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To enable coordinated soaring by a flock of small unmanned air vehicles a method for
distributed mapping of the wind field is presented. Presently the work focuses on mapping
convective activity (i.e. thermals). The map first discretizes the environment into cells and
then uses a Kalman filter to estimate the vertical wind speed and associated covariance in
each cell. To improve computational tractability, the wind speed in each cell is assumed
to be uncorrelated to all other cells; this results in a set of independent scalar Kalman
filters. Measurements of wind speed are available at the location of an aircraft; thermal
dynamics are modeled using an exponential decay. The resulting map is combined with
a behavior-based controller to enable autonomous soaring. The covariance of wind speed
is used to drive exploration and a combination of estimated wind speed and covariance is
used to drive exploitation. The utility of the approach is demonstrated using Monte Carlo
simulations of a persistent presence task: a flock of UAVs flies in a four square kilometer
region and attempts to maximize endurance. Only gliding flight is assumed; with one
aircraft the use of the map doubles endurance compared with a no-map case. Increasing
flock size to two, four, and eight aircraft results in monotonically increasing performance,
with almost all of the eight-aircraft flocks able to remain aloft for the full mission duration.

I. Introduction

Small uninhabited aerial vehicles (uavs) are commonly used for low altitude reconnaissance or surveillance
missions. Typically the endurance of such aircraft (which are frequently hand-launchable and have wingspan
ranging from 1 to 4 meters and mass ranging from 1 to 10kg) is about an hour, making missions such as
persistent surveillance difficult, if not impossible.

However, the endurance of small uavs can be significantly improved by exploiting energy available in
the environment. Atmospheric energy can be harvested from three phenomena: (a) vertical air motion; (b)
spatial wind gradients; (c) temporal gradients (gusts). Energy harvesting from spatial gradients is known as
dynamic soaring ; energy exploitation from vertical air motion has become known as static soaring since the
time scale of vertical air motion is long compared with vehicle dynamics.

Large birds and human sailplane pilots routinely exploit vertical air motion (lift) to remain aloft for
several hours and fly hundreds of kilometers without flapping wings or the use of engines. Exploiting these
long duration vertical air motions has been an active area of research for manned glider flight for many years
and is now becoming more active for small UAVs as well.1 Recent research in autonomous soaring has shown
that enormous improvement in range and endurance is possible.2,3 Further, the stealthiness provided by
silent, gliding flight can greatly improve covert operation.

Given the improvement in performance which results from soaring by individual vehicles, it is reasonable
to suggest that significant performance improvement is likely when teams of soaring-capable uavs are de-
ployed. In fact, group behavior has been observed in both natural and human soaring flight, with significant
improvements in performance.

In 1988 Bednarz reported that Harris hawks (Parabuteo unicinctus) hunt in groups of 2 to 6 to capture
prey.4 Several tactics are described, ranging from shared search (individuals take turns searching for prey
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or spread out to cover more area) to coordinated attacks. In many cases a group of hawks can take prey
that are several times larger than an individual bird. Significant improvements in hunting success rates are
reported, and he suggests that individual benefits (in terms of net energy intake available per individual)
are maximized in a group of approximately 5 birds. Other examples of coordinated hunting by raptors have
been reported for Bald Eagles,5 Saker Falcons,6 Peregrine Falcons,7 Lanner Falcons,8 and Marsh Harriers;9

coordinated hunting is also reported for other birds such as Loggerhead Shrikes10 and Scrub Jays.11

Both structured and unstructured coordinated soaring has occurred in human sailplane competitions.12

Structured (i.e. team) soaring in human glider competitions has been found to improve performance sig-
nificantly.13 Tactics generally consist of having team members act as thermal foragers for each other, with
formation flight during cruise also a possibility. An unstructured form of coordinated soaring in humans is
known as a gaggle, where groups ranging in size from 5 to 50 sailplanes fly together. They key difference be-
tween a gaggle and a team is cooperation: significant radio communication occurs in a team, while there is no
explicit cooperation in a gaggle. In earlier competitions (1960s) gaggles typically formed in weak conditions
and consisted of less-skilled pilots following skilled pilots (a practice called leeching). Flight performance of
less-skilled pilots was considerably improved. In the mid 1980s small gaggles of skilled pilots showed good
performance in all conditions. The number of pilots involved soon grew, and large, fast gaggles became
the norm. Several attempts at limiting team soaring and the gaggle flying through new rules have been
made, but so far they have not proven successful: this illustrates the competitive advantage that results
from coordinated soaring.

The broad problem considered here is coordinated thermal soaring by a team (or flock) of small uavs. If
the wind field (including vertical components caused by thermals) is known a priori then this can be used
by the vehicles to increase endurance. Unfortunately, atmospheric convection is still a poorly understood
phenomenon, with only coarse, probabilistic predictions available. Tools such as BLIPMAPS generate maps
of likely thermal activity at a resolution of approximately two kilometers,14 but this is too coarse for use by
small uavs.

