Atmospheric Energy Extraction

In considering the various methods of extracting energy from the atmosphere that

may be employed by an aerial vehicle, it is convenient to organize the techniques by

comparing the timescale of the required maneuver(s) to the period of the vehicle’s

phugoid mode. As noted by Boslough, Hendricks showed in his doctoral thesis that

the optimal frequency of the maneuver sequence required for dynamic soaring is equal

to the phugoid frequency of the aircraft [24]. More recent analyses have found various

other frequencies to be optimal, but these frequencies are still close to that of the

phugoid mode of the aircraft. (Furthermore, Sukumar and Selig suggest that dynamic

soaring maneuvers can be synchronized with phugoid oscillations and perform dynamic

soaring with minimal input, and that the difference between the longitudinal phugoid
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frequency determined in trim and that observed while performing dynamic soaring

is the result of various nonlinear effects [25]. These effects reduce the frequency of

the phugoid motion when performing dynamic soaring maneuvers.) In contrast, the

sequence of maneuvers required for an aircraft to center and soar in a thermal - a full

sequence determined by the circling period - tend to occur at a significantly longer

timescale than that of the phugoid mode of the vehicle. In this way, thermal soaring is

relatively "static" in the sense that the maneuvers occur relatively slowly.Extracting

energy from atmospheric turbulence and wind gusts requires extremely quick control

inputs and maneuvers that occur at a frequency higher than that of the vehicle’s

phugoid mode. Examples of maneuver frequency compared to the phugoid mode of

the aircraft can be found in Table 1.1.

Table 1.1. Comparison of the timescale of various soaring techniques to the phugoid mode
of the aircraft involved. ( * : simulated vehicle)

Soaring Ratio of phugoid
type frequency to Aircraft Source

maneuver frequency
Thermal soaring ∼0.50 CloudSwift UAV Allen [26]
Dynamic soaring 0.6991 2.93m RC sailplane* Sukumar
Dynamic soaring 0.713 L-23 Super Blanik* Gordon [27]

(prescribed flightpath) and Selig [25]
Dynamic soaring 0.7559 2.93m RC sailplane* Sukumar

(piloted) and Selig [25]
Gust soaring ∼3.9 SB-XC* Langelaan [22]

1.2.1 Static Soaring

Static soaring encompasses soaring techniques that involve relatively slow maneuvers.

There are three primary static soaring techniques: thermal soaring, ridge soaring, and

cloud street soaring. While most research is focused on only one of these techniques,
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Powers, Silverberg, and Gopalarathnam developed a method that can be applied to

any form of static soaring. This method involves estimating the energy expected to be

available in the forward arc of the aircraft and providing that information to a path

planning algorithm [28].

Thermal Soaring

Thermal soaring techniques extract energy from rising columns of air, called thermals,

that form in the convective atmospheric boundary layer. The life cycle of a thermal

can be seen in Figure 1.2. Thermal soaring is used by soaring birds to gain energy,

and has been well studied in manned and unmanned flight, as well as in the flight of

soaring birds.

Thermal soaring can be divided into two main phases: seeking a thermal and

centering on the thermal. Glider pilots will seek out thermals using meteorological

knowledge - visually searching for developing cumulus clouds which form over thermals,

and geographic features that are likely to start a thermal - and historical knowledge

of the local environment - flying over areas that are known to frequently produce

thermals [16]. While using computer vision to find developing cumulus clouds is a

very difficult problem, research has been done on thermal search pattern optimization

and identifying regions that are likely to develop thermals [29–32].

Once a thermal has been located, it is necessary to have some idea of where its

center is to enable the continued extraction of energy. This can be accomplished

through various techniques in manned aircraft [16] or using any number of the various

algorithms developed for UAVs [33–37]. Rather than programing an algorithm or

estimator, Reddy et al. used reinforcement learning to teach a small UAV to soar in

thermals [38]. In addition, flocks of soaring birds and groups of glider pilots will work

together to find and soar in thermals [16,39], and cooperative soaring techniques have
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been successfully applied to UAVs [30].

Figure 1.2. The life cycle of a thermal. [2]

Ridge Soaring

Ridge soaring, also called slope soaring, extracts energy from air that is forced upwards

to clear a ridge or similar obstruction as it is pushed along by the prevailing wind [16].

Glider pilots frequently make use of ridge lift by flying parallel to the ridge, staying

in the region of rising air, and papers have been published on the optimal maneuver

to extract energy from ridge lift [40]. In addition, soaring birds have been noted to

make use of ridge lift [41]. Chakrabarty and Langelaan developed a path-planning

algorithm for UAVs that made use of ridge soaring [42,43].

Cloud Street Soaring

Cloud streets are long lines of thermals aligned parallel to the wind, and appear

as parallel lines of cumulus clouds, and range from fully continuous to moderately

broken. Reichmann notes that cloud streets provide excellent opportunities for long

range sailplane flights [16]. Similar to ridge soaring, cloud street soaring allows for the

6



Figure 1.3. A diagram of ridge lift. [2]

extraction of energy from the atmosphere while maintaining a roughly linear flightpath.

Sailplane pilots have developed mathematical equations describing optimal flight both

along cloud streets and when the desired flightpath crosses the cloud streets based

on MacCready’s speed-to-fly theory [16,44]. A series of cloud streets can be seen in

Figure 1.4.

1.2.2 Dynamic Soaring

Dynamic soaring involves using a vertical wind shear to increase the total energy of the

vehicle. Various analysis have been conducted in an effort to determine the optimal

maneuver for a given set of conditions [45–48]. In general, the maneuver required

to extract energy involves repeatedly crossing the vertical wind shear - each time

increasing the airspeed of the vehicle. Two dynamic soaring maneuvers are illustrated

in Figure 1.5.

Dynamic soaring is used by birds, radio controlled aircraft pilots, and sailplane
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Figure 1.4. Cloud streets as seen from the ground. [3]

Figure 1.5. Two dynamic soaring maneuvers for the extraction of energy from a wind shear.

pilots to gain energy from the atmosphere. In addition, dynamic soaring controllers

for UAVs have been designed and tested in simulation [47–49]. Albatrosses have been

observed to perform dynamic soaring using the vertical shear layer that forms close

to the surface of the ocean, which allows them to fly for long distances without ever

needing to flap [16,50]. Pilots of radio controlled airplanes will use the strong vertical

wind shear generated on the leeward side of a mountain ridge or peak to accelerate

their unpowered aircraft to extremely high speeds - the current record of 545 miles

per hour having been set in June 2018 [51].
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Manned sailplanes can also make use of dynamic soaring, albeit at higher altitudes,

to extract energy and maintain flight [52]. Reichmann relates the experiences of one

sailplane pilot who was able to maintain altitude by exploiting a wind gradient of 40

kilometers per hour over 100 meters. However, the pilot and his aircraft were gradually

pushed downwind and had to stop after 20 minutes before they drifted too far from the

airport [16]. More recently, Gary Osoba has successfully performed dynamic soaring

in a manned glider, and has published several articles on the subject [17]. In 2006,

Gordon published a thesis on optimal dynamic soaring with manned sailplanes in

which he began with a computational analysis, moved onto tests in a flight simulator,

and then flight tests using a LET L-23 Super Blanik sailplane [27]. Gordon was able

to conclusively demonstrate that a full-size sailplane can extract energy from the

atmosphere by performing dynamic soaring maneuvers through a wind shear, although

the glide performance of the L-23 Super Blanik was not sufficient to allow a net

gain of energy after competing the maneuver. Kiceniuk’s paper on manned sailplane

energetics [53] describes how to obtain energy wind shear in various directions - both

vertical and horizontal - and encompasses both dynamic soaring and exploitation of

steady wind shear and gust soaring and the exploitation of dynamic wind shear.

1.2.3 Gust Soaring

Extraction of energy from atmospheric turbulence and gusts is possible through the use

of gust soaring techniques. Some birds, such as Black Vultures and Turkey Vultures,

use gust soaring to gain energy from the atmospheric turbulence that forms along tree

lines [15]. This form of soaring requires very rapid maneuvers to extract energy from

the variations in local wind speed and direction.

Research on gust soaring has largely been focused on energy extraction while
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maintaining a predetermined flight path. In this type of gust soaring - sometimes

called turbulent energy extraction - the maneuver is constrained to the longitudinal

plane of the aircraft. Numerous papers have been published on controllers that allow

UAVs to extract energy from wind gusts [22]. While it has been shown in simulation

that energy extraction is possible, the resulting energy gain tends to be small compared

to the sink rate of the vehicle when flying through small and moderate gusts.

1.3 Microlift Soaring and Thermal Strands

In the lower portions of the convective boundary layer there are large atmospheric

structures other than thermals that can provide lift. The structures - variously referred

to as spoke-like structures, updraft walls, thermal walls, or thermal strands - are

formed by air moving from downdrafts back into thermals [23, 54, 55]. As air from

downdrafts reaches the lower portions of the convective boundary layer and spreads

out, it encounters air from other downdrafts and forms linear regions of converging

air encircling each downdraft. The downdraft also suppresses rising air coming from

the surface and pushes it towards the converging regions. The warm rising air in the

convergence regions is carried along towards their intersections, where thermals begin

to form [54].

In 1983, Wallington theorized that pilots of lightweight sailplanes and hang gliders

would be able to make use of what he termed "microscale lift structures" [56]. Since

then, pilots of manned sailplanes have been able to make use of thermal strands to

gain energy, and within the soaring community these smaller-than-thermal convective

structures are termed "microlift". Perhaps one of the most notable sailplane pilots

to make use of microlift is Gary Osoba, who has written papers and lectured on his

experiences with microlift while flying his ultralight sailplane, the Carbon Dragon (see
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Figure 1.6. A top-down diagram of the structure of downdrafts, thermal strands, and
thermals in the atmospheric convective boundary layer.

Figure 1.1) [17–19].

The prospect of soaring along a thermal strand presents two main advantages.
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First, from a review of the available data it can be concluded that if the atmospheric

boundary layer is being driven by convective activity, then thermal strands are present

and would provide a relatively common potential source of energy. Second, unlike

thermalling or some forms of dynamic soaring, it is possible to soar along the length

of a thermal strand and gain energy without having to stop and loiter. The frequent

availability of lift in thermal strands and the potential to be able to continue - at least

roughly - in the direction of a goal or waypoint while gaining energy makes microlift

soaring and thermal strand tracking potentially a very attractive way for UAVs to

gain energy.

1.3.1 Why is it Called Microlift?

Perhaps a good question to ask is why the manned sailplane community refers to

thermal strands and other small lift structures as microlift. In general, it is because

these forms of lift are too small - hence "micro" - to be of use to the majority of

sailplanes. The reasons are rather simple: most sailplanes fly at a speed that makes

staying within microlift difficult, microlift occurs at relatively low altitudes, and the

lift available in microlift structures is small compared to what is available in a good

thermal.

Take, for example, the Glasflügel H-201 Standard Libelle (see Figure 1.7) - a

Standard-class competition glider. The speed for best glide angle of a Standard Libelle

is roughly 24 meters per second (calculation of speed for best glide angle and longest

glide distance is discussed in Section 2.1.2) [7]. This means that a Libelle will fly

entirely across the portion of a thermal strand that contains useful lift within 3 to 4

seconds. In contrast, the portion of a thermal that contains useful lift may be a few

hundred meters across, and will take more than twice as long to fly through. This
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allows the pilot more time to determine where the lift is and to start maneuvering to

make use of the lift. In addition, the wing loading and span of most gliders means

that their turning radius is too large to allow exploitation of microlift structures [17].

Figure 1.7. John Bird flying his Glasflügel H-201 Standard Libelle near State College,
Pennsylvania. Photo by Phil Chidekel.

Thermal strands occur at low altitudes - up to a few hundred meters above ground

- at which most glider pilots would (or should) already be looking for potential places

to make an off airfield landing [16]. Gary Osoba’s ultralight Carbon Dragon is a

special case. Its low flight speeds, excellent stability and control, and gentle stall

characteristics with a rapid recovery make it able to be safely flown at low altitudes [17].

Finally, the amount of energy within a thermal strand is less than that contained in

a thermal, as would be expected given that multiple thermal strands feed energy into

a single thermal. This means that in addition to being harder to extract energy from

because of aircraft and pilot limitations - many sailplane pilots are unfamiliar with

the techniques that are required to extract energy from thermal strands [19] - thermal

strands do not offer as much lift as a good thermal. Often it is not worth the time of

a larger sailplane pilot to explore the option of microlift, even if it is feasible, because

he or she could gain energy much more quickly in a thermal. However, there are cases
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when gaining energy from microlift can maintain flight while sailplanes attempting

more traditional soaring methods are forced to land [17].

In general, microlift is any source of atmospheric energy that is too small - either

physically or energetically - to be of use to the majority of manned sailplanes.

1.3.2 Observations of Birds

It is not just manned ultralight sailplanes exploiting thermal strands. Rarely in soaring

is there something done by man that has not first been done by nature.

As previously noted, Black Vultures and Turkey Vultures - which typically extract

energy from the atmosphere through thermal soaring - alter their behavior to make

uses of other forms of energy when flying at altitudes where thermals are not available.

While these behavioral changes include Turkey Vultures gust soaring along tree lines,

this researcher and others have also observed Black Vultures and Turkey Vultures

overflying farm fields at low to moderate altitudes while flying a roughly linear path

without any apparent loss of altitude. Unlike the gust soaring behavior observed by

Mallon, Bildstein, and Katzner [15], these flights were linear and occurred over gently

rolling farm fields at altitudes estimated to range from 20 to in excess of 100 meters

above ground level. It is likely that these birds were performing microlift soaring

along thermal strands - hence the apparent constant altitude. In addition to personal

observations, Gary Osoba - as quoted by Pierro Morelli - noted that soaring birds

often make use of microlift [17].

1.3.3 Characteristics of Thermal Strands

Thermal strands occur in the lower portions of the atmospheric boundary layer and

gradually coalesce into thermals as altitude increases. Individually these structures may

14



be likened to thermal (cloud) streets; however, there are some significant differences.

Thermal strands are much smaller than thermal streets and have a length that ranges

from an order of magnitude less than the boundary layer depth to the same order of

magnitude as the boundary layer depth. In contrast, the convective rolls that form

thermal streets may have a length that is 1 to 2 orders of magnitude greater than the

boundary layer depth, as seen in thermal streets (cloud streets) that stretch for tens

or hundreds of kilometers.

In some ways, the structure of thermal strands mimics that of open cell convection,

where regions of descending air are bounded by polygonal lines of rising air. However,

while open cell convection in the atmosphere spans the full height of the boundary

layer, thermal strands dissipate and are absorbed into thermals well before reaching

the top of the atmospheric boundary layer.

Near the ground, thermal strands tend to be small and weak. As altitude increases,

thermal strands merge together into larger stronger strands. This can be observed by

comparing Figures 1.8 and 1.9.

1.3.4 Thermal Strands in Atmospheric Simulation

Thermal strands have long been observed in simulations of the atmospheric convective

boundary layer with low to moderate winds aloft [4, 57–59]. If the atmospheric

boundary layer development is dominated by shear forces rather than convective

forces, it is unlikely that thermal strands will form. This agrees with the conclusions

drawn by Williams and Hacker [23]. The presence of thermal strands in large eddy

simulations of the atmospheric convective boundary layer are illustrated in Figures

1.8 and 1.9.

The addition of moderately hilly terrain does not significantly affect the formation
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Figure 1.8. Thermal strands in the large eddy simulation wind field of the atmospheric
boundary layer provided by Sullivan and Patton (see reference [4] for the paper which
describes the generation of this wind field). z/zi = 0.06

of thermal strands, as was seen in Walko et al. [58]. In that paper, the domain included

200 meter tall sinusoidal hills spaced 2 kilometers apart, with an atmospheric boundary

layer height of 1 kilometer. In the results, the presence of thermal strands is very

clear, and the strands whose axes lay primarily North-South rather than East-West

tended to be located near the crests of the hills [58]. This indicates that geographic

features can influence the location of thermal strands, as would be expected; however,

it should be noted that Walko et al. imposed a spatially and temporally constant

surface heat flux to drive the convective boundary layer.

Surface features also do not appear to affect the formation of thermal strands.

Park and Baik performed tested the effects of urban-like environments on convective

boundary layer development using a lower boundary consisting of a flat plane with a
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Figure 1.9. Thermal strands in the large eddy simulation wind field provided by Sullivan
and Patton. z/zi = 0.12

grid of 320 meter long by 320 meter wide by 80 meter tall boxes spaced 320 meters

apart [60]. Published plots of vertical wind velocity display the linear regions of lift

characteristic of thermal strands.

