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Abstract

This research is motivated by the significant potential of soaring uavs to efficiently
accomplish both civil and scientific missions by atmospheric energy harvesting. Vi-
able missions include surveillance, communication relay, and environmental moni-
toring.

This thesis seeks to improve the utility of small, autonomously controlled glid-
ers by extending the range and endurance of these vehicles. This is accomplished
through the exploitation of energy from columns of warm, rising air known as ther-
mals. Thermals occur naturally and are utilized by large birds and sailplane pilots
to soar for several hours and cover distances of hundreds of kilometers without any
source of propulsion. This thesis analyzes limitations imposed by current algo-
rithms and describes solutions in the form of improved energy estimation methods
and turn optimization through extremum seeking control.

The thermal centering algorithm, based on Reichmann’s method, uses the sec-
ond derivative of total energy as a feedback term to remain centered around the
thermal core. Due to the controller’s susceptibility to latency, conventional filter-
ing methods greatly restrict the capabilities of the centering controller. This thesis
discusses an alternative estimation method, an asymmetric Savitzky-Golay filter
that computes estimates of total energy, rate of change of total energy and the sec-
ond derivative of total energy using polynomial approximations over a moving time
window. Significant improvements were observed including: the ability to track
a larger range of thermals, rapid thermal centering, and improved disturbance
rejection.

The problem of optimal thermal soaring was also addressed. Assuming a Gaus-
sian updraft distribution, any given thermal has an optimal flight radius that can
be computed for the specific aircraft. However, determining this flight path has
proven to be a difficult problem that has not been adequately addressed. A so-
lution is proposed; climb rate maximization using extremum seeking control with
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turn radius as the varying parameter. Simulations demonstrated steady turn rate
convergence while driving the climb rate to the optimal value.

A simulation environment based on a commercially available soaring simulator
is described, with a low level aircraft controller implemented on an Arduino Mega
2560 single board computer. This environment was used for testing and validation
of the aforementioned methods. The utility of the energy estimator and extremum
seeking controller is demonstrated in this high fidelity simulation.
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2.7 Convergence of ė to the optimal value. . . . . . . . . . . . . . . . . 23
2.8 Bank angle converging toward the optimal value. . . . . . . . . . . 24
2.9 Flight path converging toward the optimal turn radius. . . . . . . . 25

3.1 Estimating the first and second derivatives of a noisy signal (σ =
0.05) using various central difference formulas. . . . . . . . . . . . . 29

3.2 Estimating the first and second derivatives of a noisy signal (σ =
0.1) using a low-pass filter and 3-point central difference formula. . 30

3.3 Approximating numerical derivatives using a Savitzky-Golay filter [7]. 32
3.4 Estimating the first and second derivatives of a noisy signal (σ =

0.1) using a symmetric Savitzky-Golar filter. . . . . . . . . . . . . . 35
3.5 Estimating the first and second derivatives of a noisy signal (σ =

0.1) using a delayed Savitzky-Golay filter and a backward SG filter. 37
3.6 Average error for various polynomial orders and window sizes. . . . 38

4.1 Interface showing the SB-XC model in XFLR5 . . . . . . . . . . . . 41
4.2 Sink polar generated using flight test data [8] . . . . . . . . . . . . 42
4.3 Shifted sink polar due to mass difference . . . . . . . . . . . . . . . 44

vii



4.4 Comparison of model performance against the expected sink polar . 45
4.5 Glider autonomously climbing in a thermal. Simulation was per-

formed using an SB-XC model in Silent Wings flight simulator. . . 46
4.6 Complete testing and simulation architecture. This system can be

used to test and compare an unbounded number of aircraft and
corresponding control systems in the same environment by setting
up a multiplayer server. . . . . . . . . . . . . . . . . . . . . . . . . 48

4.7 Piccolo SL autopilot by Cloud Cap Technology . . . . . . . . . . . . 49
4.8 Structure of the flight testing system. . . . . . . . . . . . . . . . . . 49
4.9 A screenshot of Piccolo Command Center. This software is used to

monitor and manage the Piccolo autopilot. . . . . . . . . . . . . . . 50
4.10 Graphical user interface created for interaction with the payload