Hence the focus of this paper is on coordinated mapping of the atmosphere by a flock of small, soaring
capable uavs. The problem of mapping by robots has been well studied (see for example Thrun15 and
references therein), but there are complications when applying techniques directly to atmospheric mapping
by small uavs. First, sensing is only available at the vehicle location (i.e. long-range sensors of vertical air
motion are not available). Second, the atmosphere is dynamic. Third, most mapping problems involve solid
obstacles, rather than regions to be exploited or avoided.

The approach presented here is inspired by the occupancy grid (used in the mobile robot community for
obstacle avoidance), but there are critical differences. An occupancy grid is a numerical implementation of a
Bayesian estimator adapted to compute a binary estimation problem (whether a region of the environment,
or cell, is occupied or free).16 These have been used with great success in robot mapping problems.15 Jakuba
and Yoerger17 utilize an occupancy grid mapping method in the detection and location of hydrothermal vents
on a sea floor by an Autonomous Underwater Vehicle. The algorithm starts with no knowledge of the number
of vents or vent locations and attempts to find every vent in the search space. Dynamic environments (for
example, moving targets) can also be modeled by incorporating “forgetfulness” in the map: an example is
described by Lum et al.18

However, an occupancy grid is a binary estimator. A useful wind map must include both an estimate
of the magnitude of the wind and the uncertainty in the estimate. Bower et al. present an occupancy
grid inspired approach to thermal mapping for a single aircraft but do not address uncertainty in either
measurements or the map.19 The research presented in this paper: (1) tracks uncertainty in the expected
vertical component of wind in addition to the magnitude; (2) is scalable to flocks of aircraft.

It is assumed that each vehicle is capable of autonomous flight and that each vehicle can obtain a
measurement of wind speed (e.g. through a measurement of gps velocity, airspeed and an estimate of
orientation). This map is continuously updated as the vehicles explore the environment and includes a
model for thermal lifetime. Simulations are used to show the utility of the map for flocks ranging from
one to eight aircraft. While fielded soaring-capable uavs are likely to be equipped with motors (enabling
improved foraging for thermals) here only gliding flight is considered. An aircraft is thus considered “down”
and unrecoverable when its altitude drops to zero.

The remainder of this paper discusses the atmospheric model (Section II); describes the mapping algo-
rithm (Section III); defines soaring and exploration behavior (Section IV); discusses results of Monte Carlo
simulations which show the utility of the approach (Section V); and presents concluding remarks (Section VI).

2 of 18

American Institute of Aeronautics and Astronautics



II. Atmospheric Model

The convective boundary layer is modeled here as noiseless and characterized only by the presence of a
number of vertically rising thermals. In this simulation, no lateral winds are modeled and the ground plane
is flat and located at h = 0. Thermals are equally likely to appear at any point on the world map.

A. Thermals
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(a) A single thermal in isolation
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Figure 1. Thermal strength progression with time. The thermal displayed has R = 50m, w0 = −3m/s and
(x0, y0) = (0, 0)m. The thermal period is 1200s and t0 is 800s. Note that the thermal strength decays on the
same time scale as it builds.

The vertical wind speeds induced by a single thermal are based on a model first presented in Gedeon20

and employed in other research:21–23
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where w0 is the maximum vertical wind speed, x0 and y0 are the coordinates of the thermal center, and R
is the thermal radius. The thermal strength, shape, and radius are assumed constant from the ground plane
to the top of the convective boundary layer (here set at zi = 1500 m).

The time-varying quality of the thermal is accounted for by allowing vertical wind speed to increase with
a sigmoid function to full strength at t = t0 and to decay similarly afterwards. The period of a particular
thermal is given by T .

wz(x, y, t)

wz(x, y, t0)
=

(
1

eη(t−(t0+ 1
2T )) + 1

+
1

eη((t0−
1
2T )−t) + 1

− 1

)
(2)

The η term is used to scale the rise time of the thermal. In this work it is taken to be 0.02, yielding a rise
time of 180 seconds. This parameter may be easily scaled to simulate thermals with differing rise and decay
rates. An example of the time progression for a single thermal is given in Figure 1(b).

The advantage of the Gedeon thermal model is that it yields an area of strongly upwards moving wind
at the thermal center, surrounded by a larger, generally downwards moving region of air. This approximates
actual thermal behavior that is often observed by glider pilots. The radius of the region affected by the
thermal is approximately 3 times that of the upwards moving core of the thermal. The thermal is still a
strictly local phenomena where the presence of a thermal has a negligible effect on the wind speed far away
from it. This is in contrast to some thermal models which require the ”atmospheric sink” cancel the vertical
speed of all of the thermals.24 This makes the thermal a global phenomena, where a single thermal affects
the wind speed over the entire map.
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Table 1. Thermal parameters for boundary layer thickness zi = 1500 m.

parameter symbol mean σ max/min units

Period Tthermal 20 7.5 60 / 5 minutes

Radius R 75 20 200 / 30 m

Core strength w0 -2.56 1.5 -7 / 1 m/s

B. World

The world is defined by the sum of the wind speeds contributed by each individual thermal. A maximum
number of thermals for a given area (A), boundary layer thickness (zi), and average radius (R̄) is given by
Allen24 as:

N =
0.6A

ziR̄
(3)

In this work thermal generation is a random process, where the probability of generating a thermal is inversely
proportional to the number of thermals present with the maximum number of thermals bounded by N . At
every time interval ∆tgen, the number of active thermals, n, is determined, and new thermals are generated
with probability P given by:19

P = min

(
∆tgenN

T̄
(N − n) , 1

)
(4)

A minimum separation distance between thermals of 3R is enforced such that a realistic environment
can be approximated. Each thermal is generated with random parameters given in Table 1 and derived
from Allen.24 A sample wind field is shown in Figure 2. Note that in this simulation, the majority of
the environment has no vertical wind component: this makes soaring somewhat more difficult since the
likelihood of encountering a thermal is rather low, but the utility of a map and a coordinated flock will
become apparent.

