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Abstract— Soaring aircraft and birds utilize the energy of
atmospheric convection to remain aloft. As this source of energy
gains attention as a method for prolonging the flight times of
small UAVs, it is necessary to evaluate the conditions under
which it is a viable option. The indefinite endurance problem for
soaring aircraft is cast in terms of a random geometric graph.
Tools developed for the analysis of random graphs are used to
bound the relationship between aircraft efficiency and energy
abundance in the atmosphere. A theoretical threshold is arrived
at, over which indefinite endurance flights may be possible in
an unbounded domain. Simulation results are presented that
confirm the existence of a threshold which compares favorably
to what is predicted by random graph theory. Extensions are
made to missions restricted to finite domains as well.

I. INTRODUCTION

Soaring aircraft often exclusively rely on the energy of
atmospheric motion to sustain flight. With the right combina-
tion of pilot skill, knowledge about the surrounding airmass,
and favorable atmospheric conditions, extraordinarily long
flights are possible.

The aim of this work is to bound the characteristics of the
environment, the aircraft, and the knowledge available that
are required to sustain flight indefinitely using atmospheric
energy alone. The approach taken is to represent the problem
as a random geometric graph allowing us to relate theory and
results developed for such graphs to address the limitations
of a soaring system. Real-life scenarios are more complex
than can be captured in the graph model, thus simulations
are done with far fewer limiting assumptions. We proceed
to show that the results are qualitatively the same and that
the transition predicted by theory is evident in the simulation
results.

One of many naturally occurring lift sources, thermal
lift is caused by convective currents arising from solar
heated hotspots on the ground[1]. When a mass of air rises
faster than the sink rate of a bird or aircraft, it becomes
usable as an energy source to sustain flight. Thermal lift
is commonly used by soaring birds, manned gliders, and is
gaining attention as a source of energy for small unmanned
aircraft[2], [3], [4].

As convective lift cannot be explicitly resolved in regional-
scale atmospheric models, thermal locations cannot be pre-
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dicted with high resolution. This precludes the use of offline
path planning tools to make use of the available energy.
Long term environmental characteristics can be modeled in
a probabilistic manner, so an exploration of the viability of
sustained soaring flight in such an environment must be done
in terms of probability as well.

This work assumes the use of thermal lift by aircraft
as the sole source of energy to sustain flight. The devel-
opments that follow have the goal of enabling indefinite
endurance by quantitatively stating the necessary conditions
that enable it. Random graphs have been used as analogs
to real-world conditions in similar environments where the
statistical properties are known but the exact configuration is
not[5]. An attempt is made to apply the conclusions to both
endurance flights without boundaries and to loitering flight
in a restricted region.

After an introduction to the environment and to soaring air-
craft in Section II, the random geometric graph construction
used in this work is presented in Section III. Results arrived
at by applying theoretical developments to the indefinite
endurance problem are presented for the case where the
domain is unbounded in Section IV, and for the bounded case
in Section V, then Section VI puts the results of simulations
in perspective. Finally section Section VII concludes with
the implications of this work on decision making for soaring
aircraft.

II. THE ENVIRONMENT AND THE AIRCRAFT

A. The Convective Boundary Layer as a Source of Energy

The convective boundary layer (CBL) of the atmosphere
extends from the ground to between one and four kilometers
(the altitude zi), depending on the region and the time
of year[6]. It is within this layer that soaring aircraft and
birds typically operate, as it is where lift is most readily
found. Thermals, the dominant feature in the CBL, are
buoyant elements of the airmass that rise from a trigger
point on the the ground to zi. The lower 80% to 90%
of a thermal[2] is typically of sufficient size, strength, and
duration to allow aircraft to effectively climb within[1] (the
top of the usable portion is denoted zu here). Note that this
altitude is consistent over a broad region.

Methods for predicting the prevalence of thermal lift in a
given area on a particular day are available[7]. This allows
for an expected lift source density λ to be approximated over
a given region.

Whereas the locations of many atmospheric phenomenon
can be predicted from terrain maps or meteorological fore-
casts, thermal lift is more difficult to precisely locate. For
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most of the following discussion, the assumption is made
that the pilot has perfect knowledge of thermal locations. In
cases where it is stated otherwise, it is assumed that a method
capable of determining a thermal’s existence and location
with uniform probability pd is available. Because thermals
carry moisture from the surface, cumulus clouds often form
at the top of a thermal column aiding their detection and
justifying this assumption.

B. Soaring Aircraft

Fig. 1: The longitudinal kinematics of a soaring aircraft.