from the ground station computer. . . . . . . . . . . . . . . . . . . 50
4.11 Feedback control of a SISO system [9]. . . . . . . . . . . . . . . . . 51
4.12 Sequences of control loop closures used for low-level aircraft control. 52
4.13 Energy estimator designed by Allen and Lin [10] . . . . . . . . . . . 53
4.14 Thermal generated by Silent Wings (Rtherm = 80m, wcore = 4m/s). 54
4.15 Initial centering response of the SB-XC model to various thermals. . 55
4.16 Cross-wind altitude locations. . . . . . . . . . . . . . . . . . . . . . 57
4.17 Path of the SB-XC in a thermal subjected to various cross-winds. . 58
4.18 Altitude of SB-XC in a thermal subjected to various cross-winds. . 59
4.19 Extremum seeking control in a thermal (wcore = 4 m/s, Rth = 120

m). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.20 Extremum seeking control in a thermal (wcore = 3 m/s, Rth =200 m). 62
4.21 Extremum seeking control in a thermal (wcore = 5 m/s, Rth =80 m). 63

viii



List of Tables

2.1 Logic table for thermal radius convergence. . . . . . . . . . . . . . . 22

3.1 Sensors Capable for Use on an Autonomous Soaring Aircraft . . . . 27

4.1 SB-XC model flying in thermal (Rth = 55 m). . . . . . . . . . . . . 55
4.2 SB-XC model flying in thermal (Rth = 80 m). . . . . . . . . . . . . 56
4.3 SB-XC model flying in thermal (Rth = 105 m). . . . . . . . . . . . . 56
4.4 Results of SB-XC subjected to various cross-winds . . . . . . . . . . 59
4.5 Average climb rates (wcore = 4 m/s, Rth = 120 m). . . . . . . . . . 61
4.6 Average climb rates (wcore = 3 m/s, Rth = 200 m). . . . . . . . . . 62
4.7 Average climb rates (wcore = 5 m/s, Rth = 80 m). . . . . . . . . . . 63

A.1 Parameters for SB-XC glider. . . . . . . . . . . . . . . . . . . . . . 70

ix



Acknowledgments

x



Dedication

To my loving family.

xi



Chapter 1
Introduction

This thesis seeks to improve the range and endurance of autonomous soaring vehi-

cles by advancing the way thermal updraft energy is estimated and utilized. This

research was motivated by the significant potential that small autonomous soar-

ing aircraft have to efficiently perform various civil and scientific missions. The

relatively small payload capacity and lower aerodynamic efficiency of smaller air-

craft require efficient use of sensor data and intelligent control methods to be used

reliably for these missions. Therefore, by improving the efficiency of atmospheric

energy harvesting in thermal soaring conditions, the utility of these vehicles are

substantially augmented.

Many different soaring methods currently exist that allow the extraction of en-

ergy from the atmosphere. Of these soaring types, thermal soaring is an extremely

effective way to gain a significant amount of energy in the form of potential en-

ergy. For this reason, this thesis specifically focuses on the problem of autonomous

thermal soaring. This problem can be broken down into: accurately centering a

thermal, maintaining flight within the thermal, and flying the path that optimizes

the rate of energy gain from the thermal.

This problem is exceptionally challenging because atmospheric energy condi-

tions are difficult to estimate due to extensive and unpredictable disturbances.

The first and second derivatives of energy (an already noisy signal) are required

for thermal centering control. Differentiating this signal amplifies noise in a sys-

tem that is susceptible to latency. Additionally, thermals tend to drift with the

direction of the wind making trajectory planning for optimal soaring a difficult
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task.

This thesis: (a) describes an energy estimation method that increases ther-

mal centering performance; (b) introduces an adaptive method for optimizing the

rate of energy gain in a thermal; and (c) compares the performance of the pro-

posed techniques with current algorithms quantifying the results in a high fidelity

simulation.

1.1 Motivation

Small uninhabited aerial vehicles (uavs) have become prevalent in military op-

erations (the RQ-11 Raven and Wasp III are two examples) and have significant

potential for civil and scientific missions such as environmental monitoring and

meteorology. However, range and endurance of small uavs is limited both by the

relatively small payload capacity (which limits the sensing package that can be

carried as well as fuel or batteries) and by the lower aerodynamic efficiency typical

of smaller aircraft (due to lower operating Reynolds numbers). Therefore, flight

control methods that enhance range and endurance can greatly improve the overall

utility of these vehicles.

Large birds such as hawks, eagles, and vultures as well as human sailplane

pilots exploit atmospheric energy to fly several hours and cover distances of many

hundreds of kilometers without flapping wings or the use of engines. Exploiting this

atmospheric energy is known as soaring, and it has the potential to significantly

change the missions that can be flown with small uavs.

(a) Red-tailed hawk. (b) JS-1 Sailplane. (c) RQ-11 Raven UAV.