1.4 Characteristics of Microlift Soaring Aircraft

The basic characteristics required to be able to extract energy from microlift are a low

sink rate, a decent lift to drag ratio, and a low stall speed and corresponding small

turn radius. Any aircraft that soars well needs to have a low sink rate and decent lift

to drag ratio; however, to soar in microlift it must also have a low stall speed and

tight turning circle to enable tracking along microlift structures. In his 2006 paper,

Morelli describes the basic design characteristics required of an ultralight sailplane,
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which include a low sink rate and small circling radius [19]. However, exactly what is

meant by "low" and "small" was not specified, and proves difficult to identify.

While it is not possible to precisely define exactly what makes an aircraft able to

feasibly use microlift, it is possible to identify what is known to work and not work

and estimate what combination of characteristics will result in an aircraft that can

exploit microlift, as is shown in Figure 1.10.

To begin with, Turkey Vultures have been observed to soar in microlift. The

description of how the flight performance of the Turkey Vulture was estimated from

published data is detailed in Section 2.4.

As noted by Morelli, high performance hang gliders can soar in microlift; however,

older hang gliders have too high a sink rate to be able to gain altitude in microlift [18,19],

and the ATOS VR, produced by A-I-R USA, is a very high performance hang glider.

There are relatively few manned sailplanes that are able to fly in microlift; however,

the Carbon Dragon ultralight sailplane is one of them. The LET Blanik L-13, Glasflügel

Standard Libelle, and DG Flugzeugbau DG-800 (18 meter) are all typical examples of

manned gliders and are not able to exploit microlift.

The Effect 38, a paragliding wing manufactured by Pro-Design, is an example of an

aircraft with a sink rate too high to effectively be able to make use of microlift. The

Effect 38 has a tight turn radius, but its minimum sink rate of 1.2 meters per second [9]

means that it would have a hard time getting a net energy gain from microlift. The

Effect 38 has comparable performance to older generations of hang glider.

The approximate soaring turn radius for each aircraft was found by assuming

that it is flying at the minimum sink lift coefficient for level flight. This airspeed is

generally a little bit above the stall speed. The airspeed corresponding to this lift

coefficient was calculated for a coordinated level turn with a bank angle of 40 degrees,

and the coordinated turn equations were then used to determine the turn radius. The
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minimum turn radius of the aircraft would be considerably smaller and would require

a much steeper bank.

Figure 1.10. Comparison of the minimum sink rate and approximate minimum turn
radius in a 40 degree bank between the LET Blanik L-13 [5,6], Glasflügel H-201 Standard
Libelle [5, 7], and DG Flugzeugbau DG-800 (18 meter) [5, 8] sailplanes, Pro-Design Effect 38
paragliding wing [9], ATOS VR hang glider [10], Carbon Dragon ultralight glider [1], Turkey
Vulture (see section 2.4), and Vulture UAV. The shaded area indicates approximately where
it is practical to exploit microlift.
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As will be discussed in detail in Section 2.5, the Vulture UAV is expected to be

able to soar in microlift. This is evidenced by the lower minimum sink speed than the

Carbon Dragon - indicating that it should be able to obtain a net energy gain from

microlift - and it has a turn radius between that of the Carbon Dragon and the ATOS

VR - which indicates that it should be able to turn tight enough to track microlift

structures.

1.5 Contributions

This thesis presents a method of estimating the location, orientation, and characteristics

of a thermal strand using an unscented Kalman filter. This estimator was then

integrated with a flight controller designed to track along a thermal strand and extract

energy. Finally, the estimator and controller were tested in the wind field obtained

from a large eddy simulation of the atmospheric convective boundary layer, and were

found to average a positive rate of energy gain from the atmosphere. However, on

average this was insufficient to sustain pure soaring flight.

Furthermore, in this thesis it is demonstrated that several methods of attempting

to follow a thermal strand cannot result in a stable controller, a model of an idealized

thermal strand is developed for use in control system design, and the chance that an

aircraft will encounter a thermal strand at a given angle is determined. This thesis

also compares two different guidance methods for tracking along a thermal strand, and

compares several different initialization methods for the Kalman filter with special

consideration of the likelihood of the aircraft’s approach from a given angle.
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1.6 Reader’s Guide

• Chapter 2 contains an overview of soaring flight, a short discussion of maximum

glide distance and MacCready’s speed to fly theory, a description of the large

eddy simulation environment, the development of an idealized thermal strand

model to assist in designing a thermal strand tracking controller, the vehicle and

sensor models used in simulation, a brief discussion of the flight performance

of soaring birds with an emphasis on birds that exploit microlift, and a brief

description of the physical Vulture UAV upon which the simulated aircraft is

based.

• Chapter 3 discusses the difficulties encountered when attempting to track a

thermal strand, demonstrates several methods that are unable to track a ther-

mal strand, and presents the design of a Kalman filter that can estimate the

characteristics of a thermal strand.

• Chapter 4 presents the results of testing the ability of the Kalman filter to track

an idealized thermal strand, and various methods of generating the initial state

estimate for the Kalman filter. It also includes the results of testing the final

controller design in a large eddy simulation wind field.

• Chapter 5 is the conclusion and includes a summary of the contributions. It also

makes some recommendations of future work.
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Chapter 2 |

Problem Statement and

Biological Inspiration

This chapter begins with an overview of gliding and soaring flight with a focus on

aircraft kinematics in steady flight and calculating the optimal speed to fly (both

airspeed for best glide in non-stationary air and MacCready’s speed to fly theory).

The flight environment - in this case the convective atmospheric boundary layer -

is described, as is the large eddy simulation of the convective boundary layer that

forms the basis of the simulation environment. An investigation is conducted into

the characteristics of the thermal strands found in the large eddy simulation, and

an idealized thermal strand model is created to aid in the development of control

strategies. The modeling of the sensors and vehicle dynamics are discussed, along with

the integration of the vehicle into the simulation environment. The flight characteristics

of birds - specifically vultures, as some species are known to exploit microlift - are

investigated to help motivate vehicle design. Finally, the physical counterpart to the

simulated Vulture UAV is described, and the choice of vehicle is justified through

comparison to aircraft and birds that are known to be able to soar in microlift.
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2.1 The Basics of Soaring Flight

2.1.1 The Sink Polar

The basis of any theoretical calculation that deals with soaring is the sink polar

(also known as the speed polar), which describes the aerodynamic performance of

the aircraft in question. The sink polar plots the aircraft’s vertical sink rate against

horizontal airspeed, and the sink polar of the Vulture UAV can be found in Figure

2.1. Calculation of the sink polar of the Vulture UAV is discussed in Section 2.3.3. It

should be noted that a particular sink polar for an aircraft is valid for only one wing

loading and geometric configuration (flaps, spoilers, etc.). This is why many sailplanes

can carry water ballast - it allows the climb and glide performance of the aircraft to

be changed, even "on the fly", without any physical changes to the aircraft.

While soaring birds are unable to change their weight at a whim, they do have

various other means at their disposal to alter their glide performance - and hence their

sink polar - for optimal flight under any given conditions. As noted by Tucker, gliding

birds can adjust their body and wing configuration to achieve a range of sink rates for

a given airspeed [61,62]. This includes spreading or retracting their wings to change

the aspect ratio, twisting their wings to alter the lift distribution, and changing the

position of their wings and/or head to adjust their profile drag [61,63].

In many cases it is convenient to approximate the horizontal airspeed as the

airspeed of the vehicle. Provided that the sink rate is relatively small compared to

the airspeed, this approximation introduces very little error in sink rate or glide ratio

for most airspeeds. For example, this allows the equation for drag coefficient as a

function of lift coefficient and zero-lift drag coefficient to be used to derive a theoretical

equation for the sink polar, as done by Welch, Welch, and Irving [64]. The quadratic
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Figure 2.1. Sink polar of the Vulture UAV. Calculation discussed in Section 2.3.3.

expression of total aircraft drag is

CD =
C2
L

piAe0
+ CD0 (2.1)

which can then be manipulated to obtain a sink rate

CD
CL

=
CL

piAe0
+
CD0

CL
(2.2)

CD
CL

=
2W

πAe0ρ

1

V 2
+ CD0

ρS

2W
V 2 (2.3)

Wsink

Vhor
=
CD
CL

(2.4)

Wsink = Vhor ∗
(

2W

πAe0ρ

1

V 2
+ CD0

ρS

2W
V 2

)
(2.5)
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Wsink ≈
2W

πAe0ρ

1

Vhor
+
ρSCD0

2W
V 3
hor (2.6)

Wsink ≈
2W

πAe0ρ

1

V
+
ρSCD0

2W
V 3 (2.7)

The velocity given by Equations 2.6 and 2.7 is also the weight normalized power

required to maintain level flight. These equations are a normalized version of the

power required equation for an aircraft. Making the assumption that the horizontal

component of airspeed is equal to the airspeed results in relatively little error within

the aircraft’s flight envelope, and Equation 2.7 is the more common form.

Reichmann presents an alternate and more commonly seen equation for the sink

polar. In this form, a parabolic curve is fit to the calculated or experimentally

determined sink polar to make it easier to manipulate when performing calculations.

The fit is performed by taking three points and finding the equation of the parabola

that passes through all three. In order to best capture the performance of the aircraft

in the flight regime most critical to efficient soaring calculations - gliding between

thermals - it is recommended that one point be located at the maximum lift to drag

speed of the aircraft, another at the never exceed speed, and the third halfway between

the previous two [16].

Wsink = aV 2
hor + bVhor + c (2.8)

2.1.2 Maximum Glide

One of the primary advantages of environmental energy extraction is that the energy

gained can be used to extend the range of the vehicle. When flying through still air,

the maximum glide distance is obtained when flying at the airspeed that corresponds

to the maximum lift to drag ratio of the aircraft. This speed can easily be obtained

from the sink polar by taking a line tangent to the polar curve that passes through
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the origin and noting the airspeed at which the line touches the sink polar curve.

However, when the air surrounding the vehicle is moving, flying maximum lift to

drag will not yield the maximum glide distance. This is because flying maximum lift

to drag ratio will result in the maximum glide distance with respect to the air, it will

not result in the maximum glide distance with respect to the ground. Conceptually, if

the aircraft is flying with a tailwind, the pilot should slow down to decrease the sink

rate and make better use of the assist provided by the wind. Conversely, if the aircraft

is flying into a headwind, the pilot should increase speed. Similarly, if the aircraft is

flying through rising air the pilot should decrease airspeed to reduce sink rate, and if

the aircraft is flying through descending air the pilot should increase airspeed.

The question, of course, is by how much should the airspeed be increased or

decreased to account for the motion of the air. If the sink polar is adjusted for the

motion of the air, as described by Reichmann [16], then finding the speed that yields

the maximum glide distance for any given air motion is as easy as finding the speed

for still air. Considering only horizontal air velocities:

Wsink = f(Vhor) (2.9)

Vground = Vhor + Uwind (2.10)

Then the sink polar with respect to ground speed becomes:

Wsink = f(Vground) = f(Vhor + Uwind) (2.11)

Graphically, this can be thought of as shifting the sink polar curve horizontally - to

the right in the case of a tailwind, and to the left in the case of a headwind. This

altered curve then reflects the aircraft’s sink rate as a function of ground speed, and
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finding the maximum glide distance is as simple as again drawing a line tangent to

the curve that passes through the origin [16].

Similarly, for vertical air velocities we are interested in finding the rate of change

of altitude as a function of airspeed.

ḣ = ḣwind −Wsink (2.12)

And taking the negative to maintain the convention of a positive sink rate or negative

altitude rate

−ḣ = Wsink − ḣwind = f(Vhor)− ḣwind (2.13)

This reflects a vertical shift of the sink polar curve - shifting upwards when the air is

rising, and downwards when the air is descending. Again, to find the maximum glide

distance a tangent line is taken that passes through the origin [16].

The equation for the rate of change of the altitude of the aircraft as a function of

ground speed can then be written as:

−ḣ = f(Vhor + Uwind)− ḣwind (2.14)

Noting that a positive wind velocity indicates a tailwind, and that a positive ḣwind

indicates flying through a rising airmass.

2.1.3 MacCready and Speed to Fly

While flying the speed to obtain maximum glide distance will result in the aircraft

traveling as far as possible, it is not the fastest way to traverse a given distance.

Rather than optimizing for range, the sink polar equations can be optimized for cruise

speed over a given flight segment. MacCready’s solution to this optimization problem
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considers a flight segment consisting of a glide to some destination (presumably a

developing cumulus cloud and associated thermal) followed by a climb back up to the

starting altitude [16,65].

t = tglide + tclimb =
dglide
Vhor

+
hclimb

ḣclimb
(2.15)

Vcruise =
dglide
t

(2.16)

hclimb = dglide ∗
Wsink − ḣwind

Vhor
(2.17)

t =
dglide
Vhor

+
dglide

ḣclimb
∗ Wsink − ḣwind

Vhor
(2.18)

In order to find the horizontal airspeed that results in the minimum total time, take the

derivative with respect to horizontal airspeed and set equal to zero. Knowing that the

glide distance, dglide must be greater than zero yields the MacCready relation: [16, 65]

Vhor ∗
[
dWsink

dVhor

]
Vhor

= (Wsink − ḣwind)− ḣclimb (2.19)

This says that your horizontal airspeed in the glide times the slope of the sink polar

at your glide airspeed should b equal to the total sink rate of the aircraft minus the

rate at which the aircraft will be climbing when the destination is reached [16].

There are also solutions for variations of the fastest cruise problem. Stojkovic

developed a generalized speed to fly theory that expands upon MacCready’s work to

include all forms of lift [66]. Others have investigated how altitude should impact the

optimal airspeed and the minimum thermal strength for which the pilot should stop

and circle [67,68]. DeJong investigated various optimal soaring problems, including

the angles at which one should depart a cloud street to return to the desired flightpath,
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and the maximum deviation angle from the desired flightpath to intersect a thermal

of a given strength - "the optimal zigzagging problem" [69].

2.2 Simulating the Convective Boundary Layer

2.2.1 Large Eddy Simulation Environment

The model of the atmospheric convective boundary layer used to design a thermal

strand following controller was generated by a large eddy simulation performed by

Sullivan and Patton. In this simulation, the boundary layer was driven by a surface

heat flux and the ground was defined to be a flat plane with no features other than

surface roughness. The data provided consists of a 5120 meter square by 2048 meter

tall domain containing 10243 grid points in each of two vertically staggered grids. The

grid resolution of both grids is 5 meters horizontally and 2 meters vertically. One

grid contains the vertical wind velocity and subfilter scale energy, and the other grid

contains the horizontal wind velocities and the virtual potential temperature. The two

grids are offset by half of the vertical grid spacing, as can be seen in Figure 2.2 [4].

Sullivan and Patton’s simulated convective boundary layer is driven by a constant

surface buoyancy flux of 0.24 K*m/s, and has a weak geostrophic wind (wind aloft)

velocity of 1 m/s heading due North imposed on the upper boundary of the domain.

The surface roughness is 0.1 meters, and the Coriolis parameter is defined to be

1.0 ∗ 10−4 seconds−1 [4], which corresponds to a latitude of 43.29 degrees. (Large

eddy simulations of the atmospheric convective boundary layer have been conducted

with higher geostrophic wind - wind aloft - speed and surface roughness, and thermal

strands were still present.) The wind field in Sullivan and Patton’s LES data shows

well developed convection with a convective boundary layer height of approximately 1
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Figure 2.2. Vertical grid offset in the large eddy simulation data. dx and dz are grid
spacings, and k is the vertical index.

kilometer.

The full LES data file is a 42.9 gigabytes, which is too large to read into MATLAB.

The domain was reduced from 2048 meters tall (roughly two boundary layer heights)

to 400 meters and alternating layers of the grid were removed to decrease the vertical

resolution from 2 meters to 4 meters. This removed from the environment the upper

portions of the boundary layer where thermal strands do not exist, and brought the

vertical resolution closer to the horizontal resolution. In addition, the subfilter scale

energy, virtual potential temperature, and horizontal wind velocities were removed

because the most relevant data is the local vertical wind velocity. The resulting vertical

wind velocity data set was saved as a MATLAB data file. Removing unnecessary data

and downsampling reduced the file size to 808.4 megabytes, which could easily be read

into MATLAB.
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2.2.2 The Idealized Thermal Strand

To facilitate the design of a control system able to track thermal strands, the LES

data was analyzed and used to generate a mathematical model describing a straight,

idealized thermal strand. Thermal strands were manually identified in the LES

data, and a MATLAB script was used to calculate the vertical velocity along a cross

section of the strand. Multiple cross-sections were taken and averaged, and then a

Gaussian-based function was fit to the data.