III. Mapping
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Figure 2. A sample map of the wind speeds over
the domain simulated. The total wind speed at
any point is the sum of the contributions of each
individual thermal.

Planning algorithms typically assume that knowledge
of the environment is available. For soaring flight the
available knowledge is both incomplete and uncertain:
meteorological data can provide information about ex-
pected mean wind speeds and about the likelihood of ther-
mal activity, but it cannot give specific information such
as high-density real time wind information or precise lo-
cations of local phenomena such as thermals. Knowledge
of updraft locations (whether thermally or orographically
induced) would greatly enhance the capability to exploit
environmental energy during a mission.

It is assumed that an aircraft can measure local wind
conditions (i.e. three components of wind velocity at the
aircraft’s location), and this measurement is corrupted
by zero-mean Gaussian noise. These measurements are
then used to create a map of wind. The wind map con-
sists of estimates of vertical wind speed and the level of
confidence in the estimate. The confidence level has two
purposes: it can drive exploration, so that the vehicle
will fly towards regions of low confidence to improve its
knowledge; and it can drive the choice of flight direction when the vehicle needs a thermal to gain altitude.

The environment is divided into M × N uniform two-dimensional cells that cover the space. The size
of a cell roughly corresponds to the turn radius of the aircraft and the wind in each cell is assumed to be
constant. The problem now is to compute an estimate ŵz,ij of the vertical wind speed in each cell, and
the associated error covariance Pij . The covariance is a measure of the confidence that can be placed on
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the wind speed prediction in a particular cell. If the covariance is large, it indicates that there is a large
uncertainty in the wind speed prediction. If on the other hand, Pij is small, the wind estimate is assumed
to be accurate.

The estimation problem is cast as a set of M ×N 1D Kalman filters: it is thus implicitly assumed that
the vertical wind speed in a cell is independent of surrounding cells. Depending on cell size this is not
necessarily a good assumption (a thermal may be larger than a cell), but it greatly simplifies the estimation
process. This approximation should be conservative: ignoring correlation between cells effectively ignores
information available in the environment. In this paper it is further assumed that no a priori information
is available. In practice knowledge of terrain and sun angle (and potential for orographic lift) will provide a
priori knowledge; this can be implemented directly in the filter if it is available.

A. Filter Implementation

In Section II it was assumed that thermal strength varies with time according to a sigmoid function. For
the purpose of the Kalman filter an exponential decay is assumed, so that

wz,ij,k+1 = awz,ij,k +N (0, Q) (5)

Here a is chosen so that wz decays to 20% of its original value within one thermal lifespan T̄ (see
Figure 3(a)) and N (0, Q) represents zero-mean Gaussian process noise. The prediction step of the ijth

vertical wind speed estimate is thus

ŵz,ij,k|k−1 = aŵz,ij,k−1|k−1 (6)

Pij,k|k−1 = a2Pij,k−1|k−1 +Q (7)

The process noise Q is chosen so the 1σ uncertainty is 4 m/s after one thermal lifetime (Figure 3(b)). This
corresponds roughly to the largest expected thermal strength; this can be changed depending on performance.
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Figure 3. The dynamics of the linear Kalman filter applied to a cell. Step size is ∆tmap = 3 seconds.

A measurement zij of the wind in a cell is made while an aircraft is in the ijth cell:

zij,k = wz,ij,k +N (0, R) (8)

The measurement noise has standard deviation 0.2 m/s.
The measurement update follows the standard linear Kalman filter update:25

Pij,k|k =
(
P−1
ij,k|k−1 +R−1

)−1
(9)

Kij,k = Pij,k|kR
−1 (10)

ŵz,ij,k|k = ŵz,ij,k|k−1 +Kij,k

(
zij,k + ŵz,ij,k|k−1

)
(11)
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This measurement update is also a scalar update, which can be performed extremely quickly.
In addition to the cell which contains an aircraft, a measurement update is also performed for that cell’s

immediate neighbors. Since a thermal is larger than one cell size, it is likely that vertical wind speed in
nearby cells will be similar; to reflect the increased uncertainty of the wind speed in neighboring cells the
measurement noise covariance increases linearly from σ = 0.2 m/s at the aircraft location to σ = 4 m/s one
mean thermal radius away.

As can be seen in Figure 3(b) uncertainty in thermal strength increases sharply without available mea-
surements. The expected wind speed an a cell decreases as well (Figure 3(a)). The uncertainty will be used
by the controller to ensure that a cell is visited so that a measurement can be obtained.