Figure 1.1. Applications where wind energy harvesting is used to remain aloft [1–3].

Several methods of extracting energy from the wind have been observed and
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used by glider pilots. These methods can be broken down into three main cate-

gories: updraft soaring, gradient soaring, and gust soaring. Soaring capable up-

drafts are caused by three different phenomenon: uneven solar heating of the

ground (thermal soaring); deflection of horizontal winds by a slope (ridge soaring);

and long-period oscillations in the atmosphere (wave soaring). Thermal soaring

is an extremely common technique used by glider pilots, relying on the formation

of rising air masses to gain potential energy. Ridge soaring has shown to be an

effective way of extending the range and endurance of flight along ridge lines [5].

Additionally, wave lift has been used for high-altitude soaring and enabled a world

record soaring altitude of 50,699 feet [11].

Energy can also be gained using wind gradients and the rapid conversion be-

tween potential and kinetic energy; this is known as dynamic soaring. This type

of soaring accumulates energy in the form of airspeed and is therefore limited by

aerodynamic and structural properties of the sailplane.

Autonomous soaring flight has become the focus of a significant amount of

research over the past several years, with both simulations and hardware demon-

strations showing the utility of soaring for extending endurance of small uavs

[10,12,13]. Soaring by manned gliders has also been the subject of a large amount

of research [14–18].

1.2 Previous and Related Work

Autonomous soaring uavs were proposed by John Wharington in 1998, with tech-

niques such as reinforcement learning used for flight control [19, 20]. In 2005,

Michael Allen published an analysis that showed that the endurance of small uavs

could be significantly increased using thermal updrafts [21]. In 2007, Allen pro-

posed and demonstrated a soaring controller that is based on Reichmann’s method

of thermal soaring [5, 10]. Allen’s controller estimated the total energy of the air-

craft and the required turn rate (ψ̇) to properly center the thermal at each time

step. In addition, a queue of total energy estimates were kept and updated to

estimate the size, strength, and location of the thermal by iteratively fitting an

assumed velocity profile. Using this information, the turn rate was adjusted to

correct for thermal drift caused by prevailing winds. Allen successfully performed
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test flights using the proposed centering controller on the SB-XC, a small-scale

sailplane from RnR Products. According to Allen, the uav climbed an average

of 172 meters (567 feet) while experiencing 23 different thermals. However, the

controller’s performance diminished in smaller, weaker thermals due to latency in

energy rate and energy acceleration estimates [10].

In 2008, Daniel Edwards built upon Allen’s research by improving the estimate

of thermal location [12]. Using the centroid-based position acquired from Allen’s

method, a grid was created and an assumed curve was fit to each node. The

node with the best fit was selected as an improved estimate of the thermal center

location. Edwards demonstrated successful autonomous thermal soaring using this

method and placed third in the Montague Cross-Country Challenge using a 5 kg

SB-XC glider named ALOFT (autonomous locator of thermals) [22].

In 2009, Andersson et al. performed a probability analysis demonstrating the

benefits of using a cooperating team of uavs to increase the probability of find-

ing lift [6]. Additionally, it was shown that thermal centering can be achieved

without performing the computationally and memory expensive thermal drift cal-

culations. The stability of this simplified thermal centering controller was also

demonstrated [23]. Test results showed that the energy filter contributes a sig-

nificant amount of latency in the feedback; enough to degrade thermal centering

performance (especially in smaller, weaker thermals) [13]. In 2012, Andersson et

al. published flight tests showing soaring simulations using the this centering con-

troller. It was mentioned that an altered centering controller was later used to

that provided phase lead by feeding back the third derivative of energy. However,

a quantification of the improvement provided by this altered controller was not

published, it was described as potential future work.

In summary, a significant amount of research and flight testing of autonomous

soaring uavs has taken place recently. Successful thermal soaring has been demon-

strated in both simulations and real flight proving both the utility of these vehicles

and the potential for improvement.
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Figure 1.2. Overview of thermal soaring system.

1.3 System Overview

A system to enable optimal thermal soaring is shown in Figure 1.2. The (high-

lighted) “Energy Estimator” and “Extremum Seeking Controller” are the contri-

butions that this thesis adds to previous autonomous thermal soaring research.