The idealized strand is supposed to capture the basic features of the thermal

strands in the LES without overfitting or biasing the controller to only work in a

particular wind field. The basic equation of the ideal thermal strand is

ḣwind =
−ḣmax

2
+

3ḣmax
2
∗ exp

(
−d2str
2σ2

str

)
(2.20)

where ḣmax is the updraft velocity at the center of the strand, dstr is the distance from

the central axis of the strand, and σstr is the width parameter of the strand and the

standard deviation of the Gaussian component (the second term).

Equation 2.20 is based on the Gaussian model of a thermal, and can be thought

of as a Gaussian lift distribution swept along the length of the thermal strand. The

term −ḣmax

2
reflects the background sink surrounding the thermal strand. This model

of an ideal thermal strand fits the LES data well, as seen in Figures 2.3, 2.4, and 2.5.

2.3 Vehicle Modeling

The vehicle model used in the simulation reflects the flight performance of the Vulture

UAV, a small research UAV that was built from a Magellan XL radio controlled

sailplane. The flight characteristics of the Vulture UAV are similar to those of Black
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Figure 2.3. Cross section of a thermal strand in the LES data at an altitude of 60 meters.
σstr = 70 meters, ḣmax = 1.5 meters per second
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Figure 2.4. Cross section of a thermal strand in the LES data at an altitude of 80 meters.
σstr = 42 meters, ḣmax = 2.25 meters per second
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Figure 2.5. Cross section of a thermal strand in the LES data at an altitude of 15 meters.
σstr = 94 meters, ḣmax = 1.75 meters per second

Vultures and Turkey Vultures, as described in Section 2.5, and in general are well-suited

to microlift soaring. The low cruising airspeed, low sink rate, and moderately high

maximum lift-to-drag ratio make the Vulture UAV well-suited to exploiting microlift.

The model of the aircraft decouples the lateral-directional and vertical dynamics of

the aircraft, and simulates the airspeed and pitch dynamics of the aircraft through the

use of proportional gains. This considerably simplifies the simulation both structurally

and computationally.

For soaring vehicles it is convenient to normalize energy by the vehicle weight

because it allows energy to be expressed as height and power to be expressed as a

vertical rate. This practice of using normalized energy and power greatly simplifies

the calculation of energy gained by the vehicle and vertical rate, as seen in Section
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2.3.3. In general, a normalized energy is

e =
E

mg
(2.21)

2.3.1 Definition of Simulation Domain and Reference Frames

The simulation was decided to be a 5120 meter square area to make full use of the

LES simulation data provided by Sullivan and Patton. The standard aerospace body

and flat Earth inertial coordinate systems were used in the simulation of the vehicle.

A flat Earth inertial frame was used because the curvature of the Earth would be of

negligible impact over the distances involved. The x and y axes of the inertial frame

are aligned with geographic North and East, and the z axis points down. In the body

frame, the x axis is aligned with the longitudinal axis of the vehicle and the y axis

extends out the right wing.

2.3.2 Vehicle Sensor Modeling

The vehicle was assumed to perfectly know its location, airspeed, orientation, and

body rates.

The Vulture UAV can simulate various types of variometers using its onboard

sensors, including a netto variometer, also known as an airmass variometer. A netto

variometer compensates for the total energy of the vehicle and for the vehicle’s sink

rate, and will always display 0 when the aircraft is flying through still air. The

simulated netto variometer onboard the Vulture UAV also compensates for load factor

in turns and when thermalling, making it a relative netto variometer, sometimes called

a super netto variometer, and will output a measurement of the current estimated

vertical wind velocity.
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The relative netto variometer in the simulation is simulated by adding zero mean

Gaussian noise to the true local vertical wind velocity, and then storing those values

in a data buffer to add an optional time delay representative of the variometer’s time

constant. The measurement at time step k is then given by

ḣwind,measured,k = ḣwind,k−κ +N(0, σvario) (2.22)

where κ is the number of time steps by which the measurement is delayed, and σvario

is the standard deviation of the Gaussian noise.

The roll disturbance detector on the Vulture UAV calculates the residual rolling

moment of the aircraft by computing the total rolling moment from known sources

using the aircraft’s current state, control deflections, and calculated stability and

control derivatives. The total rolling moment exerted on the aircraft can be calculated

using the measured angular acceleration and the inertial properties of the aircraft,

which in turn can be used to calculate the rolling moment resulting from unknown

sources, termed the residual rolling moment. This contribution is assumed to be from

the motion of the air around the aircraft.

Cl,res = Cl,total − Cl,state − Cl,control (2.23)

The measurements output by the roll disturbance detector are simulated by calculating

the rolling moment exerted on the aircraft by local wind gradients and adding Gaussian

noise with standard deviation σrdd. The roll disturbance measurement can be delayed

by λ time steps, although the time constant of the real roll disturbance detector is

very small to the point of being negligible. The roll disturbance detector measurement
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at time step k is then

Cl,res,measured,k = Cl,res,k−λ +N(0, σrdd) (2.24)

From the residual rolling moment coefficient, it is relatively easy to obtain a

measurement of the local wind gradient in the spanwise direction. Using the residual

rolling moment coefficient and the roll damping of the aircraft, it is possible to calculate

the equivalent normalized roll rate to be

ˆ̃p =
Cl,res
Clp

(2.25)

where the tilde denotes that this is an equivalent roll rate, and the hat denotes that

this is a normalized dimensionless quantity. This normalization follows the standard

stability and control roll rate normalization, given by

ˆ̃p =
bp̃

2V0
(2.26)

From this equivalent roll rate, it is possible to calculate the change relative air velocity

parallel to the body 3-axis induced by the equivalent roll rate as a function of spanwise

position. From there, it is possible to calculate the derivative of the relative air velocity

parallel to the body 3-axis with respect to spanwise distance. Beginning with the

change in vertical air motion relative to the aircraft at an arbitrary spanwise position

∆w = p̃y (2.27)

and taking the derivative
∂∆w

∂y
= p̃ (2.28)
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it can be found that
∂∆w

∂y
=
Cl,res
Clp

2V0
b

(2.29)

If it is assumed that the only contribution to residual rolling moment is a gradient

in the local vertical wind velocity, and that the pitch angle is small (as it typically is

when soaring), then the derivative of local vertical wind velocity along the horizontal

projection of the body 2-axis is found to be

∂ḣ

∂y1
=
Cl,res
Clp

2V0
b

1

cos2(φ)
(2.30)

where y1 is the 2-axis in the first intermediate Euler frame. This approximation holds

well for small pitch and bank angles, where the gradients of the horizontal components

of local wind velocity have relatively little impact on the roll disturbance of the vehicle.

2.3.3 Vehicle Dynamics Modeling

The aircraft is simulated in 3 dimensions using a 5 degree of freedom model. It is

assumed that the aircraft performs perfectly coordinated turns (zero sideslip), and

that the longitudinal and lateral dynamics of the aircraft are decoupled. In addition,

the longitudinal dynamics are simplified by defining the vertical rate of the aircraft to

be equal to the normalized excess power. Note that because of the choice of coordinate

system, a positive change in energy results in a negative vertical rate. Therefore the

vertical rate of the aircraft is

−ż = pexcess (2.31)

pexcess = pmotor −Wsink + ḣair (2.32)
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where Wsink is the sink rate of the simulated Vulture UAV, given by

Wsink = 0.0253V 2 − 0.5275V + 3.2028 (2.33)

The sink rate of the simulated Vulture UAV is calculated using the parabolic

form of the sink polar, and is found in Equation 2.33. The sink polar for the Vulture

UAV was generated by adjusting the experimentally determined sink polar of a larger

autonomous soaring vehicle based on the SB-XC airframe (sold by RnR Products) for

the lower wing loading of the Vulture UAV. The method of altering a sink polar for a

different wing loading is included in Reichmann’s book [16] and is described in detail

in Section 2.4. A plot of the sink polar was shown earlier in Figure 2.1.

When the aircraft is turning the sink rate of the aircraft increases. As derived by

Haubenhofer, the sink polar for a turn with bank angle φ can be obtained by adjusting

the level flight polar as follows [70]:

n =
1

cos(φ)
(2.34)

Vturn =
√
nV (2.35)

Wturn = (
√
n)3W (2.36)

Therefore, the sink rate of the Vulture UAV can be expressed as a function of airspeed

and bank angle, and is given by

Wsink(V, φ) =

(
1

cos(φ)

) 3
2 (

0.0253V 2 cos(φ)− 0.5275V
√

cos(φ) + 3.2028
)

(2.37)

The airspeed and roll dynamics of the vehicle are simulated using proportional

gains that have been tuned to reflect the flight characteristics of the real vehicle. The
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airspeed gain reflects using pitch angle to control airspeed, and the bank angle gain

reflects the significant aileron authority and high roll rate of the aircraft. The values

were tuned to accurately reflect the response to commanded changes in airspeed of

1 to 2 meters per second, and commanded changes in bank angle up to π/2 radians.

The gain values are provided in Table 2.1. The airspeed rate and roll rate of the

simulated Vulture UAV at an arbitrary time step k are then

u̇IAS,k = ku(uIAS,cmd,k − uIAS,k) (2.38)

and

φ̇k = kφ(φcmd,k − φk) (2.39)

Table 2.1. Proportional gain values for simulating airspeed and roll response to commands
Gain Value
ku 1.00
kφ 2.50

Using the decoupled longitudinal dynamics that are based on normalized energy,

the pitch angle, θ is no longer needed. Therefore θ and θ̇ can be set to zero as follows

θ̇ = θ = 0 (2.40)

The state vector for the simulation can be found in Equation 2.41. Note that

because sideslip is assumed to be zero, the component of wind parallel to the body

y-axis must be zero, but is included in the state vector for convenience.

x =

[
VB ωB Φ rN

]T
(2.41)
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VB =

[
u v w

]T
(2.42)

ωB =

[
p q r

]T
(2.43)

Φ =

[
φ θ ψ

]T
(2.44)

rN =

[
x y z

]T
(2.45)

2.3.4 Integration of the Equations of Motion

Forward Euler was determined to be sufficient because simulating the exact state of

the vehicle is not critical to being able to locate follow a thermal strand. For example,

a position error of a few centimeters is negligible when navigation is occurring on a

length scale of meters to tens of meters. Furthermore, if the controller uses the same

state propagation methods as the simulation, then the error between the estimated

state and the true simulated state generated by the state propagation is zero.

Using a first order integration method allows the control system that provides

control inputs at a fixed rate to be easily synchronized with the discrete time physical

simulation. This reduces the complexity of the simulation structure and the number

of computations required per time step. Using an integration method that requires

computation of the state derivative between time steps, such as 4th-order Runge-Kutta,

would require the local wing velocity to be interpolated twice instead of once - one of

the more computationally intensive portions of the simulation.

The time propagation of aircraft airspeed, bank angle, and altitude can be found

in Equations 2.47, 2.48, and 2.49. The simulation of these quantities is first order
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accurate. The conversion between true airspeed and indicated airspeed is given by

uTAS = uIAS

√
ρSSL
ρ

(2.46)

and the airspeed, roll rate, and altitude at the next time step are given by

uTAS,k+1 = uTAS,k + u̇TAS,k ∗∆t (2.47)

φk+1 = φk + φ̇k ∗∆t (2.48)

zk+1 = zk + żk ∗∆t (2.49)

To simplify equations, the change in horizontal position is computed in the first

intermediate Euler frame before being transformed back into the inertial frame. Note

that the first intermediate Euler frame is held fixed at time k. In the first intermediate

Euler frame, the 1-axis is aligned with the projection of the vehicle’s longitudinal axis

onto the horizontal plane. This change in horizontal position can then be applied to

the horizontal position components of the state vector. The horizontal position of the

aircraft at the next time step can be found using

DCMN1 =


cos(−ψ) sin(−ψ) 0

− sin(−ψ) cos(−ψ) 0

0 0 1

 (2.50)

∆rN = DCMN1 ∗∆r1 (2.51)

∆r1 = DCMT
N1 ∗∆rN (2.52)

rNk+1 = rNk +DCMN1,k ∗∆r1k (2.53)
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When the vehicle is flying wings level, calculating the change in horizontal position

in the first intermediate Euler frame is trivial, and is given by

φ = 0,

ẋ1 = u

ẏ1 = 0

ż1 = 0

(2.54)

∆r1 =


u ∗∆t

0

0

 (2.55)

It is possible to achieve increased accuracy in horizontal position with little

additional computational cost by using the equations for a coordinated level turn.

It is assumed that the aircraft’s bank angle and airspeed are constant between time

steps, and hence the aircraft travels along a perfect circular arc. The radius of the

turn is given by

rturn =
1

tan(φ) ∗ g/u2
(2.56)

with turn rate

ψ̇ =
u

rturn
(2.57)

and the change in position in the first intermediate Euler frame is then

∆r1 =


∆x1

∆y1

∆z1

 = u∆t


rturn sin(ψ̇∆t)

rturn(1− cos(ψ̇∆t))

0

 (2.58)

To avoid the singularity that occurs in turn radius when the bank angle equals 0, a

minimum bank angle of 10−5 radians is required to use the turn radius equations, and
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therefore bank angles less than 10−5 radians are assumed to equal 0. Under typical

cruise conditions (u = 14 m/s), a bank angle of 10−5 radians corresponds to a turn

radius of approximately 2000 km. After flying for 5 km at a bank of 10−5 radians, the

error in position resulting from assuming that the aircraft is in level flight is a mere

6.25 m.

After applying the equations for a steady level turn and solving for the position

and orientation, it is necessary to calculate the rotational rates in the body reference

frame using the previously determined Euler angle rates. The body rates are given by


p

q

r


k+1

=


1 0 − sin(θ)

0 cos(φ) sin(φ) cos(θ)

0 − sin(φ) cos(φ) cos(θ)


k+1


φ̇

θ̇

ψ̇


k+1

(2.59)

2.4 Flight Performance of Soaring Birds

The equations of aircraft soaring flight can be applied to the flight performance of

soaring girds. There have been many papers published on the flight performance

of soaring birds; however, relatively few deal with birds that have been observed to

make use of microlift and thermal strands. In particular, papers published on Black

Vultures and Turkey Vultures have significant data scattering, suspect methods, or

both that call into question the accuracy of the results.

Raspet estimated the soaring performance of Black Vultures by flying a glider

behind the bird and recording the relative glide performance. He then corrected the

measurements to account for the glide performance of the glider [71, 72]. However,

Tucker and Parrott later noted that the glide performance calculated by Raspet

requires that the parasite drag coefficient of a Black Vulture be less than that of
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laminar flow over a flat plate [73]. Furthermore, Raspet’s estimated sink polar indicates

that a Black Vulture has a maximum lift to drag ratio in excess of 22 [71,72], which is

an unreasonably high value when compared to data on other species of soaring birds.

The overly optimistic sink polar estimated by Raspet is likely the result of the

extremely noisy method which Raspet used to obtain the relative altitude and distance

of the birds. Raspet would visually estimate the relative altitude and distance and

transmit that estimate to his ground crew via radio [71]. Twenty years later, Pennycuick

would use a more refined version of this method - using a rangefinder and camera to

measure the distance between the aircraft and the bird rather than relying on visual

estimates made by the pilot - and even with the improved method the data collected

by Pennycuick contained a large amount of random noise [74].

Parrott performed wind tunnel tests on a live Black Vulture, and would slowly

decrease the inclination of the tunnel until the vulture started flapping in order to

estimate the maximum glide angle for a given airspeed [73, 75]. While a good method

in general, the results of the wind tunnel tests were questionable due to the size of a

Black Vulture relative to the wind tunnel used. The average wing span of a Black

Vulture is 1.44 meters [76], and the wind tunnel used by Tucker and Parrot had a 1.4

meter wide by 1.1 meter high test section. The data presented by Parrott showed

that the Black Vulture used in the tests had extended its wings to a maximum of

1.37 meters when flying in the wind tunnel, but the unconstrained wingspan of the

bird was not reported [75]. Even if the Black Vulture was able to fully extend its

wings during the experiment, it was still much too large for the wind tunnel, as it

is recommended that the model - or bird - being tested have a span no larger than

70 to 80 percent of the width of the test section - much lower than the 97.9 percent

recorded in Parrott’s experiment [75].