B. Aircraft Model

N

E

s

ψ

(a) Top

s

D

va

γ

(b) Side

Figure 4. Coordinate frames. Left: top view. Positive directions of vectors shown. ψ is positive from the
positive N axis. Right: side view. Positive directions of vectors shown. γ shown is negative.

Gliding flight is modeled here. Vehicle parameters are given in the Appendix. It is assumed that
an on-board autopilot is able to follow turn rate and airspeed commands as well as maintain a trimmed
flight configuration, thus a kinematic model is sufficient to describe aircraft motion. Standard autopilot
instrumentation (GPS, airspeed, acceleration, angular rate, magnetometer) are assumed to be available for
locating the aircraft and taking measurements.

Aircraft positions are recorded in a standard NED coordinate system. Position is assumed to be perfectly
known at all times. Heading angles are measured from the North axis as shown in Figure 4(a). Airspeed
is specified along the glidepath of the aircraft, at angle γ from the horizontal (Figure 4(b)). The D axis is
positive downwards, thus wind speed is similarly positive downwards. The resulting state equations are:

vN = va cosψ cos γ + wN (12)

vE = va sinψ cos γ + wE (13)

vD = va sin γ + wD (14)

where [wN wE wD]T is the wind speed vector at the aircraft’s location.
Control of the aircraft is enacted through the input vector u, where:

u = [va ψ̇]T (15)

The methodology for determining control inputs is addressed in Section IV.
The aircraft’s state is now defined as [PN PE PD va ψ γ]T where glidepath angle (γ) is given as a function

of CL and CD:

γ = arctan
CD

CL
(16)

The lift coeffficient, CL is determined from airspeed assuming steady-state flight, and CD is given as a
function of CL. A final value is appended to the state vector to indicate if the aircraft is currently active.
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For obvious reasons, if the aircraft’s altitude drops below the ground plane at any time during simulation,
this value is permanently set to inactive.

The kinematic model of the aircraft is propagated through time by fourth-order Runge-Kutta integration
with a time step of 0.02 s. Low-level control inputs (the determination of the vector u) are computed at
each time step, though measurements, behavior determination, and mapping are done at different rates.

C. Aircraft Energy

Aircraft specific energy is given here as the sum of potential and kinetic energy normalized by aircraft weight.
The second derivative of aircraft specific energy will become important in the thermal centering controller
presented in Section IV

etot = h+
1

2g
v2a (17)

ėtot = ḣ+
1

g
v̇ava (18)

ëtot = ḧ+
1

g

(
v̈ava + v̇2a

)
(19)

No consideration is made for stored onboard energy because of the gliding assumption, however, it is assumed
that all aircraft have sufficient onboard energy to actuate control surfaces to follow commands for the duration
of each simulated mission

D. Multiple Agent Systems

In a multiple agent system, each aircraft is modeled independently. Measurements are shared between
aircraft at a time interval specified by ∆tmap. Though not specified by the controller, this results in aircraft
that typically avoid each other when exploring, as each aircraft seeks to explore the area containing the
least information. Also, when seeking a thermal to gain altitude, a single aircraft in a multiple agent system
benefits greatly from map information gained by the other aircraft.

One can see this expanded to a multiple agent surveillance strategy, where the aircraft in the system
are simultaneously mapping the environment and observing a target. A single aircraft may then be kept in
sight of the target at all times, switching out with another aircraft as it looses altitude. The original aircraft
can then find the nearest thermal, gain altitude, and return to its surveillance duties when the currently
surveying aircraft must switch out.

E. Map generation and exploration

The method of aircraft control and mapping is given here. The steps that are followed to generate the local
map are specified below. Note that each step is not necessarily evaluated at the same rate.

1. Update behavior of each aircraft in the world map (high level control):

• A decision maker selects a behavior for the aircraft based on its energy state, current environment
measurements, as well as its location and the information contained in the shared map.

• If necessary for the behavior assigned, a waypoint on the map is identified.

2. Update aircraft state and determine control inputs (low level control):

• Control inputs are determined based on the assigned behavior:

– If a waypoint was assigned, the turn rate required to track a waypoint is determined

– If the aircraft is assigned to thermal, the turn rate required to remain about the center of the
thermal is determined.

– The correct airspeed to fly is determined

• The aircraft’s state is updated through integration of the kinematic model.

• The cell that the aircraft is currently in is determined, and distances are recorded to the centers
of adjacent cells.
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• Measurements of the environment (wind speeds) are taken at the aircraft’s current location.

3. Update the shared map

• ŵz and P are updated though system dynamics

• Each aircraft’s measurements z are incorporated by updating ŵz and P in the affected cells.

The high level control in the first step is complex and will be detailed in Section IV. It should be clear
that an important part of the mapping process is deciding, based on the known wind map and vehicle state,
what action should be undertaken at the present time step. Exploration is the goal of each vehicle, however,
if the aircraft has passed below a threshold altitude, the aircraft must gain altitude in order to continue its
mission.

The low level control step requires that a controller be able to follow the commands specified in the
high level control step. It is here that the aircraft state is updated in simulation, however, in hardware
implementation it would be this controller that gives commands to the autopilot. The specifics of the low
level controllers are given in Section IV. The second step is also where measurements are taken.