For aircraft that gain energy utilizing thermal lift, there
are two primary phases of flight; soaring, in which the
aircraft climbs by circling within the rising column of air,
and gliding, where the altitude gained is transformed into
distance. To capture the soaring phase of flight in this model
it is sufficient to claim that an aircraft collocated with a
thermal can climb to the altitude zu. The efficiency with
which an aircraft converts altitude to distance is expressed
as a ratio of the aircraft’s lift to drag, L

D , which is in turn a
function of airspeed. A measure of how far an aircraft can
travel for each unit of height lost (Figure 1), it is assumed
here that a soaring aircraft will always fly at the airspeed
that maximizes this ratio.

Modern sailplanes can have lift-to-drag ratios from 40-
70. Birds are substantially less efficient, peaking around 10
for most soaring birds[8], and up to 15.3 for particularly
aerodynamically efficient species[9]. In this work, the aircraft
will be characterized solely by their glide efficiency L

D ,
as other parameters will have little effect on the problem
formulation.

III. PROBLEM FORMULATION

Consider a graph constructed from an infinite number of
vertices that are connected pair-wise with probability p. An
open cluster on this graph is a connected sets of vertices that
can be accessed from one another. As p increases, the size
of these connected clusters tends to increase as well.

Percolation on an infinite graph implies that there almost
surely exists an open cluster that contains an infinite number
of vertices. Identifying the conditions under which such
a large connected set exists in a graph that represents an
aircraft endurance problem will be the focus of this work.

Definition 1. Any random graph is said to percolate if
there exists, with non-zero probably, an infinitely connected
component somewhere on that graph.[10]

Percolation exhibits phase transition behavior at a critical
probability, pc. Graphs where p < pc fail to percolate,
implying that every cluster in the graph is of finite size (the
subcritical case). When p > pc the graph has an unbounded
connected component with high probability (with probability
1)[10].

A. Random Geometric Graphs

A random geometric graph is a random distribution of
points that are not restricted to a lattice and may be connected
pair-wise if conditions are satisfied. The most basic model
of continuum percolation on a random geometric graph was
introduced by Gilbert[11] as:

Definition 2. Pλ is a Poisson process of intensity λ in R2,
and r > 0. Connect any two points in Pλ by an edge if the
distance between them is less than r. The resulting graph is
Gr,λ.

Gilbert’s model was motivated to represent infinite net-
works of transceivers[11] and has since been popular in mod-
eling various physical processes[12]. Recently, Gilbert’s disk
model has been used to support probabilistic completeness
arguments in modern path planning strategies[13], as well
as a model for bounding the speed at which a bird can fly
through a forest[5].

Definition 3. The degree of a vertex in Gr,λ has a Poisson
distribution with an expected value a = λπr2[10]

The value a is known as the expected degree of the graph
or alternatively the connection area of Gr,λ.

As in the previous development, the graph Gr,λ percolates
if there exists an infinite connected component somewhere
on the graph. A value analogous to the critical probability pc,
the critical area ac establishes percolation conditions on the
continuous geometric graph[14]. For connection areas below
the critical area a < ac, every component of Gr,λ is certainly
finite.

The exact value of this critical area is non-trivial to
identify on a Gilbert-type graph. Gilbert’s original paper[11]
presented a geometric argument which placed the critical
area in the broad range:

2π ln 2

3
√
3
≤ac ≤

26π ln 2

3
√
3

(1)

0.8382 . . . ≤ac ≤ 10.8960 . . .

The gap between these bounds means that they provide
little insight when applied to practical engineering problems.
Further analytical arguments allowed Hall[12] to narrow
the bounds on the critical area for continuum percolation.
More recently, studies relying on large scale Monte Carlo
simulations[15] have put the range for the critical degree
between 4.508 and 4.515.

B. Comparison to the Parameters of a Random Graph

Comparisons to the Gilbert disk model are convenient
because the model incorporates the distance between points
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in Pλ as a parameter and is thus easily applied to physical
processes. Here we consider an idealized scenario in which
a soaring aircraft is not bounded physically and has perfect
knowledge of atmospheric conditions. In this world, an
aircraft is free to choose any lift source within reach, climb
in it, and transit to another.

Two thermals will be considered connected if from one,
after climbing through the working altitude of that lift source,
an aircraft can reach the other. This makes the connection
of two lift sources a function of the usable portion of
the convective boundary layer zu as well as the aircraft’s
aerodynamic efficiency L

D :

r = zu

(
L

D

)
(2)

Thermal trigger locations, being difficult to predict, will
be modeled as uniformly randomly distributed over the
domain of interest. Over homogeneous and flat terrain, this
assumption is approximately valid[16]. Lift source locations
in the two dimensional plane are associated with the points
of the Poisson process Pλ. The density parameter λ can then
be chosen to approximate the expected prevalence of lift.