The results of Parrott’s experiment indicates that a Black Vulture has a maximum
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lift to drag ratio of 11.6 which is more reasonable than the ratio of 22 calculated by

Raspet, but is low compared to the maximum lift to drag ratios calculated for various

other species of vulture [63, 74], and is close to that of soaring birds that are also

required to make high-speed dives, such as hawks and falcons [73,77].

The previously mentioned papers are the only ones that contain experimental

analysis of the glide characteristics of actual Black Vultures and Turkey Vultures.

However, Hoey built a radio controlled models of a Raven, Seagull, Pelican, and

Turkey Vulture to investigate the stability and control of birds [78, 79]. The majority

of his published work deals with the model of a Raven, and the models of the Seagull,

Pelican, and Turkey Vulture are barely mentioned in his published works. The Raven

model was noted to have an estimated maximum lift to drag ratio of 8. If the glide

characteristics of the Turkey Vulture model were analyzed, they were not published.

The papers published that contain the glide performance of Black Vultures and

Turkey Vultures contain data that was collected through suspect methods, which

makes the resulting sink polars of questionable accuracy. However, it is possible to use

data collected for a geometrically similar bird and adjust its sink polar to account for

the different wing loading. It so happens that the wingspan, aspect ratio, and body

geometry of the White-Backed Vulture is similar to that of the Black Vulture and the

Turkey Vulture. This geometric similarity can be seen in Figures 2.6, 2.7, 2.8.

Figure 2.6. African White-Backed Vulture [11]
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Figure 2.7. Black Vulture [12]

Figure 2.8. Turkey Vulture [13]

Pennycuick used in-flight measurements taken from a Schleicher ASK-14 motor

glider to calculate the sink polar of the White-Backed Vulture. Measurements of the

relative position of the gliding vultures were taken using a camera and optical range

finder, and were subsequently corrected to account for the glide characteristics of the

glider [39,74]. Pennicuick then fit the adjusted glide measurements to the equation

for an aircraft’s sink polar derived in Welch, Welch, and Irving [64]. Fitting the data

to a theoretical model minimized the impact of measurement error.

A careful inspection of Pennicuick’s calculations reveals that he applies the as-

sumption that White-Backed Vultures have an Oswald’s efficiency factor of 1, rather

than his stated assumption of a span efficiency factor of 1 [74]. This error resulted in

his calculated sink polar for the White-Backed Vulture indicating higher lift to drag
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ratios than there should be.

Starting with the equation found in Welch, Welch, and Irving’s [64] and repeating

Pennyuick’s method [74] using a more reasonable Oswald’s efficiency factor of 0.80, a

corrected sink polar equation for the White-Backed Vulture may be found as follows

Wsink =
2kW

πAρ0S

1

V
+
CD0ρ0S

2W
V 3 (2.60)

k =
1

e0
(2.61)

Wsink =
7.248

V
+ (1.710 ∗ 10−4)V 3 (2.62)

Pennycuick’s sink polar and the revised sink polar of the African White-Backed

Vulture are shown in Figure 2.9. Pennycuick’s model predicts a minimum sink rate of

0.76 meters per second and a maximum lift to drag ratio of 15.3, while the model that

includes a more reasonable estimate of Oswald’s efficiency factor predicts a minimum

sink rate of 0.89 meters per second and a maximum lift to drag ratio of 14.2.

The corrected sink polar can then be adjusted to compensate for the lower wing

loading of Black Vultures and Turkey Vultures. Reichmann provides equations for

adjusting a quadratic sink polar for wing loading [16]. Starting with the basic parabolic

form of the sink polar

Wsink,old = aV 2 + bV + c (2.63)

and using the scaling factor

A =

√(
W
S

)
new(

W
S

)
old

(2.64)

the adjusted sink polar is then given by

Wsink,new =
a

A
V 2 + bV + Ac (2.65)

47



8 10 12 14 16 18 20 22

Airspeed (m/s)

0.5

1

1.5

2

2.5

S
in

k
 r

a
te

 (
m

/s
)

Pennycuick's model

Revised model

8 10 12 14 16 18 20 22

Airspeed (m/s)

8

10

12

14

16

L
if
t-

to
-d

ra
g

 r
a

ti
o

Pennycuick's model

Revised model

Figure 2.9. Estimated sink rate and lift to drag ratio of the White-Backed Vulture using
Pennycuick’s sink polar and the corrected sink polar

The above equations result from first recognizing that the drag coefficient of the

vehicle for a given lift coefficient is almost entirely a function of the vehicle’s geometry,

and then assuming that the drag coefficient for a given lift coefficient is constant

across airspeed. This assumption ignores Reynolds number effects, which tend to be

small when dealing with changes in airspeed and sink rate of 10 to 15 percent. It

also assumes that the local air density is constant - Reichmann also provides similar

equations that adjust the sink polar for air density and density altitude [16].
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Given a desired lift coefficient, the lift generated by the aircraft is

L = W =
1

2
ρV 2SCL (2.66)

which allows the conclusion that
W

S
∝ V 2 (2.67)

and therefore

Vnew

√(
W

S

)
new

= Vold

√(
W

S

)
old

(2.68)

Vnew = Vold

√ (
W
S

)
old(

W
S

)
new

=
Vold
A

(2.69)

which gives the new airspeed required to fly at a given lift coefficient when the wing

loading of the vehicle is changed. Now starting with the relationship between airspeed

and sink rate and lift to drag ratio, and using the relationship between new and old

airspeed, it is possible to find the new sink rate. The lift to drag ratio is known to be

V

Wsink

=
L

D
=
CL
CD

(2.70)

and therefore

Wsink,new = Vnew
CD
CL

(2.71)

Wsink,new =
Vold
A

CD
CL

(2.72)

which can be simplified to

Wsink,new =
Wsink,old

A
(2.73)

Using these relationships between old and new airspeeds and sink rates, it is
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possible to adjust any sink polar of the form

Wsink = f (V ) (2.74)

to account for a change in wing loading. Specifically, taking the form of the sink polar

equation found in Welch, Welch, and Irving [64] and used by Pennycuick [74] it can

be found that:

Wsink =
a

V
+ bV 3 (2.75)

Wsink,new =
A2a

Vnew
+

b

A2
V 3
new (2.76)

This, combined with measurements of the weight and wing area of Black Vultures and

Turkey Vultures taken by Graves [76] can be used to adjust the corrected sink polar

of the White-Backed Vulture for the wing loading of the geometrically similar Black

Vulture

Wsink =
5.724

V 2
+ (2.165 ∗ 10−4)V 3 (2.77)

and Turkey Vulture

Wsink =
4.410

V 2
+ (2.810 ∗ 10−4)V 3 (2.78)

The resulting sink polars and lift to drag ratios are plotted in Figure 2.10. It should be

noted that the maximum lift to drag ratios are equal because the birds were assumed

to be perfectly geometrically similar and Reynolds number effects were ignored.
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Figure 2.10. Estimated sink rates and lift to drag ratios of White-Backed Vultures, Black
Vultures, and Turkey Vultures
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2.5 Choosing a UAV for Microlift Soaring

The Vulture UAV (shown in Figure 2.11) was chosen for microlift soaring because

its performance is similar to the Carbon Dragon and to that of a Turkey Vulture.

A comparison of their sink polars can be found in Figure 2.12. The Vulture UAV

has the lowest sink rate of the three, and a maximum lift to drag ratio only slightly

lower than that of the Carbon Dragon, and considerably better than that of a Turkey

Vulture. The safe airspeed range of the Vulture UAV lies within the range spanned

by a Turkey Vulture and the Carbon Dragon. Because both the Carbon Dragon and

Turkey Vultures are known to soar in microlift, it is reasonable to assume that the

Vulture UAV - with similar flight performance - will also be able to soar in microlift.

In addition, the Vulture UAV has already performed several successful autonomous

soaring flight. In addition to comparable sink performance, the turn radii of the

Carbon Dragon, a Turkey Vulture, and the Vulture UAV are similar, as was shown in

Figure 1.10.

Figure 2.11. The author launching the Vulture UAV. Photo by Jack Langelaan.

The Vulture UAV is based on a Magellan-E-XL radio controlled sailplane available

from ICARE. It is equipped with a AXi 2220/16 V2 brushless electric motor (910 kV),
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Figure 2.12. Comparison of the sink polars of the Vulture UAV, a Turkey Vulture, and the
Carbon Dragon ultralight sailplane.

a two-bladed folding CAMcarbon aero-naut 11x8 propeller, and a 3,000 milliamp-hour

3S lithium polymer motor battery to allow for hand launching and cruising when not

soaring. The endurance in a powered level cruise is approximately 20 minutes. The

Vulture UAV uses a 3DR Pixhawk autopilot with modified firmware for autonomous

flight control, and an ODROID C-1+ handles the higher level autonomy functions

such as navigation and soaring. It has a pair of 10 Amp-hour 3.7 Volt lithium polymer

avionics batteries in the wings which allow for the servos and onboard computers to

run for more than 8 hours. Some basic characteristics of the Vulture UAV can be

found in Table 2.2.

Onboard sensors include a pitot-static probe, air temperature and humidity sensors,

rate gyroscopes, accelerometers, a GPS receiver, and motor telemetry obtained through

the Castle Creations electronic speed control. In addition, the Vulture UAV has a

program that calculates the roll disturbance experienced by the aircraft, and the
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Table 2.2. Characteristics of the Vulture UAV
Parameter Value

m 2.2 kg
S 0.456 m2

b 2.51 m
Vstall ∼ 8 m/s

Vulture UAV can simulate several types of variometers using the onboard sensors.

The most often used of the simulated variometers is the relative netto variometer.

The Vulture UAV has performance that is expected to be adequate for soaring

in microlift, is equipped with a comprehensive set of sensors, and has proven its

ability to soar autonomously. All of this makes the Vulture UAV an ideal platform for

researching microlift soaring and thermal strand tracking, and is why it was decided

to use a simulated version of the Vulture UAV to test various methods of tracking

thermal strands.
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Chapter 3 |

Tracking a Thermal Strand

This chapter starts by discussing some of the challenges faced when attempting to track

a thermal strand, with a particular focus on observability of strand characteristics

and sensor noise. From there, the likelihood of approaching a thermal strand at

a given angle is investigated. Two potential methods of tracking an ideal thermal

strand are shown to be unstable, and a third method is investigated and stabilized

although it is ultimately shown to have significant limitations. Finally, a case is made

to solve the instability problem by directly commanding the angle at which the aircraft

crosses the thermal strand, and a method is presented for estimating the location and

characteristics of a thermal strand using an unscented Kalman filter.

3.1 The Challenges of Tracking a Thermal Strand

Following a thermal strand presents unique challenges. This includes a lack of existing

methods that can be applied, problems with observability, atmospheric turbulence,

sensor noise, and a lack of any visual references indicating the presence of a thermal

strand.

Part of the difficulty in tracking a thermal strand is that merely adapting traditional
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thermal soaring techniques (Reichmann’s technique [16], etc.) does not work when

trying to follow a thermal strand, and so new techniques need to be developed. Most

thermal centering approaches require the radial symmetry of a thermal for stability,

and fail when presented with the axial symmetry of a thermal strand. Furthermore,

some basic thermal strand following techniques that are simple extensions of thermal

soaring can be proven to be unstable when applied to an idealized thermal strand. For

example, the thermal centering technique of rolling towards the lift and turning tighter

when lift decreases does not work for tracking thermal strands, as discussed in Section

3.3.1. These issues preclude the use of several previously developed autonomous soaring

controllers that were based on these traditional soaring techniques, and require that

new specialized techniques for tracking thermal strands be developed. Furthermore,

these techniques must not be particularly computationally intensive, otherwise the

resulting controller will not be able to be implemented onboard the aircraft.

Observability can be a major issue when tracking a thermal strand. Determining

whether a thermal strand is to the left or right of the aircraft, and when the aircraft

crosses the center of the strand is critical to being able to follow along the strand.

The variometer is good at determining where the center of the strand is when flying

perpendicular to the strand axis, but loses observability when approaching flying

parallel to the strand. The roll disturbance detector is good at determining whether

the strand is to the left or right of the aircraft, but loses observability both when the

aircraft is flying perpendicular to the strand and when it is flying near the strand axis.

The difficulty in maintaining observability of strand strength and width is illustrated

in Figures 3.1, 3.2, and 3.3.

These losses of observability do not occur in thermalling flight unless the aircraft is

perfectly centered around the thermal. Daugherty and Langelaan developed a thermal

centering controller that seeks the maximum climb rate perturbing the turn radius

56



0 5 10 15 20 25 30

Time (s)

-1

0

1

2

U
p
w

a
rd

s
 w

in
d
 (

m
/s

)

0 5 10 15 20 25 30

Time (s)

-0.01

0

0.01

C
l re

s

Figure 3.1. Vertical wind velocity and roll disturbance encountered by the simulated
Vulture UAV when flying across an ideal thermal strand at 90 degrees to the strand axis.
σstr = 45 meters, ḣmax = 1.5 meters per second.
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Figure 3.2. Vertical wind velocity and roll disturbance encountered by the simulated
Vulture UAV when flying across an ideal thermal strand at 45 degrees to the strand axis.
σstr = 45 meters, ḣmax = 1.5 meters per second.
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Figure 3.3. Vertical wind velocity and roll disturbance encountered by the simulated
Vulture UAV when flying along the strand axis of an ideal thermal strand. σstr = 45 meters,
ḣmax = 1.5 meters per second.

and hence constantly varying distance from the center of the thermal, which also

solves the observability problem [36]. A similar approach could be used in tracking a

thermal strand by varying the aircraft’s distance from the center of the strand and

orientation relative to the strand.

Atmospheric turbulence and sensor noise present a significant challenge that must

be overcome in order to track a thermal strand. As was seen in Figures 2.3, 2.4, and

2.5, there is significant variation about the mean vertical wind velocity profile of a

thermal strand that is caused by small-scale turbulence in the atmosphere. In the data

provided by Sullivan and Patton, these variations have a standard deviation of 0.5

meters per second or more, depending on the particular strand. Add to this the sensor

noise from the variometer, and the variometer signal caused by crossing a thermal

strand becomes very noisy. The roll disturbance detector is even more sensitive to

small-scale atmospheric turbulence, and simulated flights through the LES wind field
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revealed that the signal generated by crossing a strand has a much smaller amplitude

than the noise generated by turbulence. The results from simulated flights through

the LES data were compared with saved roll disturbance detector measurements from

old test flights, and the variations in roll disturbance detector measurements were

of similar magnitude. The sensor outputs generated by the simulated Vulture UAV

crossing an ideal thermal strand while flying at an airspeed of 11.25 meters per second

can be seen in Figure 3.4, where Gaussian random noise of an appropriate magnitude

to simulate both turbulence and sensor noise was added to the true vertical wind

velocity and roll disturbance of the idealized strand model.
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Figure 3.4. Variometer and roll disturbance measurements obtained by the simulated
Vulture UAV when flying across an ideal thermal strand at 45 degrees to the strand axis.
Compare to Figure 3.2. σstr = 45 meters, ḣmax = 1.5 meters per second, ḣmeasured =
ḣ+N(0, 0.752), Cl,res,measured = Cl,res +N(0, 0.0352). Note that the added Gaussian noise
includes contributions from both turbulence and sensor noise.

It should be noted that the roll disturbance detector is reacting to a spanwise

change in local angle of attack - caused by vertical air motion from thermal strands

or turbulence - and therefore the ratio of signal generated by the thermal strand to
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noise generated by turbulence cannot be altered by changing wing loading or airspeed.

However, the ratio of signal to total noise can be slightly by changing wing loading

or airspeed. If the airspeed increases, the spanwise change in angle of attack from

vertical air motion is decreased, and therefore the magnitude of the signal generated

by a thermal strand is decreased, as is the noise generated by turbulence. Similarly,

increasing the wing loading will increase the moment of rotational inertial about the

longitudinal axis, will make the aircraft have a lower roll acceleration for a roll moment

disturbance of a given magnitude, and will decrease both the signal generated by the

thermal strand and the noise generated by turbulence. (Increasing the wing loading

will also increase the airspeed required to fly at a given lift coefficient.) The noise

contribution from sensors is only a function of the sensors used. Therefore increasing

airspeed or wing loading will slightly decrease the ratio of signal to total noise, and

decreasing airspeed or wing loading will slightly increase the ratio of signal to total

noise.