The third step is mapping of the measurements whereby the the measurements of each aircraft are
combined and knowledge of the environmental dynamics is utilized to produce a useful map of the region of
interest.

IV. Aircraft Control and Behavior Determination
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Figure 5. A diagram showing behaviors and the transfers between them. Details of each behavior are given
in Table 2

With a mapping method in place, a control methodology is now required to determine the aircraft
behaviors to best keep the map updated. Several key behaviors and the switches between the behaviors are
programmed and shown in Figure 5. The direction of the arrows indicates in which direction a transition is
possible. The four behaviors used here are detailed below and summarized in Table 2.

Decisions are made a an interval ∆tplan. The order of precedence of the behaviors is shown in Table 2,
where the bottommost behavior takes top priority and the top behavior is only followed if none of the other
behaviors are triggered.

A. Exploration Behavior

The goal of an aircraft assigned an exploration behavior is to minimize the uncertainty (covariance values)
of the wind estimates on the map. No claim is made of the optimality of the presented behaviors, they do
however function well in simulation.

1. Local Exploration

When exploring locally, an aircraft attempts to minimize the uncertainty in the wind measurements within
a small region around that aircraft. This is the default behavior of each aircraft, and leads to small, well
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Table 2. Summary of the behaviors and the switches between them as employed in this simulation.

Behavior Trigger Prerequisite Description

Local Exploration (none) Default behavior. Local
covariance must be above
threshold.

Aircraft explores local
cells with high covariance

Global Exploration mean (Σlocal) ≥ Σthresh Local covariance must be
below threshold.

Aircraft flies to the center
of the quadrant with the
highest covariance.

Cruise to e < ethresh Aircraft’s energy is below
a threshold.

Prerequisite to ther-
malling behavior. Air-
craft flies towards region
of substantial lift.

Thermal wz ≥ vMacCready(h) Aircraft must be located
in a region with substan-
tial atmospheric lift.

Aircraft circles in an at-
tempt to center the ther-
mal and gain altitude

mapped regions in the local map. A local region is defined by ∆ilocal and ∆jlocal, a small number of cell
indexes above and below the aircraft’s current cell location (icurrent, jcurrent) in the N and E directions.
The target cell for exploration then becomes:

Targetij = max (Σi!,j!) for i" ∈ [icurrent −∆ilocal, icurrent +∆ilocal] , (20)

j" ∈ [jcurrent −∆jlocal, jcurrent +∆jlocal]

The local exploration behavior is the default for the simulated aircraft. An aircraft checks the covariance of
the cells within three indexes of its current location (∆ilocal = ∆jlocal = 3) as shown in Figure 6(a). The
cell with the highest covariance becomes the aircraft’s target, and a waypoint is placed in its center. The
size of ∆ilocal and ∆jlocal, the number of indexes over which to look, must be large enough that an aircraft
has impetus to cross the path of an aircraft that has recently mapped an area.

2. Global Exploration

If the mean covarience of the cells within an aircraft’s local exploration area is below a set threshold, the
aircraft is assigned to explore a much wider region. The global exploration behavior is thusly triggered
when the wind is known with a high degree of confidence in the vicinity of the aircraft. The map within
∆iglobal = ∆jglobal = 30 indexes of the aircraft is divided into quadrants (Figure 6(b)), and the mean
covariance in each quadrant is determined, Σmean,Q. The aircraft is then directed to fly towards the center
of the quadrant with the highest covariance and consequently in which the wind measurements are the least
certain. This behavior is primarily used to traverse the map to explore large unmapped regions.

TargetQ = max (Σmean,Qk) for k ∈ [1, 4] (21)

where

Q1 = i ∈ [icurrent −∆iglobal, icurrent] , j ∈ [jcurrent, jcurrent +∆jglobal] (22)

Q2 = i ∈ [icurrent −∆iglobal, icurrent] , j ∈ [jcurrent −∆jglobal, jcurrent]

Q3 = i ∈ [icurrent, icurrent +∆iglobal] , j ∈ [jcurrent −∆jglobal, jcurrent]

Q4 = i ∈ [icurrent, icurrent +∆iglobal] , j ∈ [jcurrent, jcurrent +∆jglobal]

B. Exploitation Behavior

In order to utilize energy in the atmosphere to extend endurance of a gliding aircraft two things must happen:
a thermal of adequate strength must be located, after which an aircraft must maneuver such that it can
take advantage of the thermal lift. The first step is accomplished in this research by utilizing the generated
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(a) Local exploration strategy (b) Global exploration strategy

Figure 6. Two strategies for exploring the environment are presented here. In the local exploration behavior,
a waypoint is set at the center of the local cell with the highest uncertainty. In the global exploration behavior,
a waypoint is set at the center of the quadrant with the highest uncertainty.

wind map and will be discussed in subsection 1 and subsection 2. The second step is accomplished through
the application of an appropriate thermal centering controller and is detailed in subsection 3. Entering and
exiting a thermal is not addressed, as it is sufficient to follow the rules in Table 2 to accomplish these tasks.