Fig. 2: Schematic showing thermal lift source locations as
small blue circles distributed randomly in a 100x100 km
region. The accesible region (for an aircraft with an L

D of
15, zu = 1km) from the top of each thermal is indicated by
the large dashed circles.

Figure 2 shows an example environment cast as a random
graph. Several clusters of connected lift sources are colored.
An aircraft located in a lift source that is a part of a
colored cluster is able to reach any other location colored
similarly. That aircraft cannot jump to a cluster of a different
color. However, an aircraft with a larger L

D will see a more
connected graph, and and efficient enough aircraft will face
only a single cluster. Similarly, if the thermal locations
were more densely distributed, an aircraft with the same
performance could likely access a broader region.

C. Similarity Observation

On comparing a soaring aircraft problem to a random
graph, the first meaningful conclusion can be taken from
the fact that the structure of the graph Gr,λ depends only
on the expected degree a. In other words, the graph will
exhibit the same behavior, regardless of the individual values
of r and λ, provided the connection area a = λπr2 remains

constant[10]. Note that this concept does not require that a
graph percolates.

Using the expression for r given in Equation 2, an aircraft
or bird operating under the restrictions of the graph Gr0,λ0

will have the same performance as one restricted to Gr1,λ1 ,
provided the relation holds:

λ0z
2
u,0

(
L0

D0

)2

= λ1z
2
u,1

(
L1

D1

)2

(3)

The value of knowledge about the environment can be
quantified using this relation. If thermals can be detected
with uniform probability, then the relation becomes:

λ0z
2
u,0pd,0

(
L0

D0

)2

= λ1z
2
u,1pd,1

(
L1

D1

)2

(4)

where pd,· is the uniform detection probability.

IV. INDEFINITE ENDURANCE IN A BOUNDLESS DOMAIN

Percolation in the scenario presented in Section III-B
implies that there is a positive probability that an infinite
number of lift sources of sufficient strength to prolong the
length of a flight are accessible to the aircraft. For connection
areas above the critical area ac, there is an infinite component
to Gr,λ, and thus an aircraft should be able to remain aloft
indefinitely if it is located within this infinite component. If
the graph Gr,λ fails to percolate, it implies that an aircraft
will eventually be unable to reach a source of lift and will
be forced to land.
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Fig. 3: Selected percolation bounds dictated by bounds on
critical degree. The blue lines show the best theoretical
bounds given by Hall[12]. The solid red line shows the best
approximation arrived at through numerical simulation[15].

For soaring flight indefinite endurance is possible if the
graph Gr,λ percolates, i.e. if:

λπz2u

(
L

D

)2

≥ ac (5)

For the bounds on critical degree ac defined in Section III-A,
the aircraft performance required for indefinite endurance in
a thermal field of given density is plotted in Figure 3.
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(a) Simulation at t = 0.
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(b) Simulation at t = 150 minutes.

Fig. 4: An example simulation of 5 aircraft ( LD = 18, zu =
1km) in a 100x100 km region with a lift source density of
0.01 thermals per km2. The accessible region for each aircraft
is plotted with a red circle. Thermal locations are indicated
by blue circles.

A. Simulation

While graph theory provides significant insight into the
relationship between atmospheric conditions and required
aircraft performance, a key assumption was required, namely
that a given thermal persists indefinitely. With Monte Carlo
simulations this assumption can be lifted. The purpose of
the simulations is to show that the same transition threshold
exists when the problem is modeled with more fidelity and
to demonstrate how well established theory can predict the
threshold.

A thermal dominated environment model developed at
NASA Dryden[17] from measured data is used with param-
eters zi = 1401m and w? = 2.56m/s. These values describe
a mean thermal where wz varies with altitude, reaching a
maximum strength of 2.74m/s at h

zi
= 0.21 with the usable

portion extending to zu ≈ 1100m. An individual thermal’s
strength is drawn from a normal distribution about the mean
with σ = 20%. Atmospheric sink wd is modeled in the
spaces between thermals to enforce mass conservation.

Thermal lifespans have an expected value of 20 minutes;
on failure another is generated at a new location to keep
the density of lift sources constant. Trigger locations are
uniformly randomly distributed over the entire simulated
region but a separation of no less than 0.3zi is imposed
between any two thermals to better model the physical
process of atmospheric convection[18].