Unlike thermals and cloud streets, there are typically no clear visual indications

of the presence of a thermal strand. In order to track a thermal strand, the pilot is

forced to rely on feel and instruments rather than visual methods. While there has

been some research done on computer vision and recognition of cumulus clouds as a

way to guide autonomous sailplanes to lift [80, 81], the majority of UAV sailplanes

already rely on instruments alone for their navigation. Even so, the highly chaotic

nature of microlift and thermal strands [17] makes it difficult to design a controller

that is able to reliably track a thermal strand and extract energy.
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3.2 Determining Likely Approach Angles

While it might be assumed that there is an equal likelihood of approaching a thermal

strand from any angle, this is not the case. It is significantly more likely that the

aircraft will approach the thermal strand from an angle close to 90 degrees than from

an angle close to 0 degrees.

Two regions bounded by thermal strands were chosen from the LES data, and

the bounding strand centerlines marked. The chosen regions can be seen in Figure

3.5. Twenty thousand starting locations were picked within the two regions, and

each location was assigned a heading. The locations and headings were determined

by generating uniformly distributed random numbers. The aircraft’s flight path

was projected from the starting location along the corresponding heading until it

intersected one of the thermal strands, and the angle at which the aircraft would cross

the strand was calculated. Using the set of 20,000 crossing angles, the probability of

crossing the strand at a given angle was calculated, and the results can be seen in

Figure 3.6.

The results of the analysis need to be taken into account when designing a controller

to track thermal strands. The chance of the aircraft encountering a thermal strand at

an initial crossing angle between 80 and 90 degrees is more than 4 times as likely as

encountering a thermal strand at an initial crossing angle between 0 and 20 degrees,

and there is a greater than 55 percent chance of encountering the strand at an initial

crossing angle between 70 and 90 degrees. With this in mind, it is clear that for a

thermal following controller to be successful it must be able to reliably track a thermal

strand when approaching from a steep angle.
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Figure 3.5. Regions selected for analysis of the probability of approaching a thermal strand
from a given angle. Regions are marked in white. Large eddy simulation cross-section taken
at z/zi = 0.12.

Figure 3.6. Histogran of the probability of approaching a thermal strand from a given
angle.
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3.3 Two Unstable Methods of Thermal Strand

Following and a Stabilization of One Method

3.3.1 Instability of Direct Feedback Methods

One of the basic principles when performing thermal centering in a manned sailplane

is to "roll into the lift". As the aircraft flies into the thermal, one wing is closer to

the center of the thermal and is pushed upwards more than the other, which rolls the

aircraft away from the center of the thermal. The pilot feels this, realizes that there

is more lift on one side of the aircraft than the other, and rolls the aircraft towards

the region of higher lift and towards the center of the thermal. When rolling into the

lift, the pilot is essentially placing a gain on the felt roll disturbance and is using the

resulting signal as a roll input.

If the principle of rolling into the lift is applied to a thermal strand; however,

the result is an unstable controller that is unable to track a thermal strand. This

is because the magnitude of the roll disturbance decreases both with an increase in

crossing angle and when near the center of the thermal strand, and because of lag in

the response to the controller’s commands (instability resulting from lead or lag is

discussed in Section 3.3.2).

Let’s consider an aircraft equipped with a simple proportional controller that takes

in roll disturbance and outputting a bank angle command. When the aircraft flies

further from the strand, the magnitude of the roll disturbance decreases and so the

bank angle and turn rate will decrease. In addition, when the angle at which the

aircraft is approaching the strand increases, the roll disturbance, bank angle, and

turn rate all decrease again. The effect of these decreases in turn rate is to gradually
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increase how far the aircraft deviates from the strand with each crossing until it

reaches a point at which the roll disturbance is decreasing faster than the controller

can bring the aircraft back towards the strand. This is illustrated in Figure 3.7, which

shows a simulation of an aircraft with perfect sensors and a roll disturbance feedback

controller attempting to track an ideal thermal strand.
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Figure 3.7. Simulated flight path of an aircraft with bank angle commanded using roll
disturbance feedback along an ideal thermal strand. Sensor noise was not included in this
simulation. Dotted lines indicate the 2σ distance from the centerline. σstr = 45 meters,
ḣmax = 1.5 meters per second.

Multiple variations of this controller were tested to see if there was a combination

of linear and or nonlinear gains that would result in the aircraft tracking the strand

indefinitely. Applying the thermal centering principle of banking less when in higher

lift (near the center of the thermal) and banking harder when in low lift (now further

away from the center) did slightly improve performance, but it was still unable to

perform a stable track along the ideal thermal strand.

64



3.3.2 Instability of Bank Angle Switching

One of the simplest conceptual designs for a thermal strand tracking controller is one

that always attempts to turn back towards the thermal strand. This controller in

its simplest form will switch the commanded bank angle from positive to negative

(right bank to left bank) based on whether the strand is to the right or to the left.

The stability of the controller can be determined by looking at the angle at which the

aircraft crosses over the longitudinal axis of the strand and taking the limit as the

crossing number goes to infinity.

There are various ways to determine whether the strand is to the left or the right

using flight path information and variometer and roll disturbance measurements;

however, for any real system the controller will always be unstable and result in the

aircraft losing its track along the strand. The proof of this is as follows, with associated

diagram found in Figure 3.8.

Assume that the aircraft is already tracking along the strand by performing a series

of turns, alternating direction each time the central axis of the strand
←→
OL is crossed.

The process of sensing the peak crossing at Pn - where n denotes the nth crossing of

the strand axis - rolling into the turn, and performing the turn is represented by a

line segment PnAn, an arc
_

AnBnCn, and another line segment CnPn+1 at which point

the aircraft crosses over the strand axis again at point Pn+1.

Proof. Let:

Dn be the center of arc
_

AnBnCn

Bn be located such that BnDn ⊥
←→
OL

En on
←−−→
BnDn such that AnEn ⊥ BnDn

Fn on
←−−→
BnDn such that CnFn ⊥ BnDn

Assume:
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Figure 3.8. Illustration of the instability of bank angle switching controllers when attempting
to track along a thermal strand. Vehicle flight path is depicted in red, and OL is the
longitudinal axis of the strand. This depicts the case when PnAn > CnPn+1; however, the
geometric relations shown are also valid for PnAn < CnPn+1.
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PnAn > CnPn+1

Then:
_

AnBn<
_

BnCn because PnAn > CnPn+1

∠AnDnBn < ∠BnDnCn because
_

AnBn<
_

BnCn

AnDn ⊥ PnAn because AnDn is a radius of
_

AnBnCn

∠LPnAn = ∠AnDnBn because
←−−→
AnDn intersects

←→
OL, AnDn ⊥ PnAn, and BnDn ⊥

←→
OL

∠OPn+1Cn = ∠BnDnCn because
←−−→
CnDn intersects

←→
OL, CnDn ⊥ Pn+1Cn, BnDn ⊥

←→
OL

∠LPn+1An+1 > ∠LPnAn

This proof demonstrates that if PnAn > CnPn+1, then ∠LPn+2An+2 > ∠LPn+1An+1,

and it can be concluded that each successive crossing angle will be larger than the last.

This progressive increase in crossing angle will continue until the aircraft no longer

crosses over the strand axis, as can be seen in the right portion of Figure 3.8.

A similar proof can be constructed by instead assuming that PnAn < CnPn+1, and

it can be shown that ∠LPn+1An+1 < ∠LPnAn. From this it can be concluded then

that if PnAn < CnPn+1 each successive crossing angle will be smaller than the last.

In the case when PnAn = CnPn+1 and the flight path is symmetric about the

strand axis, the proof can be repeated to show that ∠LPn+1An+1 = ∠LPnAn, and

∠LPn+2An+2 = ∠LPn+1An+1. Therefore when the flight path is perfectly symmetric

about the strand axis, each successive crossing angle will be equal to the last.

From all of this it can be concluded that a bank angle switching controller will

be stable if and only if the flight path of the vehicle is symmetric about the strand

axis, which is not possible for a real controller of this type. The time it takes to
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identify the strand peak and for the vehicle to respond to commands tends to make

PnAn > CnPn+1. In theory, a perfect predictor could generate the correct command

lead such that PnAn = CnPn+1; however, with anything except a perfect predictor

PnAn 6= CnPn+1 and the aircraft would gradually lose its track of the strand centerline.

The change in the angle at which the aircraft crosses the centerline can be found by:

BnDn ⊥
←→
OL therefore ∠PnDnBn = ∠BnDnPn+1. ∠PnDnAn = arctan(PnAn/AnDn)

and ∠CnDnPn+1 = arctan(Pn+1Cn/DnCn). DnCn = AnDn, therefore ∠OPn+1Cn =

∠LPn+1An+1 = ∠LPnAn + (arctan(PnAn/AnDn)− arctan(Pn+1Cn/AnDn))

The instability of this type of controller was demonstrated in simulations of the

Vulture UAV tracking an ideal thermal strand with zero sensor noise, as can be seen

in Figure 3.9. In the simulation it is assumed that the controller can perfectly detect

when the aircraft crosses over the strand centerline, and the only delay in the aircraft’s

response is the roughly 1 second that it takes to roll from a 15 degree left bank

to a 15 degree right bank, or vice-versa, as simulated by the proportional gain roll

dynamics(see Section 2.3.3). The simulation was then repeated using the same initial

conditions but with a 1.5 second lag in centerline detection representing the time

constant of the variometer, as can be seen in Figure 3.10. In both cases, the simulated

flight path of the aircraft matches the geometric prediction, with the simulation that

includes additional lag diverging in fewer crossings of the strand centerline, as would

be expected.

It should further be noted that in Figure 3.9 after the second crossing of the strand

centerline the aircraft is no longer obtaining a net energy gain (including aircraft sink

rate) from tracking the strand. This is because the aircraft is spending too much time

flying in the sink surrounding the strand and not enough time flying in the lift close

to the strand centerline.

Multiple versions of this controller were tested, including several different methods
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Figure 3.9. Simulated flight path demonstrating divergence of a bank angle switching
controller with perfect identification of the strand axis. Dotted lines indicate the 2σ distance
from the centerline. Blue dots indicate where the sign of the commanded bank angle was
flipped. σstr = 45 meters, ḣmax = 1.5 meters per second.
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Figure 3.10. Simulated flight path demonstrating divergence of a bank angle switching
controller with perfect identification of the strand axis but a simulated 1.5 second variometer
lag. Dotted lines indicate the 2σ distance from the centerline. Blue dots indicate where the
sign of the commanded bank angle was flipped. σstr = 45 meters, ḣmax = 1.5 meters per
second.

of peak detection. Furthermore, a controller was tested which estimated where the

peak will occur in an attempt to eliminate the lag caused by response time to roll

commands, as was one that determined which way to bank based on the slope and

concavity of recent variometer and roll disturbance detector measurements. Ultimately,

each controller exhibited the instability described above.

69



3.3.3 Discrete Variation of Heading and a Stabilization of the

Method

It has been shown that a controller based on reversing the aircraft’s bank angle will

cause the angle at which the aircraft crosses the strand axis to approach either 0 or

180 degrees for any real controller. One readily apparent solution is to command

discrete heading angles instead, and therefore guarantee that the angle at which the

aircraft crosses the strand axis will not change. This of course will only work for a

perfectly straight thermal strand - if the thermal strand curves, then the crossing

angle will change.

It should be noted that if the commanded heading is altered incrementally until

the aircraft encounters the strand axis again, the same heading instability found in

the bank angle controller will occur. This has been demonstrated in simulations of

the Vulture UAS encountering an ideal strand with zero sensor noise, as can be seen

in Figure 3.11. The controller was configured to command headings in increments of

22.5 degrees, and increment the heading every time the aircraft came within 1 degree

of the commanded heading, and would reverse the sign of the increment every time

the central axis of the strand was crossed. The usage of discrete heading increments

increases the rate at which the controller diverges, as can be seen by comparing Figures

3.9 and 3.11. The two simulations have identical configurations with the exception

of the different controllers. In both simulations it is assumed that the aircraft can

perfectly detect the strand centerline.

Rather than continuously incrementing the heading command, the heading com-

mand can be flipped between two discrete values depending on which side of the

aircraft the strand is on. This can be determined using the variometer, the roll

disturbance detector, or a combination of the two. Figure 3.12 shows the ideal case of
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Figure 3.11. Simulated flight path demonstrating instability of a controller that alters
heading in discrete increments with perfect identification of the strand axis. Dotted lines
indicate the 2σ distance from the centerline. Blue dots indicate where the commanded
turn direction was flipped. Red dots indicate where the heading command was incremented.
σstr = 45 meters, ḣmax = 1.5 meters per second.

a heading switching controller with perfect sensing of the strand centerline tracking

along an ideal strand. This approach has some significant limitations, although it is

stable for a perfectly linear thermal strand.
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Figure 3.12. Ideal track of a strand using a heading switching controller. Dotted lines
indicate the 2σ distance from the centerline. Blue dots indicate when the commanded heading
was flipped. Red dots indicate when the new heading command was applied. ψ0 = 60 degrees,
∆ψ = 60 degrees, σstr = 45 meters, ḣmax = 1.5 meters per second.

First, strand tracking is limited to strands whose longitudinal axes lie within the

heading differential of the aircraft’s initial course. This is because when the aircraft

makes the initial discrete heading change, that new heading must cause the aircraft
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to be headed back towards the strand axis.

Second, having an excessively large discrete heading change is impractical because

it can result in the aircraft flying far from the center of the strand before approaching

again which reduces the average rate of energy gain. If the aircraft deviates too far

from the strand, the energy lost to aerodynamic drag and the sink surrounding the

thermal strand will exceed the energy gained by flying across the strand.

Third, the first two limitations result in this form of controller only being able to

track strands that are approached at shallow angles. It is significantly more likely

that the aircraft will approach a thermal strand at a steep angle than at a shallow

angle, which limits the utility of this type of controller.

Fourth, as the angle at which the aircraft will first cross the strand approaches

the heading differential, one side of the resulting S-curve across the strand becomes

smaller, as seen in Figure 3.13. In this case, the approach angle has been changed by

only 10 degrees, but it has a massive effect on the flight path of the aircraft. Note that

the aircraft is required to reach the last commanded heading before it is given a new

heading command. Removing this constraint would result in both halves of the S-curve

becoming smaller as the initial crossing angle approaches the heading differential.

While in the simulation it was assumed that the aircraft would be able to perfectly

detect the strand centerline, flying close to the strand centerline at a very shallow

angle will make it very difficult to detect a peak in the variometer measurements or a

sign change in the roll disturbance measurements.

As previously noted, the heading switching controller is stable for a perfectly

straight ideal thermal strand. However, the aforementioned limitations and the

extreme sensitivity to the angle at which the aircraft approaches the thermal strand

make this type of controller unsuitable for real applications.
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Figure 3.13. Ideal track of a strand using a heading switching controller. Dotted lines
indicate the 2σ distance from the centerline. Blue dots indicate when the commanded heading
was flipped. Red dots indicate when the new heading command was applied. ψ0 = 50 degrees,
∆ψ = 60 degrees, σstr = 45 meters, ḣmax = 1.5 meters per second.

3.4 Estimating Strand Properties Using an Uscented

Kalman Filter

A better solution to the instability of the bank angle switching controller is to directly

command the angle at which the aircraft crosses the strand. This requires an estimate

of the strand’s orientation relative to the aircraft but guarantees stability as long as

the estimate is accurate. Given the high sensor noise involved and the foreknowledge

about the structure of a thermal strand, it seems reasonable to provide the estimate

of relative strand location and orientation using a Kalman filter.

To properly make use of knowledge about the structure of thermal strands, the

Kalman filter state vector needs to capture both the relative position and orientation of

the thermal strand with respect to the aircraft and information about the vertical wind

profile of the strand. Using the idealized strand model, the vertical wind profile can

be represented by two parameters: σstr and ḣmax, which are the standard deviation of

the Gaussian model and the maximum vertical air velocity of the strand. The location
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of the thermal strand with respect to the aircraft can conveniently be expressed by

drawing a vector from the aircraft to the centerline of the thermal strand at such an

angle that the vector is perpendicular to the centerline. The magnitude of the vector

is d, the distance from the aircraft to the strand, and the heading of the vector relative

to the aircraft’s current heading is ψstr. The distance to the strand, d, is required to

always be positive, and the relative heading to the strand, ψstr, is given the range

−pi ≤ ψstr ≤ pi for convenience when designing the heading controller. The Kalman

filter state vector is

x =



d

ψstr

ḣmax

σstr


(3.1)

and the definition of the variables is illustrated in Figure 3.14.