The state estimator uses the available sensing package to provide estimates of the

vehicle’s current state to the flight controller. Information is fed into the estimator

from an array of sensors. These sensors include: a pitot-static probe, GPS, and an

inertial measurement unit (IMU) including accelerometers, rate gyroscopes, and

a magnetometer. These sensors provide raw data to the estimator in the form

of: airspeed, altitude, GPS position, orientation, and body-axis accelerations and

rotation rates. The state estimator provides an enhanced estimate of the states

using sensor fusion and noise filtering methods.

The flight computer implements low-level control laws and commands the de-

flection of the vehicle’s control surfaces. It uses an estimate of the vehicle’s state

and various reference inputs which can come from a mission computer, a high-level

controller, or a human interface device. In this case, reference inputs are received

from the thermal centering controller. The flight computer uses a common ap-

proach: state feedback enclosed within successive control loops. The details of this

controller are further discussed in Chapter 4.

For the thermal soaring application, the need for a thermal centering con-

troller becomes relevant. The thermal centering controller establishes a desired

turn rate which maintains flight within the rising airmass. The controller accom-

plishes this using an estimate of the vehicle’s energy states. The energy state

estimator provides an estimate of the energy states using vehicle state information
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such as airspeed and altitude (as discussed in Chapter 3). This thesis introduces an

enhanced energy estimation routine as well as an original extremum seeking con-

troller providing more efficient atmospheric energy harvesting through turn rate

convergence.

The extremum seeking controller (introduced in Chapter 2) improves the climb

rate by adapting the steady-state turn rate (and consequently the turn radius).

Past and present energy information is used to seek out the optimal climb rate

which is both aircraft and thermal dependent. The aircraft then flies at this optimal

steady-state turn rate using the thermal centering and low-level controllers.

These basic functions work together to provide the capabilities necessary for

the autonomous soaring flight discussed in this thesis.

1.4 Problem Description

Upon discovery of a thermal, a glider can center on the region of highest lift by

maintaining a constant turn around the updraft core. While circling within the

rising air mass, energy is extracted in the form of potential energy. However, when

a glider performs a banked turn, the lift vector is reoriented from the vertical

direction causing the aircraft to fly at a higher lift coefficient to remain aloft.

Increasing the lift coefficient moves the aircraft to a less desirable part of the sink

polar and causes the sink rate (and the rate of energy loss) to increase. Therefore,

determining the circling radius that produces the maximum climb rate is a delicate

balance between updraft velocity and aircraft sink rate. In addition, this optimal

circling radius is dependent upon the characteristics of the thermal as well as

the performance of the individual aircraft that is being used. This implies that in

order to maximize the energy gain, the glider must remain centered on the thermal

and the energy states of the vehicle must be observed. Summarizing, the thermal

soaring problem can be broken down into three basic problems, energy estimation,

thermal centering, and climb rate optimization.

1.5 Contributions

Primary contributions of this thesis are as follows:
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• Energy estimator design

Increases the range of thermals that can be used for energy gain as well as

improved thermal tracking due to reduced latency in energy estimates.

• Method for optimizing the rate of energy gain

Adapts the size of the turn within a thermal to continuously track the radius

that provides the best climb rate for a given aircraft.

• Comparison against current thermal soaring algorithms

Simulations were performed verifying the performance of the proposed es-

timator and controller. Performance gains were quantified by simulating

current autonomous soaring methods using our specific aircraft configura-

tion.

1.6 Reader’s Guide

The remainder of this thesis is organized as follows. Chapter 2 presents informa-

tion about the formation and structure of thermals. Additionally, it proposes a

control method that actively seeks the steady-state turn radius that provides max-

imum rate of climb in a thermal. Chapter 3 describes the use of Savitzky-Golay

filters for estimating total energy and rates of change of total energy, of which

are used for thermal centering. Chapter 4 discusses the design of the low-level

autopilot and the various control loops that are used to track high-level reference

commands. Additionally, simulation results (obtained using Silent Wings flight

simulator) are presented here. Chapter 5 concludes this research by summarizing

the contributions of this thesis and discussing recommendations of future work.



Chapter 2
The Thermal Soaring Problem

This chapter defines the soaring problem that was introduced in Chapter 1. It

has three purposes: (a) describe thermal formation and identification; (b) outline

thermalling techniques used by human glider pilots and how these are applicable to

the problem of autonomous soaring; (c) describe the flight trajectory that provides

maximum climb rate within a thermal. Section 2.1 describes the lifecycle of various

thermal models and indicators that a thermal is present. Section 2.2 describes

thermal centering techniques including the one that was chosen for this autonomous

soaring application. Section 2.3 presents the kinematic equations for a glider in a

steady turn and the derivation of vehicle energy states. Additionally, this section

uses these equations to determine the optimal turn conditions required to maximize

the climb rate in a thermal. Section 2.4 presents a method for actively tracking

optimal turn conditions without the use of thermal mapping techniques.