Aircraft motion is simulated with a simple kinematic
model, the longitudinal component of which is shown in
Figure 1. Each is allowed to transit the plane in search of lift
at speed v. The sink rate of all aircraft is 0.5m/s while v is
varied with L

D . When collocated with a lift source an aircraft
is modeled to climb at 0.75wz − ws to simulate imperfect
utilization of the full strength of a thermal. Otherwise an
aircraft sinks at the rate ws + wd. If an aircraft’s altitude
reaches 0 at any point it is removed from the simulation.

Aircraft seek to stay aloft as long as possible, thus their
strategy is simple: transit to the nearest detected thermal and

remain within the lift while it exists. Two snapshots display-
ing the dynamics of a simulation are shown in Figure 4a and
Figure 4b.

Each data point reflects 10 trials of 1000 independently
acting aircraft in a 4000 km2 environment. Each aircraft is
placed at a random location in the middle of the domain to
avoid edge effects. Missions last 12 hours, a period over
which it is reasonable to expect soaring weather to last
in the summer[2]. The performance parameter L

D and the
environmental parameter λ are varied in a band around
the expected transition region (Equation 5) to identify the
behavior of the system in an area that the theory in Section III
predicts will be meaningful.

B. Simulation Results
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Fig. 5: Colored contours correspond to the percentage of
10,000 aircraft that survive for 12 hours in an environment
where zu ≈ 1100m. Blue implies 90-100% of aircraft
survive, red implies 0-10% of aircraft survive. The dotted
line shows the theortical threshold ac ≈ 4.51.

The results of these simulations are plotted in Figure 5.
The threshold given by the critical area ac ≈ 4.51 is plotted
in relation to the survival statistics of the simulated aircraft.
Clearly shown is a threshold below which long endurance is
not possible. The trend in average aircraft altitude over time
for a moderate lift source density is plotted in Figure 6.
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Fig. 6: Trend in mean aircraft altitude plotted versus mission
time for an expected lift source density fixed at 0.01 per
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V. INDEFINITE ENDURANCE IN A FINITE DOMAIN

The conditions derived in the previous sections are not
immediately applicable to aircraft deployment. It is difficult
to imagine a scenario in which the domain of interest is not
geographically restricted in some way; either by operational
requirements or by bounds mandated by environmental pa-
rameters. Perhaps a more reasonable representation arises
when the random graph is confined to a finite domain.

Percolation on a graph with a finite number of vertices
(such as one restricted to a finite domain) is defined as the
point at which the largest connected component in the graph
contains at least a constant (non-zero) fraction of the total
number of vertices in the graph[14]. The definition of a disk
graph on the finite planar domain is as follows.

Definition 4. Pλ is a Poisson process of intensity λ in [0, `]
2,

and r > 0. Connect any two points in Pλ by an edge if the
distance between them is less than r. The resulting graph is
Gr,n.

On Gr,n, n = λ`2 is the expected number of vertices in
the finite region. The expected degree of a point in Gr,n is
d(n) = π

(
r
`

)2
n. The percolation threshold in the restricted

graph[14] in terms of the parameters of this problem is:

lim
n→∞

L1 (Gr,n)

n
= 0 : r <

√
ac
πλ

lim
n→∞

L1 (Gr,n)

n
> 0 : r >

√
ac
πλ

(6)

where ac is the critical degree in an infinite domain presented
previously, and L1 (Gr,n) is the number of vertices in the
largest connected component of Gr,n.

The transition threshold over which percolation occurs in
a finite region is the same as that in an infinite domain
(Equation 5), and provides a similarly conservative lower
bound on aircraft performance parameters.

A. The Environment as a Connected Graph

To further examine the graph Gr,n restricted to the finite
domain, the conditions under which the graph becomes
connected can be determined. These conditions lead to
stronger bounds on aircraft performance, as a connected
graph requires that there is a path from any lift source to any
other. Connectivity of the graph is a stricter requirement than
percolation, thus if Gr,n is connected, it also percolates[13].

A k-connected graph will not become disconnected by the
removal of k − 1 or fewer vertices[14]. The critical degree
to ensure that the graph is k-connected is identified by[10]:

P (Gr,n is k-connected)→ e−e
(k−1) log log n+log n−d(n)

(7)

In particular:

lim
n→∞

P (Gr,n is k-connected)→ 0 : r < f(s, λ, `) (8)

lim
n→∞

P (Gr,n is k-connected)→ 1 : r > f(s, λ, `) (9)

where:

f(s, λ, `) =

√
log (λ`2) + (k − 1) log log (λ`2)

πλ
(10)

The implication of this as applied to our problem is that
an aircraft can afford to miss (either bypass or fail to detect)
any k − 1 lift sources and still be certain that it can reach
any other lift source in the finite domain.