It was decided to use an unscented Kalman filter to estimate the thermal strand

state because of the nonlinearities in the equations. A particle filter would also be

an acceptable choice to capture the nonlinearities; however, a particle filter requires

significantly more computations per time step than an unscented Kalman filter. In

this case, it was decided that the improvements to performance when dealing with the

nonlinear system would likely not be sufficient to justify the additional computational

cost.

The unscented Kalman filter presented here is based on the unscented Kalman

filter presented in a paper by van der Merwe and Wan [82].

Given a Kalman filter state and state covariance at time step k − 1, the time

update on the Kalman filter state was performed as follows. Given n states, sigma
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Figure 3.14. Definition of thermal strand parameters describing the location of the strand
axis OL relative to the aircraft and the updraft cross-section.

points are distributed using

χ+
k−1 =

[
x̂+
k−1 + η

√
Pk−1 x̂+

k−1 − η
√

Pk−1

]
(3.2)

η =
√
n = 2 (3.3)

Then state propagation was performed on each of the sigma points. It is assumed

that the aircraft’s state (DCM1B, VB, ψ̇, φ) is known perfectly. This is a reasonable

assumption because the covariance of the aircraft’s internal state estimate is much,

much smaller than the covariance of the thermal strand state, as will be seen later. If
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the time propagation of the filter state is given by

χ−
k = F(χ+

k−1) (3.4)

then the state propagation of the ith sigma point is as follows:

χ
(i)+
k−1 =



d
(i)+
k−1

ψ
(i)+
str,k−1

ḣ
(i)+
max,k−1

σ
(i)+
str,k−1


(3.5)

d
(i)−
k = d

(i)−
k −

(DCM1B ∗VB)T ∗


cos(ψ

(i)+
str,k−1)

sin(ψ
(i)+
str,k−1)

0


 (3.6)

ψ
(i)−
str,k = ψ

(i)+
str,k−1 + (ψ̇ ∗∆t) (3.7)

ḣ
(i)−
max,k = ḣ

(i)+
max,k−1 (3.8)

σ
(i)−
str,k = σ

(i)+
str,k−1 (3.9)

χ
(i)−
k =



d
(i)−
k

ψ
(i)−
str,k

ḣ
(i)−
max,k

σ
(i)−
str,k


(3.10)

The above equations assume that the center of the thermal strand drifts with horizontal

winds. This is not actually the case, as thermal strands lie along convergence regions

(see Section 1.3); however, horizontal winds are neglected in this simulation, so this

assumption has no impact on the results. Were horizontal winds included in the
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simulation, it would be necessary to estimate the background horizontal wind velocity

and make the appropriate changes to Kalman filter state propagation.

Finally, the a priori state estimate and covariance is calculated by

x̂−
k =

2n∑
i=1

1

2n
χ

(i)−
k (3.11)

P−
k = Q +

2n∑
i=1

1

2n

(
χ

(i)−
k − x̂−

k

)(
χ

(i)−
k − x̂−

k

)T
(3.12)

Now the measurement update was performed. First, a new set of sigma points

(denoted by a tilde) were generated using

χ̃−
k =

[
x̂−
k + η

√
P−
k x̂−

k − η
√

P−
k

]
(3.13)

and an estimated measurement was calculated for each sigma point by

γk = H(χ̃−
k ) (3.14)

For the ith sigma point, the estimated measurement is as follows:

γ
(i)
k =

 ˆ̇h(i)

Ĉ
(i)
l,res

 (3.15)

χ̃
(i)−
k =



d̃
(i)−
k

ψ̃
(i)−
str,k

˜̇h
(i)−
max,k

σ̃
(i)−
str,k


(3.16)
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ˆ̇h(i) = −0.5
(

˜̇h
(i)−
max,k

)
+ 1.5

(
˜̇h
(i)−
max,k

)
∗ exp

−
(
d̃
(i)−
k

)2
2
(
σ̃
(i)−
str,k

)2
 (3.17)

Cl,res =

(
Clp

b

2V0
cos2(φ)

)
∗ −1.5

˜̇h
(i)−
max,k

d̃
(i)−
k(

σ̃
(i)−
str,k

)2
 exp

−
(
d̃
(i)−
k

)2
2
(
σ̃
(i)−
str,k

)2
 ∗ sin(ψ̃

(i)−
str,k)

(3.18)

The estimated measurement for the a priori Kalman filter state, the measurement

covariance, and the cross covariance are given by

ŷk =
2n∑
i=1

1

2n
γ
(i)
k (3.19)

Py,k = R +
2n∑
i=1

1

2n

(
χ

(i)−
k − x̂−

k

)(
χ

(i)−
k − x̂−

k

)T
(3.20)

Pxy,k =
2n∑
i=1

1

2n

(
χ̃

(i)−
k − x̂−

k

)(
γ
(i)
k − ŷk

)T
(3.21)

and the Kalman filter gain is defined to be

Kk = Pxy,kP
−1
y,k (3.22)

Finally, the a posteriori state estimate and covariance matrix were given by

x̂+
k = x̂−

k + Kk (yk − ŷk) (3.23)

P+
k = P−

k −KkPy,kK
T
k (3.24)
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Chapter 4 |

Results

The beginning of this chapter deals with the configuration of the idealized thermal

strand simulation and some parameters that were common to all of the tested controller

designs. The unscented Kalman filter design presented in Section 3.4 is then shown to

be able to produce a track of the ideal thermal strand that is stable for all practical

purposes. A comparison is then made between the competing command strategies

of flying a series of S-curves across the thermal strand and flying straight down the

center of the strand. The problem of generating an initial state for the Kalman filter

is then discussed, and several different methods are tested and compared. A method

was developed for identifying and rejecting initial state estimates that are unlikely to

result in the aircraft tracking the strand. Finally, an initialization method is chosen,

the controller is tested in the large eddy simulation environment, and the results are

presented.

79



4.1 Configuration of the Idealized Thermal Strand

Simulation

After analyzing various other methods of tracking a thermal strand, the Kalman filter

described in Section 3.4 was used to estimate strand distance, orientation, strength,

and width. This estimate was then provided to a controller that would either track

along the center of the strand or repeatedly cross over the centerline at a prescribed

angle, making a series of large S-curves across the strand. Various initialization

methods were tested and analyzed in an attempt to find one that could reliably

provide an initialization of sufficient accuracy to enable the filter to track the strand.

No variometer or roll disturbance lag was simulated in any of the Kalman filter

based controllers because with a known variometer or roll disturbance time constant

the measurements could be applied at a previous time step so as to largely eliminate

the effects of the lag. This would result in the state estimate at time t having the

last variometer measurement update at time t− τvario and the least roll disturbance

measurement update at time t − τrdd, where τvario and τrdd are the variometer and

roll disturbance detector lags, respectfully. The primary effect would be to increase

the estimated covariance at the current time, but the estimated state and covariance

t− τvario seconds previously (assuming that the variometer lag is larger than the roll

disturbance detector lag) would be identical.

The Kalman filter uses a time covariance given by Equations 4.1 and 4.2. The

values shown were generated by starting with a reasonable guess and then tuning in

simulation to maintain the state estimate within two standard deviations of the true

value 95 percent or more of the time..
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Qcontinuous =



(0.25)2 0 0 0

0
(
5 π
180

)2
0 0

0 0 (0.1)2 0

0 0 0 (2)2


(4.1)

Qdiscrete = Qcontinuous ∗ (∆t)2 (4.2)

For all tests on the ideal thermal strand, the strand was given a width of σstr = 45

meters and a maximum vertical air velocity of ḣmax = 1.5 meters per second. This

represents a typical strand found in the large eddy simulation data at altitudes between

roughly 60 meters (z/zi = 0.06) and 120 meters (z/zi = 0.12).

4.2 Tracking Along an Ideal Strand

The Kalman filter described in Section 3.4 was used to estimate the thermal strand

state while a basic controller commanded a heading and bank angle to achieve the

desired strand crossing angle. The commanded heading would remain constant (with

variations to maintain the same heading relative to the estimated orientation of the

strand axis) until aircraft exceeded a distance of 0.5σstr from the strand axis, at which

point it would be commanded to turn back to cross the strand again. The commanded

angle at which the aircraft would cross the strand was 20 degrees, and the bank angle

was limited to 15 degrees to minimize the sink rate of the aircraft while maintaining an

adequate turn radius. The aircraft was commanded to maintain a constant airspeed

of 11.25 meters per second which is the best glide airspeed for still air.

This controller design was tested extensively in simulation using the idealized

strand model with appropriate measurement noise to simulate the effects of turbulence
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and sensor noise on the measurements. The measurements are given by Equations 4.3

and 4.4, and the Kalman filter measurement covariance can be found in Equation 4.5.

ḣmeasured = ḣ+N(0, (0.75)2) (4.3)

Cl,res,measured = Cl,res +N(0, (0.035)2) (4.4)

R =

(0.75)2 0

0 (0.035)2

 (4.5)

When given a reasonable initialization, the controller was able to reliably track

the ideal thermal strand. The flight path of the aircraft while tracking an ideal strand

can be seen in Figure 4.1. The corresponding state estimates are plotted in Figure

4.2, and the state estimate error and estimated covariance are plotted in Figure 4.3.

The initialization values for this simulation were given a normally distributed random

error consistent with the initialization covariance given by Equation 4.6.

P0 =



(
45
4

)2
0 0 0

0
(
15 π

180

)2
0 0

0 0 (0.5)2 0

0 0 0 (10)2


(4.6)

The maximum distance from the strand reached by the aircraft after each crossing

of the strand axis depends on the Kalman filter state estimate at the time. Estimate

errors in the distance do the strand centerline directly impact how far the aircraft

actually is from the strand before it starts to turn, but the estimate of strand width

also has an impact because the turn point is commanded as a function of strand width.

A Monte Carlo of 2,500 simulated 5 minute flights was conducted to confirm the

ability of the controller to intercept and track a strand given random initialization
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Figure 4.1. Flight path of the basic Kalman filter controller when tracking an ideal strand.
The aircraft is traveling from West to East. Black dotted lines indicate ±2σstr from the
strand centerline.
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Figure 4.2. State estimate and true state of the basic Kalman filter controller when tracking
an ideal strand. The true state is plotted in black and the estimated state is plotted in blue.

values as previously described. In each simulation, the aircraft was given a random

position and heading so that it would cross the center of the strand in 15 seconds, and

would presumably travel along the strand for the remaining 4 minutes and 45 seconds.

The results were filtered for simulations where the final position was more than

0.8σstr. The 47 simulations that met this criteria were manually sorted into cases
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Figure 4.3. State estimate error and estimated ±2σ bounds of the basic Kalman filter
controller when tracking an ideal strand. The state estimate error is plotted in blue, and the
black dotted lines are the estimated ±2σ bounds. σstr = 45 meters, ḣmax = 1.5 meters per
second, ḣmeasured = ḣ+N(0, 0.752), Cl,res,measured = Cl,res +N(0, 0.0352).

where the aircraft was still tracking the strand but had swung unusually wide, cases

where the aircraft had been unable to start tracking the strand, and cases where the

aircraft had started tracking the strand but had subsequently diverged. The results

are presented in Table 4.1.

Table 4.1. Results of 2,500 5-minute simulations of the aircraft tracking an ideal thermal
strand by flying S-curves.

Result Simulations
Tracked the strand 2487

Unable to start tracking 12
Tracked then diverged 1

In more than 99 percent of the simulations, the aircraft successfully tracked the

strand and had a final location within 1 σstr of the strand centerline. In 12 of the

remaining 13 simulations, the aircraft received a Kalman filter initialization that
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included one or more states significantly beyond 2 standard deviations of the true

value, as determined by the initial covariance. In 1 simulation the aircraft begin

tracking the strand and subsequently lost the strand. This represents a total of 196.9

hours spent tracking the ideal thermal strand with the aircraft only losing the strand

once.

Multiple long-duration simulations were also conducted in which the aircraft would

continuously track the ideal strand for 20 minutes, traveling approximately 13.5

kilometers along the ideal strand. The first 5 kilometers of the flight path from one of

these simulations can be seen in Figure 4.4. During this flight, the aircraft had an

average rate of energy gain from the atmosphere of 1.33 meters per second - 89 percent

of the maximum rate of energy gain rate available. The aircraft had an average net

energy rate of 0.83 meters per second, which indicates an average sink rate of 0.50

meters per second.
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Figure 4.4. Partial flight path of the basic Kalman filter controller tracking an ideal thermal
strand by flying S-curves during a 20 minute simulation. The aircraft is traveling from West
to East. Black dotted lines indicate ±2σstr from the strand centerline.

4.2.1 Flying Down the Strad Centerline Versus S-Curves Across

the Strand

There are two basic approaches to following along a thermal strand: flying down the

center of the strand, or flying a path that repeatedly crosses the strand axis. Flying

down the centerline of the strand will maximize the rate of energy gain; however, it
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decreases observability of the thermal strand. Intentionally flying a path that causes

the aircraft to repeatedly cross the strand axis - while resulting in a lower rate of

energy gain - has increased observability of the thermal strand by sweeping across the

width of the strand.

Flying along the center of the strand reduces observability of the thermal strand

state. All that can be determined is that the aircraft is on or near the centerline

of the strand which allows for excellent knowledge of the maximum strength of the

strand, but provides no information about the width of the strand or the relative

heading angle of the strand. It also provides little about the distance to the strand

centerline because of the lack of information about strand heading and width. This

lack of observability results in the covariance of the Kalman filter estimate increasing

and the quality of the estimate degrading. This in turn causes the aircraft to deviate

from its path down the centerline of the strand, and results in a series of unintentional

deviations from the strand centerline, as shown in Figures 4.5, 4.6, 4.7.
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Figure 4.5. Flight path of the basic Kalman filter controller when attempting to fly down
the center of an ideal strand. The aircraft is traveling from West to East. Black dotted lines
indicate ±2σstr from the strand centerline.

The Monte Carlo of 2,500 simulations was run again using a flight controller that

would attempt to track down the center of the strand. Again, in more than 99 percent

of the simulations the aircraft was able to track the strand for the entire 5 minutes.
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Figure 4.6. State estimate and true state of the basic Kalman filter controller when
attempting to fly down the center of an ideal strand. The true state is plotted in black and
the estimated state is plotted in blue.
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Figure 4.7. State estimate error and estimated ±2σ bounds of the basic Kalman filter
controller when attempting to fly down the center of an ideal strand. The state estimate
error is plotted in blue, and the black dotted lines are the estimated ±2σ bounds.
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However, using the centerline tracking controller there were 4 cases where the aircraft

began tracking the ideal thermal strand before wandering off. During 197.5 hours of

tracking the ideal strand, the centerline controller’s estimate diverged 4 times. This is

approximately 4 times as often as the S-curve controller. The results are presented in

Table 4.2.

Table 4.2. Results of 2,500 5-minute simulations of the aircraft tracking an ideal thermal
strand by flying down the center of the strand.

Result Simulations
Tracked the strand 2492

Unable to start tracking 4
Tracked then diverged 4

As previously mentioned, flying a series of S-curves across the strand out to a

maximum of 0.5σstr and crossing the strand axis at an angle of 20 degrees resulted

in an average rate of energy gain of 1.33 meters per second. The long durations

simulations were repeated with the aircraft being commanded to fly down the center

of the strand. A partial flight path of the simulation is shown in Figure 4.8, and

during the flight the aircraft had an average rate of energy gain of 97 percent of the

maximum rate available, or 1.46 meters per second. The average net rate of energy

gain was 0.96 meters per second, again indicating an average sink rate of 0.50 meters

per second.
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Figure 4.8. Partial flight path of the basic Kalman filter controller tracking an ideal thermal
strand by flying down the centerline during a 20 minute simulation. The aircraft is traveling
from West to East. Black dotted lines indicate ±2σstr from the strand centerline.
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Flying down the centerline of the strand results in a 9.8 percent higher rate of

energy gain when compared to flying a series of S-curves across the strand. However,

this comes at the cost of knowledge about the thermal strand, as the state estimate

covariances when flying down the center of the strand are higher than when flying

S-curves across it - particularly for the estimates of d and σstr. This is particularly

apparent when comparing the number of times that each controller started to track

the strand and then diverged, although the centerline flying method did result in fewer

cases where the aircraft was unable to track the strand at all - likely because it will

head directly for where it thinks the strand is rather than attempting to flying at a

prescribed angle to the strand. For both controllers, the rate of failure given a good

initialization is extremely low.

4.3 Solving the Initialization Problem

For all practical purposes the Kalman filter based controller can track an ideal thermal

strand indefinitely; however, to do so it requires a reasonably accurate initialization.