Exploitation behavior is triggered in two ways. If an aircraft happens across a region where the vertical
wind speed is greater than its current MacCready value, the aircraft will stop to take advantage of the
thermal. Alternatively, if an aircraft passes below a threshold altitude, it becomes necessary to exploit the
environment to regain energy.

1. A Thermal is Found Inadvertently
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Figure 7. The MacCready value given as a func-
tion of altitude for the distribution of thermal
strengths modeled here. The blue line shows the
MacCready value as determined by Cochrane’s
method, the green line shows the function fit used
to approximate the MacCready value.

The MacCready value, or “MacCready setting” is impor-
tant to competition glider pilots. Originally proposed
by Paul MacCready26 and further described by Reich-
mann,27 much of the examination of this value has been
done with the goal of improving performance in soaring
competitions. Classically, the MacCready value is set to
the expected rate of climb in the next thermal on the
course. However, in our current problem of a small do-
main and available thermal strength estimates, the Mac-
Cready value corresponds to the minimum strength ther-
mal that a glider should take if found. This value varies
with altitude and the shape of the function is determined
for an expected distribution of thermal strengths.

The MacCready number encourages an aircraft not
to settle for a weak thermal when it is likely to find a
stronger thermal if it continues to search. However, if a
strong thermal is encountered, the aircraft is encouraged
to take advantage of it because it is unlikely a stronger
one will be found. The inherent uncertainty is addressed
in a comprehensive paper by Cochrane,28 and his method
is adapted to the current situation. Because the goal is
endurance, it is assumed that the aircraft has indefinitely
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far yet to travel “on course,” and all calculations regarding a final glide are ignored.
The calculated MacCready value function for the modeled aircraft polars and thermal strength distri-

bution is shown in Figure 7. At every time step ∆tplan, each aircraft is assigned a MacCready value based
on its altitude. If the aircraft registers local lift greater than its assigned MacCready value, the aircraft is
directed to take advantage of that thermal and begins the centering process.

If an aircraft is engaged in any behavior except thermalling and encounters a region in which wD is greater
than the MacCready value of that aircraft given its current altitude, the aircraft will take the encountered
thermal. Similarly, if an aircraft is thermalling and the current thermal strength drops below the aircraft’s
present MacCready value, the aircraft is directed to exit the thermal and seek a stronger one elsewhere. This
limits the time an aircraft spends in weak thermals.

2. A Thermal Must be Sought

If the “cruise to” behavior given in Table 2 is triggered, the aircraft is directed to find a nearby thermal of
adequate strength to gain altitude. In this process, the map is used rather than built. The region around the
aircraft within gliding range is checked for the likely presence of thermals. Gliding range is approximately
determined by:

Range =
PD − hmin

tan γ
(23)

If a cell that likely contains a thermal is identified within this range, the distance from the aircraft to that
cell’s center (d) is computed. The measure of attractiveness of that cell, Fi,j , is determined as:

Fi,j =
µi,j

d
(24)

and a the cell with the greatest value of Fi,j becomes the aircraft’s destination. If a sufficiently strong
thermal (determined by the aircraft’s MacCready value [Figure 7]) is encountered en-transit, the aircraft
will take the new thermal instead as specified in Section 1.

3. Thermal Centering Control
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Figure 8. The aircraft’s final position after 120
seconds of simulation is circled. The flight path
for previous time steps is given by the blue line.
A thermal is located at [0,0].

Though not central to the success of the current re-
search, a method for thermalling is required for com-
pleteness of the system model. The thermal centering
controller employed here was proposed by Andersson and
Kaminer.29,30 The controller returns a commanded turn
rate ψ̇c for a specified steady-state turn radius r.

ψ̇c =
1

r
va − këcva (25)

The coefficient k is a gain used to scale the importance of
energy change to the commanded turn rate.

Because a change in airspeed while attempting to lo-
cate a thermal center will give a false reading of the energy
gained from that thermal, ëcva (the value of Equation 19
when airspeed is held constant) is used.

ëcva = ḧ (26)

Because of the constant airspeed requirement:

ḣ = −vD = −wD (27)

thus the second derivative of aircraft specific energy is
equivalent to the change of the wind speed in the D di-
rection.

ëcva = −ẇD (28)

11 of 18

American Institute of Aeronautics and Astronautics



Values for r and k are taken from Andersson and Kaminer as 30 meters and 25 respectively.
Though developed for a substantially differently shaped thermal model,29 the controller is easily deployed

in the present simulations. The result is an effective thermal centering strategy shown in Figure 8. The
aircraft tightens its circle around the thermal center as it attempts to track the prescribed 30 meter steady-
state turn radius. Advantageously, no complex calculations such as determining an induced roll rate are
required for the implementation of this controller.

C. Low-level Control

The low-level controller is in place to follow the commands specified by the high-level controller. This means
tracking specified waypoints or the turn rate required to center a thermal (Equation 25). The airspeed is
also controlled such that the aircraft flys at the most efficient speed for a given behavior.

1. Turn Rate Control

With a specified waypoint as a destination, the turn rate is determined to be the difference between the
aircraft’s heading (ψ) and the heading required to reach the waypoint (ψwp).