2.1 Formation and Identification

Thermals are parcels of warm, rising air caused by the uneven heating of the ground

and consequently the convective heating of the air directly above these warm areas.

Local differences in the conductivity of the Earth’s surface and various other factors

cause atmospheric instability near the ground. Warm pockets are formed and begin

their upward ascent after some triggering event, such as a horizontal wind pushing

the parcel of air over a ridge. Because air inside the thermal is warmer than the

surrounding air, it continues to rise until it cools and becomes neutrally buoyant.
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Thermals are very complex and random formations. However, glider pilots

typically conceptualize the structure of thermals using one of two different models,

the column model or the bubble model. In the column model, the structure remains

attached to the ground for a longer period of time and the column of vertical wind

widens (and slows) as altitude increases due to the changing air pressure. The

bubble model resembles an air bubble rising to the surface of a boiling pot of

water. In the bubble model, the plume detaches from the ground much sooner and

upward wind velocity is concentrated inside the bubble. Typically thermals are

viewed as circular in cross section, with the vertical component of wind increasing

smoothly towards the center of the thermal. Thermal airmasses also tend to drift

laterally as they rise due to prevailing or other horizontal winds.

9-7

being lifted up a mountainside or a front for instance.
[Figure 9-9]

Figure 9-9 also illustrates factors leading to instability.
A stable atmosphere can turn unstable in one of two
ways. First, if the surface parcel warmed by more than
2°C (greater than 22°C), the layer to 3,000 feet would
then become unstable in the second scenario. Thus, if
the temperature of the air aloft remains the same,
warming the lower layers causes instability and better
thermal soaring. Second, if the air at 3,000 feet is
cooler, as in the first scenario, the layer becomes
unstable. Thus, if the temperature on the ground
remains the same, cooling aloft causes instability and
better thermal soaring. If the temperature aloft and at
the surface warm or cool by the same amount, then the
stability of the layer remains unchanged. Finally, if the
air aloft remains the same, but the surface air-cools
(for instance due to a very shallow front) then the layer
becomes even more stable.

An inversion is a layer in which the temperature warms
as altitude increases. Inversions can occur at any altitude
and vary in strength. In strong inversions, the temperature
can rise as much as 10°C over just a few hundred feet of
altitude gain. The most notable effect of an inversion is to
cap any unstable layer below. Along with trapping haze or
pollution below, they also effectively provide a cap to any
thermal activity.

So far, only completely dry air parcels have been con-
sidered. However, moisture in the form of water vapor
is always present in the atmosphere. As a moist parcel
of air rises, it cools at the DALR until it reaches its dew
point, at which time the air in the parcel begins to con-
dense. During the process of condensation, heat
(referred to as latent heat) is released to the surround-
ing air. Once saturated, the parcel continues to cool, but
since heat is now added, it cools at a rate slower than
the DALR. The rate at which saturated air-cools with
height is known as the saturated adiabatic lapse rate
(SALR). Unlike the DALR, the SALR varies substan-
tially with altitude. At lower altitudes, it is on the order

Figure 9-8. Life cycle of a typical thermal with cumulus cloud.

Figure 9-9. Stable and unstable parcels of air.

9° °C 3,000 
11° °Cft. ft.

Figure 2.1. Formation of a cumulus cloud from a moisture-rich thermal [4].

When thermals contain significant levels of moisture, they have the potential to

form cumulus clouds as shown in Figure 2.1. In fact, newly forming cumulus clouds

are oftentimes used by glider pilots to locate thermals. However, the presence

of cumulus clouds does not guarantee the existance of thermals. Unfortunately,

locating thermals is a difficult task due to the minimal number of visual indicators

that exist. This is especially difficult for autonomous systems, where high-level

decisions must be made on-the-fly using only the available sensors. Glider pilots
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have been known to locate thermals using the following indicators:

• cumulus cloud formation

• birds soaring in vertical lift

• other gliders circling in lift

• dark surface regions surrounded by brighter regions

If none of these indicators exist, pilots may simply glide until a thermal is

randomly found. Additionally, “house” thermals (thermals that repeatedly occur

in the same location) sometimes exist and can be utilized by pilots that have

knowledge of their existence. A thermal’s existence is made known by a sudden

vertical acceleration felt by the pilot or sensed using a variometer. Once a thermal

is found, the glider can fly a circular path inside this area of lift to climb to higher

altitudes [4, 5].