B. An Isolated Lift Source

In the subcritical case, the graph Gr,n is not connected,
implying the existence of isolated vertices in the domain
[0, `]

2. Clearly an aircraft located in a lift source from which
it cannot reach any other lift is contrary to the goal of
indefinite endurance, thus this situation should be examined.

The fraction of the total number of vertices that are
expected to be isolated is of immediate interest. This has
implications in predicting the failure rate of aircraft. Defining
X0 as the number of isolated vertices in the graph Gr,n,
the ratio[10] reduces to an exponential random variable
independent of the area of the region:

E(X0)

n
= e−(πr

2λ) (11)

If an environment is to support an aircraft aloft for long
periods, the number of isolated thermals should be minimal
and the probability of ending up in one small.

C. Finite Domain Simulation

Simulation of aircraft endurance missions in a finite region
were conducted with similar parameters to those in the larger
region. Two square regions of 100km2 (` = 10, 000m) and
2,500km2 (` = 50, 000m) were examined. Fifty simulations
of 100 independent aircraft were conducted for each pair of
lift source density and aircraft performance parameters.

D. Simulation Results
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Fig. 7: Indicated by red x’s are the values of L
D over which

99% of aircraft survive for 12 hours of simulation in a
domain where ` = 50km and zu ≈ 1100m. The dashed
red line shows the threshold over which the same domain
is 25-connected. Blue triangles and the blue line represent
the same for a domain where ` = 10km. The percolation
threshold for the finite domain is plotted in black.
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The relations in Figure 7 indicate that some level of cen-
nectedness is a better lower bound on aircraft performance
than is percolation. Plotted is the point, for each environmen-
tal parameter, over which 99% of simulated aircraft survive.
Also plotted in Figure 7 are the lines indicating the threshold
for k = 25 in each domain size.

VI. DISCUSSION

Casting the problem of indefinite aircraft endurance into
the framework of a random geometric graph allows for a
powerful set of tools to be applied to the problem. The
validity of the comparison was borne out in the simulation
results plotted in Figure 5. A threshold is evident below
which nearly every simulation results in the loss of all
aircraft, indicating that all subgraphs are small enough that
an aircraft will eventually run out of reachable lift sources.
As the expected degree increases above the threshold, the
percentage of aircraft that survive the duration of the simu-
lation increases (Figure 6).

The structure of the graph depends only on the expected
degree as given in Equation 4. This allows graphs to be
compared and therefore the parameters that enable prolonged
flight in different environments or by different vehicles. A
classic observation of soaring pilots is that birds are able to
stay aloft on days where a glider cannot find lift[8]. These
soaring birds, despite being aerodynamically less efficient,
are natural aviators. They are more likely to detect lift
sources in their environment and they fly at a lower wing
loading, meaning they can take advantage of tighter (and
more abundant[18]) thermals than can a human piloted glider.
The net effect is that the expected degree of the graph faced
by the birds is greater than that of envious pilots.

The concept of percolation as applied to soaring flight
has important implications. The relationship between lift
source density and aircraft performance plotted in Figure 3
shows a threshold over which indefinite endurance should be
possible. The threshold location identified through simulation
(Figure 5) lies very near to the theoretical transition, but
shows that percolation is a conservative measure.

Whereas percolation only guarantees that a large con-
nected component exists somewhere on the graph, the de-
gree to which the graph is connected leaves room for an
aircraft to miss lift sources and still travel to another before
landing out. When attempting to bound the performance of
an aircraft such that long endurance missions are possible,
connectedness likely is a more relevant measure. Simulations
in finite domains show that k ≈ 25 provides a good lower
bound for long endurance times (Figure 7).

VII. CONCLUSIONS

Presented in this work is a random graph representation
of the problem of extended endurance at low altitudes for
soaring aircraft. Tools from the theory of random graphs
were applied to the problem to yield a relationship be-
tween aircraft performance and the density of lift sources
in the environment. In the sub-critical case, comparisons
were made that quantify the utility of knowledge, additional

performance, and more abundant lift. In the critical case,
a theoretical threshold was identified through theory and
confirmed through simulation that specifies the relationship
between performance and the environment that allow indefi-
nite endurance. The results of this work can quantify the risk
to a mission posed by predicted atmospheric conditions and
inform decision making strategies if soaring flight is to be
utilized to extend endurance.
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