ψ̇c = ψwp − ψ (29)

This difference is limited such that the load factor caused by the turning maneuver is no greater than 2 (a
60◦ bank angle) yeilding a ψ̇max for a given airspeed. This limit is in place to preserve the assumption that
sink rate does not vary with bank angle. At every integration time step, this difference is computed and the
turn rate is output to correct the aircraft’s heading in order to remain on course.

If an aircraft is directed not to follow a waypoint but rather to center a thermal, the turn rate returned
is that given by Equation 25. This turn rate is also limited in the same way described above

2. Airspeed Control

When in a thermal, the airspeed to be flown is that which yeilds the minimum sink rate for the aircraft.
This results in the greatest climb rate,31 and because the aircraft is not traversing the world, no penalty is
paid for the relatively slow speed. This airspeed is determined as the maximum of the sink-rate polar of the
modeled aircraft shown in Figure 12(a). Typically the airspeed for minimum sink will depend on bank angle,
but because shallow bank angles are being assumed in the kinmatics model, a single value is determined
here.

The MacCready value may also be used to determine the optimum airspeed to fly to achieve the fastest
cross-country cruise in glider competitions. Because the goal here is exploration, it is not clear that the
MacCready value gives the optimal airspeed to fly while exploring the map. Indeed, early simulation results
show quantitatively degraded performance when the MacCready speed to fly is used rather than maintaining
the airspeed for best L/D. Thus, when cruising between thermals or exploring the world, the airspeed flown
is that for best L/D given the measured local vertical wind speed. This airspeed to fly, vstf , is given by
Reichmann27 as:

vstf =

√
c+ wz

a
(30)

where a and c are coefficients of a quadratic fit of the aircraft’s sink-rate polar and are given in the Appendix.

V. Results and Discussion

Monte Carlo simulations were conducted for five different cases. The first case (the baseline) consists of
a single glider which does not generate a map. Subsequent cases consisted of flocks of 1, 2, 4, and 8 aircraft
using a map generated during the flight. For each case 50 runs were conducted, with the same wind field
used for each case and different wind fields used for each run.

For all cases the objective was to maximize time aloft. A mission is deemed to end when the last aircraft
touches down or the simulation reaches maximum time; here maximum time is ten hours.

Each run is initialized with aircraft located at the center of the environment at an altitude of 1500 meters
(defined as, zi, the height of the convective boundary layer).
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A. The Baseline Scenario

The baseline case involved a single aircraft attempting to stay aloft as long as possible without generating
a map. In this scenario, the only way for the aircraft to gain altitude is to randomly happen across a
thermal. No memory of previously encountered thermals, nor knowledge of where thermals are likely to
exist is available. This roughly represents the actions of model sailplane pilots searching for thermal lift on
a “blue” day, i.e. a day where there are no visual indications of thermal activity.

In this baseline scenario the aircraft chooses a random waypoint in the map. If wind is encountered of
greater magnitude than the aircraft’s current MacCready value, the aircraft takes that thermal. If not, a
new waypoint is selected. This amounts to a random search of the flight domain.

The single aircraft stayed aloft for an average of 49 minutes over 50 simulated missions. An aircraft in
a steady glide at best the airspeed for best L/D from an altitude of 1500 m will stay aloft for 45 minutes.
This implies that though there is an advantage to be gained from taking thermals if they are availiable, the
lack of a map means that a random search is an ineffective strategy for finding thermals. The majority of
aircraft do not encounter any thermals during the course of their mission.

These results suggest that the wind field as used here is actually conservative: flight test results reported
by Allen,2 Edwards,3 and Andersson30 have all shown that significantly increased endurance is possible, and
that thermals are actually encountered more frequently than simulated here. The results presented here are
thus a conservative representation of performance, and it will be shown that even in this set of scenarios
significant improvement is possible using multiple aircraft.

In every simulated wind field, the baseline case performed worse than all of the other aircraft systems.

B. One Aircraft
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Figure 9. A summary of the Monte Carlo simulations.
The dotted line at the bottom of the figure represents
the flight time of an aircraft gliding at best L/D from
an altitude of 1500 m. The dashed line at the top of the
figure shows the maximum length a mission was simu-
lated for. The bars indicate the minimum, 25th per-
centile, 75th percentile, and maximum survival times
for each mission scenario. For 8 aircraft the 25th and
75th percentile flock survivals are 10 hours.

A single aircraft is simulated exploring and map-
ping the environment. With one aircraft, the gener-
ated map acts as a form of memory for the aircraft
rather than a means of communicating information.
Because the domain is large relative to the area ob-
servable by the aircraft, regions must be revisited
frequently if the map is to be of any merit. Because
of this, the aircraft is almost always in the local
exploration mode leaving large areas of the map un-
explored.

It can be assumed that a system of multiple air-
craft in which each aircraft is able to map the envi-
ronment but lacks a method for communicating its
observations will perform similarly to the single air-
craft case. Thus the single aircraft case may be used
as a second baseline for comparison.

The single aircraft system had an average en-
durance of 1.66 hours over a simulated 50 missions,
more than double the no-map case. The shortest
modeled mission flown by one aircraft while gener-
ating a map was 49 minutes in length, longer than
the mean of the missions in which no map was gen-
erated. In fact, the availability of a map resulted
in improved performance for all runs in the Monte
Carlo simulation.