2.2 Centering Techniques

Thermal soaring, known to some glider pilots as “static soaring”, is a commonly

used method of extending flight time and endurance. By flying in regions with

an upward component of wind, potential energy can be harvested for later use.

Because these thermal regions are relatively small, the aircraft must continuously

change course to remain in the area that provides a positive climb rate. Quickly

and accurately centering the core of the thermal enables improved energy extrac-

tion. Glider pilots have become relatively efficient at this circling task and have

developed many different techniques to quickly center the core of the thermal. All

of the subsequent techniques rely on the assumption that thermals follow one of

the conceptual models discussed in Section 2.1. Specifically, the assumption is

made that the thermal is strongest at the core and has a relatively circular cross

section.

2.2.1 Piggott Technique

Piggott’s thermal centering technique relies on the instantaneous vertical accelera-

tion felt by the pilot to originally place the aircraft in a bank around the core [24].
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This technique is as follows; while flying a gentle turn and a surge of lift is encoun-

tered, immediately steepen your turn. This will move the circle towards the place

where the lift was encountered. Piggott’s technique requires immediate knowledge

to work therefore instrumentation such as a variometer is useless. Pilots that use

this technique typically fly “by the seat of their pants,” meaning they use the

rapid vertical acceleration that is felt by the seat accelerating them upwards and

not using instrumentation. However, this method relies on the circumstance that

winds at the core are encountered therefore continuous centering corrections are

not feasible.

2.2.2 Reichmann Technique

Reichmann’s method attempts to follow a steady-state turn radius within the

thermal by using changes in climb rate to continuously re-center the core of the

thermal [5]. This method consists of the following three rules:

1. As climb improves, flatten the circle (approximately 15–20 degree bank angle)

2. As climb deteriorates, steepen the circle (approximately 50 degree bank an-

gle)

3. If climb remains constant, keep constant bank (approximately 25–30 degree

bank angle)

However, positive climb rate does not guarantee that the glider is flying in an

upward component of wind. By pulling back on the stick, a glider can pull up and

climb temporarily by trading kinematic energy for potential energy. This is known

as a “stick thermal.” Ultimately, to center a thermal using this method we want

to use changes in the compensated rate of climb or changes in the rate of total

energy gain. This is illustrated in Figure 2.2.
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C. Cooperation
The method used for the cooperation between the UAVs can best be described using the following example.

Consider two UAVs, A and B. If A is in soar mode, and B is in search mode, B will be guided towards the estimated
center of the thermal Pth2 where A is soaring, corrected for the altitude difference between A and B, (Fig. 13). The
location of Pth2 is computed by taking the estimated thermal location by A Pth1, and correcting it for the drift of the
thermal that has occurred between the altitudes of the two vehicles (Eq. 6). VD is the drift velocity of the thermal,
estimated by A, h1 and h2 are the altitudes of A and B respectively and Ėave is the average climb rate of A.

ave
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hh
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&
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Figure 13. UAV B guided towards anticipated location of the thermal A is soaring.

B

A

+ Pth1

Pth2 +

Wind

Ë<0 → increased turn rate

Ë>0 → decreased turn rate

Thermal center

Ë=0 → steady state turn rate

Figure 12. Implementation of the Reichmann’s centering technique for a UAV

UAV flight path

a) b) c)

Figure 2.2. Reichmann’s method of centering a thermal updraft using total energy

acceleration. [5, 6]

This method or slight variations of this method have been used to successfully

center thermals using autonomous gliders in the past [10, 12, 13, 22, 25]. For this

reason, the autonomous centering controller used in this research is derived from

Reichmann’s method and is discussed in greater detail in Section 2.2.4.

2.2.3 Mapping

Glider pilots typically rely on TE-compensated variometers to determine the ve-

locity of the upward component of wind as they circle inside a thermal. However,

these instruments have extensive lag (on the order of a few seconds) associated

with them. The human brain is able to easily correct for this lag and build a

mental map of the thermal. Using this mental map, pilots are able to center a

thermal by continuously correcting their flight path by adjusting bank angle.