Therefore an initialization method must be developed that provides a good estimate of

the strand state which is not computationally intensive. Furthermore, this initialization

method must reliably function when the angle at which the aircraft approaches the

strand is near 90 degrees because - as was found in Section 3.2 - it is much more likely

that the aircraft will first approach a thermal strand from a steep angle than from a

shallow angle. Several different initialization methods were tested to see how often

the Kalman filter and aircraft would be able to track the thermal strand.

It was decided to use the S-curve method of tracking a thermal strand because it

is the slightly more difficult method to get to initially track the strand, and because

once the aircraft is tracking the ideal strand it is less likely to subsequently lose track
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of the strand.

The Kalman filter was initialized when the average vertical air motion sensed by

the variometer over a given review period of time exceeds a set value. Similarly, if the

average variometer measurement during that same period drops below a predetermined

value, the Kalman filter was be turned off and the aircraft returned to seeking a thermal

strand to follow. Both values were set to 0.5 meters per second. There was also a

period of time after starting to attempt initialization during which the "return to

seeking" behavior was locked out. This was designed to give the aircraft a chance

to latch onto the thermal strand, and was termed the "latching time". The search

behavior of the controller was to level the wings and fly in a straight line until the

next thermal strand was encountered. While not ideal when attempting to re-find the

ideal thermal strand, this method is acceptable when there is more than one strand

available to track, as was the case in the large eddy simulation environment and would

be the case in the real atmosphere.

For each initialization method, a Monte Carlo analysis was run consisting of 1000

simulations at each of 10 approach angles evenly spaced from 0 to 90 degrees (parallel

to the strand to perpendicular to the strand). The aircraft was positioned so that it

would initialize the Kalman filter 15 seconds after the start of the simulation, except

when the initial position of the aircraft had it flying parallel to the strand. In that

case, the Kalman filter initialized as soon as the buffer of saved measurements was

full. Flight was simulated for 90 seconds, at which point the controller was checked

to see if it was currently tracking a thermal strand or searching for a thermal strand.

The number of times that the Kalman filter was initialized was also recorded.
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4.3.1 Naïve or Arbitrary Initialization

The simplest way to initialize the Kalman filter is to naïvely assume that the strand

is directly in front of the aircraft with a covariance large enough that it hopefully

encompasses the true location of the strand. This method of assigning an arbitrary

initialization value does have the drawback that it may take a while for the estimate

to converge to the true state of the thermal strand. The chosen initialization values

represent a fairly typical thermal strand, although in this case care was taken to

prevent the initialization value from being too close to the parameters of the ideal

strand upon which the initialization method is being tested.

The configuration of the controller with arbitrary initialization is given in Table

4.3. How often the aircraft was able to track the strand as a function of approach

angle is shown in Figure 4.9. It initially appears that the naïve initialization method

does decently for how simple it is; however, the results are deceptive.
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In instances when it takes a while for the estimate to converge to the true state of

the strand, the aircraft will overshoot the strand but start to turn around. By this
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Table 4.3. Configuration of the controller testing arbitrary initialization.
Parameter Configuration

Tracking method S-curve
Measurement buffer length 6 seconds
Variometer review period 6 seconds

Latching time 15 seconds
Desired crossing angle 20 degrees

Bank angle limit 15 degrees
Airspeed 11.25 meters per second
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Figure 4.9. Percent of the time that the arbitrary initialization controller can track the
strand.

point the aircraft is often beyond 2σstr from the strand, and the aircraft is unable

to complete the turn and return to the strand before 15 seconds has elapsed and

the aircraft returns to seeking. While the aircraft is unable to return to the strand

in time, it sometimes turns just far enough that at some point in the future it will

cross the strand again. If the aircraft has turned far enough that the second crossing

occurs within the 90 second simulation, then the Kalman filter will reinitialize and
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start trying to track the strand again. This also occurs if the 15 degree bank limit

is insufficient to get the aircraft turned around in time. During the Monte Carlo

there were many cases where the Kalman filter initialized twice or more during the 90

second simulation.

When attempting to find a reliable initialization method, it is not sufficient for the

controller to have eventually tracked the strand - this includes the possibility that the

first initialization was of poor quality and was only sufficient to nudge the aircraft back

towards the strand after overshooting. For the initialization method to be reliable,

it needs to return a state estimate sufficient to track the thermal strand on the first

attempt. The naïve initialization is a particularly dramatic example of this, as can be

seen in Figure 4.10. When approaching the thermal strand at steep angles - as will

most often be the case - this initialization method enables the aircraft to track the

strand between 20 and 40 percent of the time. However, in a large number of cases

it is taking two or more initializations before the aircraft can track the strand. For

example, during the 1,000 simulations where the aircraft approached perpendicular to

the strand it never once tracked the strand on the first attempt.

4.3.2 Dynamic Control of Maximum Bank Angle and Approach

Angle and the Addition of Variable Airspeed

The decrease in the ability of the controller to track the thermal strand when approach-

ing from nearly perpendicular is the result of the bank angle limit and commanded

crossing angle being too restrictive. By looking at the estimated strand state and

dynamically varying the bank angle limit commanded crossing angle, the performance

of the controller can be significantly improved.

Rather than always approaching such that the aircraft will cross the strand at
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Figure 4.10. Percent of the time that the arbitrary initialization controller can track the
ideal thermal strand on the first attempt.

a 20 degree angle, the aircraft was commanded to approach at a 60 degree angle if

the strand was estimated to be greater than 1.5σstr from the aircraft. Furthermore,

if the aircraft believed it needed to make a turn of 50 degrees or more to reach the

commanded heading, the roll limit was increased from 15 degrees to 30 degrees. In

addition, the airspeed controller was turned on, which will decrease the airspeed of

the Vulture UAV - and subsequently the turning radius - when flying through lift.

The Monte Carlo simulation of the Kalman filter controller with arbitrary initial-

ization was repeated using the dynamic approach method. The configuration of the

controller is given in Table 4.4, and the results are shown in Figure 4.11. The initial

state and covariance are identical to the arbitrary initialization values.

The addition of variable desired approach angle and bank angle limit, as well as

the addition of variable airspeed, has significantly improved how often the aircraft
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Table 4.4. Configuration of the controller testing arbitrary initialization with dynamic
approach.

Parameter Configuration
Tracking method S-curve

Measurement buffer length 6 seconds
Variometer review period 6 seconds

Latching time 15 seconds
Desired crossing angle 20 / 60 degrees

Bank angle limit 15 / 30 degrees
Airspeed Best glide

Approach method Dynamic
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Figure 4.11. Percent of the time that the arbitrary initialization controller can track the
ideal thermal strand when using the dynamic strand approach method.

can track the strand when approaching from close to 90 degrees. However, with an

average rate of tracking of just less than 60 percent, there is considerable room for

improvement.
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4.3.3 Left or Right

Rather than having a single arbitrary guess of the thermal strand state, the average

roll disturbance recorded in the measurement buffer could be used in an attempt to

determine whether the thermal strand lies to the left or the right of the aircraft. Then

a choice can be made between two initialization values found in Equation 4.9.
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Table 4.5. Configuration of the controller testing initialization that assumes the strand is
either to the left or the right.

Parameter Configuration
Tracking method S-curve

Measurement buffer length 6 seconds
Variometer review period 6 seconds

Latching time 15 seconds
Desired crossing angle 20 / 60 degrees

Bank angle limit 15 / 30 degrees
Airspeed Best glide

Approach method Dynamic

When compared to arbitrarily initializing the strand in front of the aircraft, this

method produces a substantial improvement in tracking the strand at approach angles

between 0 and 60 degrees. However, there is a large decrease in performance when

the aircraft is approaching nearly perpendicular to the strand axis. This can be seen
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in Figure 4.12.
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Figure 4.12. Percent of the time that the controller which initializes assuming the strand
is either to the left or right can track the ideal thermal strand.

4.3.4 Left, Right, or Straight Ahead

In an attempt to improve the ability of the 2 case controller to track a strand when

approaching from nearly perpendicular, a third initialization case was added. If the

average of the roll disturbances recorded in the measurement buffer has a magnitude

less than 0.006, then the strand is assumed to be directly ahead. Otherwise, the

sign of the average of the roll disturbance measurements is used to determine if the

strand is to the left or the right. The initialization states and associated average

roll disturbance criteria can be found in Equation 4.11, and the associated initial

covariance can be found in Equation 4.12.
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Table 4.6. Configuration of the controller which initializes assuming the strand is left, right,
or straight ahead.

Parameter Configuration
Tracking method S-curve

Measurement buffer length 6 seconds
Variometer review period 6 seconds

Latching time 15 seconds
Desired crossing angle 20 / 60 degrees

Bank angle limit 15 / 30 degrees
Airspeed Best glide

Approach method Dynamic

The performance of the 3 case initialization method at approach angles between 0

and 60 degrees is similar to that of the left-or-right initialization method. The cutoff

criteria was adjusted several times in an attempt to maximize the performance As

expected, there is a large improvement between approach angles of 60 and 90 degrees

in how often the aircraft is able to track on the first attempt.
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Figure 4.13. Percent of the time that the 3 case controller can track the ideal thermal
strand.

4.3.5 Fitting Using 4 Averaged Measurements

Rather than arbitrarily picking a location (or a number of locations), setting a high

yet reasonable covariance, and relying on the Kalman filter to refine the guess, it is

possible to use the variometer and roll disturbance measurements - along with the

aircraft’s state when they were taken - to estimate a strand size and location that

could produce the measurements. However, fitting an ideal thermal strand to a 6

second buffer of variometer measurements, roll disturbance detector measurements,

and aircraft state vectors all recorded at 20 Hertz will require significant computational

resources and time. Note that keeping track of the aircraft’s position and orientation

for each measurement is critical, as this dramatically affects the measurements.

If instead of attempting to fit the 4 parameters of the ideal thermal model to 242

measurements, those parameters were fit to a small number of measurements then the
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computational time required would decreased. In this controller, the 6 second buffer

of saved data is divided into 2 equal length segments. The measurements and state

vectors within each of the segments are averaged to generate 1 average roll disturbance

measurement and 1 average variometer measurement for each of 2 average aircraft

states. The resulting 4 measurements and 2 positions are then used to solve for the 4

ideal thermal strand parameters using MATLAB’s nonlinear equation solver "fsolve".

The equations input to "fsolve" are structured in such a way that the returned state

vector for the ideal thermal strand is relative to the aircraft’s current position.

It should be noted that this method of averaging aircraft state works best when the

change in the state of the aircraft with respect to time is roughly linear. For example,

if the aircraft is flying in a straight line, the average position is a point on that line

and is consistent with where the measurements were taken. If instead the aircraft is

flying a tight turn, the average position is a point halfway along the turn, offset inside

the turn - and from where the measurements were taken - by some distance.

The length of a single segment also has an effect on the accuracy of the result.

In addition to exacerbating nonlinear changes in the position and orientation of the

vehicle, the measurements of a thermal strand are themselves nonlinear. This means

that averaging over an excessive amount of time degrades the result through both

the averaged position and the averaged measurements. On the other hand, while

averaging for a short period of time decreases the error introduced from averaging

position, it increases the noise in the resulting averaged measurement.

The final factor to consider is the distance spanned by the averaged positions

and measurements. A larger distance will increase the portion of the strand that

is measured and will increase the visibility of the strand parameters, but has the

potential to increase the estimate error by increasing the time over which the average

is taken.

100



The ideal thermal strand state obtained from "fsolve" is directly used as the

initial state estimate for the Kalman filter. The initial covariance estimate is given

by Equation 4.13, and how often the aircraft is able to track the strand using this

initialization method can be found in Figure 4.14.
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Table 4.7. Configuration of the controller which initializes assuming the strand is either to
the left or right.

Parameter Configuration
Tracking method S-curve

Measurement buffer length 6 seconds
Variometer review period 6 seconds

Latching time 15 seconds
Desired crossing angle 20 / 60 degrees

Bank angle limit 15 / 30 degrees
Airspeed Best glide

Approach method Dynamic

This initialization method performs worse than most of the previous methods

tested. However, it does not rely upon the Kalman filter to converge the initial state

estimate, and it can react to different thermal strand geometries - something which

entirely relied upon the initial covariance in previous methods.

4.3.6 Fitting Using 8 Averaged Measurements

Given that breaking the saved data into 2 segments and performing a nonlinear fit to

the resulting 4 averaged measurements did not work very well, the next logical step
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Figure 4.14. Percent of the time that the controller fitting to 4 average measurements can
track the ideal thermal strand.

was to attempt using more segments. This allows for a larger portion of the thermal

strand to be measured, and as previously discussed this will increase the visibility of

the strand parameters.

In this controller the saved measurement and aircraft state data was broken into

4 segments rather than 2. This produced 8 averaged measurements associated with

4 averaged aircraft states. The length of saved data was increased to 12 seconds

to maintain the length of each segment. The averaged positions and measurements

are input into a nonlinear least squares solver and used to find an ideal thermal

strand state vector that theoretically results in the smallest least squared error in the

measurements. Due to the very small magnitude of the roll disturbance measurements,

it was necessary to add a weighting factor to prevent them from being effectively

ignored (the unweighted least squared error of an roll disturbance measurement is

minuscule when compared to the least squared error of variometer measurements).
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The configuration of the controller can be found in Table 4.8, and how often it

was able to track the ideal thermal strand is shown in Figure 4.15.

Table 4.8. Configuration of the controller which initializes using 8 averaged measurements.
Parameter Configuration

Tracking method S-curve
Measurement buffer length 12 seconds
Variometer review period 6 seconds

Latching time 15 seconds
Desired crossing angle 20 / 60 degrees

Bank angle limit 15 / 30 degrees
Airspeed Best glide

Approach method Dynamic
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Figure 4.15. Percent of the time that the controller fitting to 8 averaged measurements
can track the ideal thermal strand.

Increasing the number of segments improved performance over most approach

angles, particularly for approach angles between 40 and 90 degrees. Furthermore,

this method performs better than all of the previously tested initialization methods
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at approach angles between 60 and 90 degrees - which will occur during roughly 60

percent of encounters with thermal strands.

However, this initialization method still performs worse than most of the naïve

initialization methods tested at approach angles less than 60 degrees. This is because

a naïve initialization method is guaranteed to generate an initial state estimate with

values that are reasonable for a real thermal strand, but the nonlinear fitting methods

can and sometimes do generate initial state estimates with completely unrealistic

values. When this happens, the initial state estimate is so far from the truth that

even with a conservative initial covariance estimate the Kalman filter is unable to

converge the state estimate.

4.3.7 Identifying Initial State Estimates Unlikely to Result in a

Successful Track of the Strand

The initialization values generated by the nonlinear solvers vary wildly with sensor

noise. It is not uncommon for MATLAB’s "fsolve" or "lsqnonlin" to return state

estimates that have the center of the strand kilometers away, the maximum updraft

velocity of the thermal strand hundreds or thousands of meters per second, or a σstr

that is measured in tens of kilometers. These results are nonsensical, and almost

always result in the aircraft failing to track the strand. If these bad initializations can

be filtered out, then the performance of the nonlinear fitting initialization methods

can be improved.

The first step in dealing with initializations that are unlikely to result in a track of

the thermal strand is to identify them. Using the 8 averaged measurements nonlinear

fit controller, the initial state estimate from 500 simulations at each approach angle

was plotted and color coded to indicate whether the aircraft was able to track the ideal
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strand on the first attempt, was able to track eventually, or was completely unable to

track the ideal thermal strand. The results can be found in Figures 4.16, 4.17, 4.18,

and 4.19.
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Figure 4.16. Scatter plot of initialization values of d when encountering the ideal thermal
strand. Blue indicates that the controller tracked on the first attempt, yellow that the
controller was eventually able to track, and red that the controller failed to track. An
enlarged view can be found in Figure 4.20

The results for d, ḣmax, and σstr are particularly useful, as almost all of the

instances in which the aircraft was able to track the strand on the first attempt are

grouped tightly together. Figures 4.20, 4.21, and 4.22 show an enlarged view of the

previous plots of d, ḣmax, and σstr with a focus on the region that contains the cases

where the aircraft was able to track the strand.