C. Multiple Aircraft

In a system with two or more aircraft the map be-
comes meaningful as a tool for communication and
unplanned (or emergent) cooperation becomes evident. The aircraft tend to avoid each other while explor-
ing the map: this avoidance is not encoded directly into aircraft behavior, but results from the “desire” to
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explore regions that have high uncertainty. As one would expect, multiple aircraft result in more up-to-date
maps of the wind field, and this improved accuracy results in significantly improved overall endurance.

Results of the Monte Carlo simulations are summarized in Figure 9 and Table 3. As the number of
aircraft in the flock increases the overall mission endurance (defined as the length of time until the last
aircraft touches down) increases dramatically.

A flock of four aircraft is able to survive to the end of the simulation 12.5% of the time, an eight aircraft
flock survived 10 hours in 88.0% of simulations. The mean survival in the eight aircraft flock is reduced by
a few outliers– 90% of the runs resulted in greater than 8.2 hours endurance.

Table 3. Summary of Monte Carlo simulations. t̄1 is the average time (over the 50 runs) before the first aircraft
touches down; t̄ is the average total mission time; t10% and t90% are the 10th and 90th percentile mission times,
respectively.

# aircraft t̄1 t̄ t10% t90%
baseline 49 min 49 min 41 min 1.03 h

1 1.66 h 1.66 h 55 min 2.62 h

2 2.04 h 2.33 h 1.13 h 4.01 h

4 4.04 h 5.68 h 2.55 h 10.0 h

8 8.90 h 9.55 h 8.23 h 10.0 h

A snapshot of results for a representative run for a flock of eight aircraft is shown in Figures 10 and 11.
Figure 10 show the wind map and the actual wind field for an instant in time, with estimated vertical wind
speed represented by hue (color) and the certainty of the estimate (i.e. inverse of covariance) represented by
saturation: high certainty corresponds to high saturation. Pale regions of the map are thus areas that have
not been visited in some time.

Figure 10. A map generated by eight aircraft. The figure to the right shows actual wind conditions, the
figure to the left is the generated map. Note that many of the thermal features appear on the generated map.
Aircraft flight paths for the preceding 30 seconds are shown by the lines, aircrafts’ locations are shown by
circles, and each assigned waypoint is indicated by a black ’+’.

A 45 minute segment of the flight history of one of the aircraft in an eight-vehicle flock is shown in
Figure 11. Global exploration can be seen in the long straight segments at high altitude; local exploration
by the meandering segments; cruise to a thermal by long straight segments at low altitude and thermal
flight by spirals that increase in altitude. The slowly tightening spiral at (PE , PN ) ≈ (0, 500) indicates that
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the thermal was decaying in strength: the slightly negative ë which results from a decaying thermal caused
steadily increasing bank angle.
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Figure 11. Shown is the flight path for 45 minutes of simulated flight of a single aircraft as part of an 8 aircraft
system.

VI. Conclusion

This paper has described a method for coordinated autonomous soaring based on a distributed mapping
algorithm. The map consists of a discretized model of the environment and uses a set of one dimensional
Kalman filters to compute the expected vertical wind speed and associated covariance at the centroid of
each cell. Currently only convection is modeled, with thermal dynamics modeled using an exponential
decay. Measurements of wind speed are assumed to be available only at the location of each aircraft and are
assumed to be noisy.

The utility of the map is demonstrated using Monte Carlo simulations of a persistent presence task using
gliding uavs. A set of behaviors and a switching logic is used so that an aircraft can exploit the map to
improve individual endurance. The availability of a map doubles the endurance compared with a no-map
case. Increasing the number of aircraft in the flock leads to improved overall accuracy of the map and leads to
overall improvement in mission endurance. Monte Carlo simulations show the improvement in performance
provided by the map and by increasing the flock size.
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Appendix: Vehicle Properties

All aircraft simulated have parameters based on the SBXC radio controlled motor gliders. The controller
parameters given in Table 5 were hand tuned.

Table 4. Parameters for SBXC glider.

variable value description

m 10 kg mass

S 1 m2 wing area

fLD(ϕ) 0.1723ϕ4 − 0.3161ϕ3 + 0.2397ϕ2 ϕ = CL0 + CLαα

−0.0624ϕ+ 0.0194

a, b, c -0.0059, 0.1507, -1.4833 sink rate polar fit (m/s
va

)

Table 5. Controller parameters

parameter value description

∆tmap 3 s interval for map update

∆tplan 1 s interval for determining behavior/ assigning new waypoints

∆i, jlocal 3 number of indexes to examine for local exploration

∆i, jglobal 30 number of indexes to examine for global exploration

hmin 100 m minimum safe altitude

Σthresh 5.2 m2

s2 threshold covariance for a local region

to be considered well-known

ethresh 400 m threshold specific energy before a thermal is sought

∆tgen 60 s interval for generating new thermals

zi 1500 m convective boundary layer depth
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(a) Sink rate versus airspeed for the SBXC motor glider.
The green line shows the actual sink rate polar while the
green line shows the quadratic approximation.
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(b) L/D versus airspeed for the SBXC motor glider.

Figure 12. Vehicle properties.
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