The autonomous application of this approach requires sensor information to

construct and update the map. Spline Mapping to Maximize Energy Exploitation

of Non-Uniform Thermals by Bird and Langelaan showed that a thermal map

could be constructed and exploited to maintain climb in a thermal [26]. A Kalman

filtering approach was used to estimate the updraft profile from which the optimal

trajectory could be calculated. However, this research is based on the assumption

that the aircraft’s orientation in the wind axis (α, β) is observable. With a GPS
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sensor providing only a ground relative position, obtaining an accurate estimate

of thermal drift due to prevailing winds and localized gusts has proven to be a

difficult problem. Additional sensing equipment (such as wind vanes) as well as

supplementary computing power are required for this task. Provided the move-

ment of the airmass is observable, the time required to initialize an accurate map

hinders the climb rate of the vehicle during this phase. This is apparent in the

results presented by Bird and Langelaan as the mapping method outperformed

the Reichmann method only when the thermal structure was complex and the

formation remained intact for an extended period of time.

2.2.4 Autonomous Centering

Accurately centering a thermal is important because it prevents the thermal from

being lost as well as improves the average climb rate of the glider. Under au-

tonomous control, Reichmann’s method (Section 2.2.2) has proven to be an effec-

tive thermal centering method. In 2007, Allen codified a thermal centering con-

troller that was based on this method and has since been adapted by Edwards as

well as Andersson [10,12,13]. Andersson has shown that reliable thermal centering

can be achieved using this simplified control law:

ψ̇cmd = ψ̇ss − kë (2.1)

where ψ̇ss is the desired nominal steady-state turn rate, k is a proportional gain,

and ψ̇cmd is the commanded turn rate that is sent to the low-level autopilot. This

autonomous centering controller uses the second derivative of energy (ë) as a feed-

back term to continually adjust the turn rate allowing the glider to remain centered

about the thermal core as illustrated in Figure 2.2. Because this controller is a

codified form of the Reichmann method, it is implied that the thermal profile

resembles a Gaussian distribution.

The feedback term (ë) plays a crucial role in the performance of this controller

as the performance diminishes with excessive latency. Estimation of ë is a difficult

problem and is discussed in Chapter 3. Although the structure of thermals can

change drastically from one to the next, this algorithm performs relatively well as

it continuously turns the aircraft toward areas of lift.
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2.3 Steady Turn in a Thermal

This section describes the kinematic equations that govern a glider performing a

steady-state turn. These equations are used to determine an expression for turn

rate (which is used for thermal centering) and to determine a soaring trajectory

that maximizes the rate of energy gain in a thermal.

2.3.1 Kinematics of a Glider in a Steady Turn

When an aircraft is in a steady turn, a component of the lift vector is pointed

towards the center of the turn. This component of force provides the centripetal

acceleration required for the turn. The vertical component of the lift vector coun-

teracts weight, and in constant speed flight this vertical component must equal

weight exactly. As a result, the total lift force in a turn is greater than in level

flight, thus the aircraft must fly at a higher lift coefficient. A free-body diagram

showing this phenomenon is shown in Figure 2.3. This kinematics approach as-

sumes perfect control of the vehicle; that is the low-level flight controller is able

to track heading, bank angle, and airspeed commands with negligible delay. This

assumption allows the motion of the vehicle to be represented using a point-mass

model. Vehicle kinematics are given by:

ẋ = va cos γ cosψ + wx (2.2)

ẏ = va cos γ sinψ + wy (2.3)

ż = va sin γ + wz (2.4)

where va is airspeed, γ is flight-path angle relative to the surrounding airmass, ψ is

heading, φ is bank angle, and wx, wy, wz represent the velocity of the airmass [27].

The summation of the forces in the stability axes for a glider performing a

steady turn are:

L sinφ =
mva

2

R
(2.5)

L cosφ = mg cos γ (2.6)

D = mg sin γ (2.7)
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where R is the radius of the turn, L is the lift force and D is the drag force.

To determine an equation that relates turn rate

Thermal Centering Controller 
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(ψ̇) to turn radius (R), let’s focus on the forces acting

in the radial direction. Assuming a steady turn with

no sideslip, Equation 2.5 can be written as:

L sinφ = mvaψ̇ (2.8)

Dividing equation Equation 2.8 by Equation 2.6 gives:

tanφ =
vaψ̇

g cos γ
(2.9)

This expression can be rearranged, solving for ψ̇:

ψ̇ =
g tanφ cos γ

va
=
va cos γ

R
(2.10)

Sink rate is determined by the aerodynamic properties of the aircraft. Using the

standard definition of lift and drag coefficients, Equations 2.6 and 2.7 become:

qSCL cosφ

mg
= cos γ (2.11)

qSCD

mg
= sin γ (2.12)

Dividing Equation 2.12 by Equation 2.11:

CD

CL cosφ
= tan γ (2.13)