Using this knowledge about the distribution of strand state variables in cases for

which the aircraft was able to track on the first attempt, it was possible to define

criteria that will reject a large number of initializations that do not converge while

keeping those that do.
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Figure 4.17. Scatter plot of initialization values of ψstr when encountering the ideal
thermal strand. Blue indicates that the controller tracked on the first attempt, yellow that
the controller was eventually able to track, and red that the controller failed to track.
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Figure 4.18. Scatter plot of initialization values of ḣmax when encountering the ideal
thermal strand. Blue indicates that the controller tracked on the first attempt, yellow that
the controller was eventually able to track, and red that the controller failed to track. An
enlarged view can be found in Figure 4.21
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Figure 4.19. Scatter plot of initialization values of σstr when encountering the ideal thermal
strand. Blue indicates that the controller tracked on the first attempt, yellow that the
controller was eventually able to track, and red that the controller failed to track. An
enlarged view can be found in Figure 4.22

Almost all of the initialization values of σstr for which the aircraft was able to track

the strand were less than 150 meters, and based on published data it was determined

to be highly unlikely that a real thermal strand would have a σstr greater than 150

meters. Therefore, a criteria was be set that would filter out all returned initial states

for which σstr > 150. In addition, it was decided to require that σstr > 10 meters.

Thermal strands smaller than this were found to occur in the large eddy simulation

data only at altitudes less than 40 meters (z/zi = 0.04), and commonly occur below

20 meters (z/zi = 0.02). The Vulture UAV is flown autonomously only at altitudes

greater than 30 meters above ground level, so it is unlikely that the real aircraft would

encounter a strand of this size. Having a minimum strand size was necessary because

sometimes the nonlinear fit would return an initialization guess that consisted of a

very narrow strand (σstr = 0 to 10 meters) that was right on top of the aircraft. These
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Figure 4.20. Scatter plot of initialization values of d when encountering the ideal thermal
strand with a focus on values for which the aircraft tracked on the first attempt. Blue
indicates that the controller tracked on the first attempt, yellow that the controller was
eventually able to track, and red that the controller failed to track.
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Figure 4.21. Scatter plot of initialization values of ḣmax when encountering the ideal
thermal strand with a focus on values for which the aircraft tracked on the first attempt.
Blue indicates that the controller tracked on the first attempt, yellow that the controller was
eventually able to track, and red that the controller failed to track.
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Figure 4.22. Scatter plot of initialization values of σstr when encountering the ideal thermal
strand with a focus on values for which the aircraft tracked on the first attempt. Blue
indicates that the controller tracked on the first attempt, yellow that the controller was
eventually able to track, and red that the controller failed to track.

initializations were more likely to occur when the aircraft was flying nearly parallel

to the strand (see Figure 4.22); however, they did occur for every approach angle.

In these cases, the aircraft was almost never able to track the strand, and so it was

necessary to determine a minimum strand width to allow for these initializations to

be filtered out.

Another criteria was set that required ḣmax ≤ 6 meters per second because this

filtered out the majority of initializations resulting in a lost track, and it is highly

unlikely that a thermal strand will have a strength greater than 6 meters per second.

Another criteria was set that required ḣmax ≥ 0 meters per second. While it is possible

to have a linear region of sinking air in the atmospheric convective boundary layer,

such a feature is not intended to be modeled by the ideal thermal strand, and is not a

feature that the aircraft should be tracking along.

Finally, it was also determined that the distance to the strand should be limited to
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no more than 150 meters. This was determined using the scatter plots, as before, and

the knowledge that if the aircraft has started attempting initialization, it is unlikely

to be more than one σstr away from the strand centerline.

A summary of the criteria used to accept or reject initial state estimate can be

found in Table 4.9.

Table 4.9. Criteria used for accepting or rejecting initial state estimates.
State Criteria
d less than 150 meters
ψstr none
ḣmax greater than 0 and less than 6 meters per second
σstr greater than 10 and less than 150 meters

4.3.8 Addition of Initialization Rejection and Reinitialization

The 8 averaged measurements initialization method was chosen for implementation of

initialization rejection and reinitialization because its performance was superior to

the 4 averaged measurements method. The initialization rejection and reinitialization

was configured such that if the initial state estimate did not meet the given criteria,

the estimate would be rejected, the aircraft would continue flying wings level, and

another initialization would be attempted after a set period of time - allowing enough

change in the saved measurements so that hopefully the next initialization would have

a better result. The configuration of this controller is presented in Table 4.10, and the

results of testing on the ideal thermal strand are shown in Figure 4.23.

Adding initial state estimate rejection and reinitialization significantly improved

the performance of the 8 average measurements initialization. The chance of the

aircraft tracking the strand on the first attempt was improved for all approach angles.

Furthermore the 8 average measurement initialization with initial state estimate
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Table 4.10. Configuration of the controller which is able to reject initialization values
Parameter Configuration

Tracking method S-curve
Measurement buffer length 12 seconds
Variometer review period 6 seconds

Initialization attempt spacing 1 second
Latching time 15 seconds

Desired crossing angle 20 degrees
Approach method Dynamic
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Figure 4.23. Percent of the time that the controller fitting to 8 averaged measurements
with initialization rejection can track the ideal thermal strand.

rejection was able to eventually track the ideal strand more than 80 percent no matter

at what angle the aircraft approached the strand. When it is considered that the

aircraft is more likely to approach the strand at a steep angle than a shallow angle, this

initialization method performed better overall than any other initialization method

tested.
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4.4 Testing in LES

The controller with 8 averaged measurement initialization and rejection of poor initial

state estimates was subjected to a Monte Carlo analysis in the large eddy simulation

wind field. The configuration of the controller can be found in Table 4.11. The large

eddy simulation data was tested to confirm that the magnitude of the mean updraft

velocity at any altitude was less than 10−3 meters per second, and that continuity was

maintained. The actual magnitude of the mean updraft velocity was much smaller

than 10−3 at every altitude checked. From this it was concluded that the average

updraft velocity encountered by an aircraft flying through the wind field would be

almost exactly 0. This was confirmed in simulation.

Table 4.11. Configuration of the controller which is able to reject initialization values
Parameter Configuration

Tracking method S-curve
Measurement buffer length 12 seconds
Variometer review period 6 seconds

Initialization attempt spacing 1 second
Latching time 15 seconds

Desired crossing angle 20 degrees
Approach method Dynamic

The aircraft was started at 120 meters above ground level in every simulation and

was configured with an altitude controller that would attempt to make sure that it

remained at or above 120 meters at all times. When the aircraft descended below 120

meters, the motor would be turned on and the aircraft would climb back up to 120

meters. If an updraft caused the aircraft to soar above 120 meters, the motor would

be turned off.

The aircraft was given a random heading and horizontal position for each of 600

simulations. Each simulation lasted 10 minutes. If the aircraft ran into the horizontal
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boundaries of the simulation environment, it would be turned around and the Kalman

filter state vector appropriately adjusted. If the aircraft exceeded the upper bound

of the simulation, it would descend back down on its own because all vertical wind

velocities above 400 meters were set to 0. Violating the lower bound of the simulation

was not an issue because of the altitude controller.

As a baseline, a set of simulations were run in which the aircraft was given a

random starting position and heading, and was commanded to fly a constant airspeed

with the wings level. Because the aircraft dynamics in the simulation do not include

the effects of disturbances, this had the same effect as commanding the aircraft to

fly a constant airspeed and heading. As was expected, the average updraft velocity

encountered by the aircraft was nearly 0 meters per second. A histogram of the

updraft velocity encountered during these simulations is shown in Figure 4.24.

The results of the 600 simulations and 100 hours of simulated flight are shown in

Figures 4.25 and 4.26. The average updraft velocity encountered over the 100 hours

of flight was 0.32 meters per second, and the average net energy rate was -0.20 meters

per second. This matches the calculated average sink rate of 0.52 meters per second.

On average, the average updraft velocity was insufficient to maintain flight, but is

considerably better than the average updraft of 0 meters per second that was found

when the aircraft was commanded to fly random headings through the large eddy

simulation. Furthermore, the average net energy rate of -0.20 meters per second with

the controller was considerably better than the -0.47 meters per second obtained from

flying the airspeed for maximum lift to drag.

The Monte Carlo analysis was repeated using the centerline tracking method

instead of S-curves. It was found that the average updraft experienced by the

centerline tracking controller was also 0.32 meters per second, with an average net

energy rate of 0.21 meters per second. These values are close enough to those of the
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Figure 4.24. Distribution of local updraft encountered when flying a random heading in
the large eddy simulation wind field. The mean updraft velocity is marked in gray. The
minimum sink rate and sink rate at maximum lift to drag of the Vulture UAV are shown in
blue and red, respectfully, as a reference.

Figure 4.25. Distribution of updraft encountered by the aircraft in the large eddy simulation
wind field while using the thermal strand tracking controller. The mean updraft velocity is
marked in gray.
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Figure 4.26. Distribution of net energy rate of the aircraft in the large eddy simulation
wind field while using the thermal strand tracking controller. The mean net energy rate is
marked in gray, and the average sink rate of the Vulture UAV is shown in red as a reference.

S-curve tracking method that it was concluded that when applied to the large eddy

simulation wind field, neither method was superior.

Slightly less than half of the time both the S-curve controller and the centerline

controller were able to navigate the aircraft such that the average updraft velocity

experienced exceeded the maximum lift to drag sink rate. The flight path of one such

successful flight using the centerline tracking controller is shown in Figures 4.27 and

4.28, with the color of the line indicating the total energy of the vehicle - including

onboard energy storage in the form of the 3000 milliamp-hour 2S lithium polymer

battery. Figure ?? shows the flight path overlaid on top of a cross-section of the large

eddy simulation wind field taken at 240 meters. The aircraft is able to track along

the strands for short periods of time; however, vertical updrafts from large turbulent

eddies tend to throw off the Kalman filter estimate and cause the aircraft to lose track

of the strand.
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During the simulation, that the aircraft encountered the boundaries of the com-

putational domain three times: once at the Northern boundary, once at the upper

boundary of 400 meters, and once at the Western boundary. Both times the aircraft

encountered the horizontal boundaries, it was simply turned around with appropriate

changes made to the Kalman filter state. When the aircraft encountered the upper

boundary of the simulation, the lift experienced by the aircraft decreased - preventing

it from soaring higher. Updraft strength at altitudes above 400 meters was set to 0,

as described in section 2.2.1.
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Figure 4.27. 3D flight path of a successful flight through the large eddy simulation wind field
using the centerline tracking controller. The flight path is colored to reflect the instantaneous
total energy of the vehicle. The average updraft experienced during the flight was 0.56 meters
per second, and the average sink rate of the aircraft was 0.52 meters per second.

The aircraft starts with a normalized total energy of 1.23 ∗ 105 meters, and reaches

a maximum normalized total energy of 1.25 ∗ 105 meters. Sixty-three seconds after the

start of the simulation, the aircraft the minimum normalized total energy experienced

during the simulation of 1.19 ∗ 105 meters. This is because the lithium polymer motor

battery contains a lot of energy, but a substantial portion of that energy is lost in the

116



0 1000 2000 3000 4000 5000

East (m)

3000

3500

4000

4500

5000

5500
N

o
rt

h
 (

m
)

Start

End

1.19

1.2

1.21

1.22

1.23

1.24

T
o

ta
l 
e

n
e

rg
y
 (

m
)

10
5

Figure 4.28. 2D flight path of a successful flight through the large eddy simulation wind field
using the centerline tracking controller. The flight path is colored to reflect the instantaneous
total energy of the vehicle. The average updraft experienced during the flight was 0.56 meters
per second, and the average sink rate of the aircraft was 0.52 meters per second.

Figure 4.29. 2D flight path of a successful flight through the large eddy simulation wind
field using the centerline tracking controller. The average updraft experienced during the
flight was 0.56 meters per second, and the average sink rate of the aircraft was 0.52 meters
per second. Large eddy simulation cross-section taken at 240 meters.
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electronic speed controller, motor, and propeller.

Another successful flight through the large eddy simulation environment is presented

in Figures 4.30 and 4.30. In this case, the aircraft was able to track along a thermal

strand for 1400 meters before it encountered a large turbulent eddy that caused it to

lose track of the strand.
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Figure 4.30. 3D flight path of a successful through the large eddy simulation wind field flight
using the centerline tracking controller. The flight path is colored to reflect the instantaneous
total energy of the vehicle. The average updraft experienced during the flight was 0.62 meters
per second, and the average sink rate of the aircraft was 0.47 meters per second.

Figures 4.32 and 4.33 show a flight through the large eddy simulation where the

average updraft experienced was 0.18 meters per second, and the average sink rate of

the aircraft was 0.47 meters per second. In this simulation, the Vulture UAV made

multiple attempts to track various thermal strands; however, it was unable to do so

through a combination of inaccurate initializations and large turbulent eddies causing

the state estimate to diverge from the truth.
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Figure 4.31. 2D flight path of a successful flight through the large eddy simulation wind
field using the centerline tracking controller. The average updraft experienced during the
flight was 0.62 meters per second, and the average sink rate of the aircraft was 0.47 meters
per second. Large eddy simulation cross-section taken at 240 meters.
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Figure 4.32. 3D flight path of a flight through the large eddy simulation wind field using
the centerline tracking controller. The flight path is colored to reflect the instantaneous total
energy of the vehicle. The average updraft experienced during the flight was 0.18 meters per
second, and the average sink rate of the aircraft was 0.47 meters per second.
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Figure 4.33. 2D flight path of a flight through the large eddy simulation wind field using
the centerline tracking controller. The average updraft experienced during the flight was
0.18 meters per second, and the average sink rate of the aircraft was 0.47 meters per second.
Large eddy simulation cross-section taken at 140 meters.
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Chapter 5 |

Conclusion

The challenges of sensor noise and turbulence make it difficult to accurately track

a thermal strand in the atmospheric boundary layer; however, through the use of a

Kalman filter it is possible to reliably estimate the location of an idealized thermal

strand. It was shown that when the filter design presented in this thesis is given a

reasonable initialization, it is, for all practical purposes, able to track an ideal thermal

strand indefinitely.

Several different initialization methods were tested and compared, ranging from a

naïve assumption that the thermal strand was directly ahead to a nonlinear estimation

of the strand’s location and characteristics given a number of averaged measurements.

Of the methods tested, using a nonlinear fit to 8 averaged measurements and being

able to reject unrealistic initial state estimates and reinitialize was found to be the best

of all initialization methods tested. The aforementioned method was able to provide

an initialization good enough for the aircraft to track the ideal thermal strand more

than 80 percent of the time regardless of from which direction the aircraft approached

the ideal strand.

Finally, the Kalman filter and initialization method were tested in a wind field

generated from a large eddy simulation of the atmospheric convective boundary layer.
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Monte Carlo simulations indicated that the controller was able to obtain an average

rate of normalized energy extraction from the atmosphere of 0.32 meters per second.

However, this is lower than the average sink rate during of 0.52 meters per second that

was found during the analysis, but is considerably better than the 0 meters per second

found when the aircraft was commended to fly random headings at constant airspeed.

From this it can be concluded that the thermal strand tracking system presented in

this thesis works and provides a significant benefit over doing nothing, but it needs

improvement to be able to reliably maintain soaring flight.

5.1 Future Work

There is great potential for future work in this area, as there has been very little

research thus far into autonomous microlift soaring. One possible method to improve

estimation of the strand is to use cooperative soaring to enable better sampling.

The initialization method could be improved by determining the thermal strand

state limits as function of atmospheric conditions and the altitude at which the

vehicle is flying. This would require further analysis of large eddy simulations of the

atmosphere to determine how likely a strand with given characteristics is to form for

a known set of atmospheric conditions. Further improvement could come from an

investigation into strand acquisition maneuvers designed to increase observability of

the thermal strand’s location and characteristics.

The model of the ideal thermal strand could be expanded by including the local

horizontal wind generated by the strand. This horizontal component should at the

very least satisfy the equations for continuity of an incompressible fluid.

The sensors used could be expanded to directly include accelerometers (which are

already indirectly used by the Kalman filter through the roll disturbance detector
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and simulated variometer). Experienced sailplane pilots use vertical acceleration to

help determine when and how steeply to bank while thermalling, and can feel lateral

accelerations indicating the presence of lift even before a vertical acceleration is felt -

and seconds before the variometer responds. Particularly when combined with the

inclusion of horizontal components of wind in the model of the ideal thermal strand,

direct accelerometer measurements may improve the ability of the controller to track

a thermal strand.

Once a reliable thermal strand following controller has been developed, it could

be integrated with a thermal centering controller in an effort to determine whether

the aircraft has encountered a thermal strand or a thermal. One possible way to

accomplish this would be through the use of a multiple model adaptive estimator

running thermal centering and thermal strand tracking Kalman filters in parallel.
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