Relating CD as a function of CL, the drag polar can be approximated using a

polynomial of order n:

CD =
n∑

i=0

aiC
i
L (2.14)
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Drag polar coefficients for the SB-XC are given in Appendix A. Substituting

Equation 2.14 into Equation 2.13:

γ = tan−1

(∑n
i=0 aiC

i
L

CL cosφ

)
(2.15)

where CL is a function of airspeed. Equation 2.15 gives an expression for flight

path angle as a function of airspeed and bank angle. This implies that given a

vehicle drag polar, ψ̇ can be written is a function of only va and φ. Now that

we have an expression that relates ψ̇, va, and φ, turn rate can be controlled by

scheduling va and φ commands.

2.3.2 Total Energy and Rates of Change of Total Energy

This section derives the equations that describe the energy states of the glider,

including the total energy and the first and second derivatives of total energy.

These energy states are useful for maximizing the climb rate in a thermal as well

as accurately centering the thermal.

The total energy of an aircraft can be represented by the sum of its potential,

kinetic, and stored energies:

E = mgh+
1

2
mv2 + Es (2.16)

In this analysis, we are primarily concerned with the aircraft’s climb rate and the

height of the aircraft above the ground. For this reason, Equation 2.16 can be

modified to show the vehicle’s specific energy using units of height. Specific energy

(denoted by e) is total energy divided by weight.

e =
E

mg
=
v2

2g
+ h+ es (2.17)

In the case of an aerial vehicle, v is the velocity of the aircraft relative to the wind

(va). Additionally, because we are interested in the energy states of an unpowered

glider, stored energy is assumed to be zero. Differentiating Equation 2.17, we

acquire an expression for ė:

ė =
vav̇a
g

+ ḣ (2.18)
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Note that v̇a is the rate of change of airspeed, which cannot be measured directly

using accelerometers (which provide a measure of acceleration, i.e. the rate of

change of inertial speed). Differentiating once again yields an expression for ë.

ë =
v̇2
a + vav̈a
g

+ ḧ (2.19)

As mentioned in Section 2.2.4, this ë term is used as feedback for the thermal

centering controller. Estimating this value is discussed in Chapter 3.

2.3.3 Optimal Turn Rate

In this application, optimal turn rate is defined as the turn rate that maximizes the

rate of energy gain that is achievable given the current environmental conditions.

Equation 2.18 in the previous section gives an expression for ė in terms of va, v̇a,

and ḣ. Since ḣ = −ż, The vertical kinematics equation (Equation 2.4) can be

substituted into Equation 2.18.

ė =
vav̇a
g
− (va sin γ + wz) (2.20)

Assuming a steady turn, v̇a = 0. This reduces ė to the following:

ė = −va sin γ − wz (2.21)

Equation 2.21 shows that the rate of energy gain is the upward wind speed minus

the glider’s sink rate in still air (va sin γ is sink rate). Equation 2.15 shows that γ

(and therefore sink rate) is a function of both va and φ. Rewriting Equation 2.13,

we obtain an expression for sin γ:

sin γ =
CD cos γ

CL cosφ
(2.22)

In a turn, γ is assumed to be small compared to φ. Using this information we can

approximate cos γ = 1:

sin γ =
CD

CL cosφ
(2.23)
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Additionally, the small angle approximation allows the turn rate (from Equa-

tion 2.10) to be written independently of γ:

ψ̇ =
g tanφ

va
=
va
R

(2.24)

Using the nth order polynomial approximation for the drag polar, Equation 2.23

becomes:

sin γ =

∑n
i=0 aiC

i
L

CL cosφ
(2.25)

This equation can now be substituted into Equation 2.21 to solve for sink rate in

still air terms of va and φ:

ė = −va
∑n

i=0 aiC
i
L

CL cosφ
− wz (2.26)

Determination of the optimal climb conditions can be achieved by adding a

thermal model. For this analysis, it is assumed that the updraft profile is a Gaus-

sian (or normal) distribution with a set core strength w0 and radius Rth. Vertical

wind speed varies with distance from the core as:

wz(R) = −w0e
− 1

2

(
R
Rth

)2

(2.27)

where R defines the distance from the thermal center. A thermal profile is shown

in Figure 2.4.
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Figure 2.4. Gaussian thermal model with a Rth = 70 m and w0 = 4 m/s.

Given that the vertical component of wind varies with distance from the thermal

core, one can compute the optimal airspeed and bank angle to fly in a given thermal

by maximizing:

ė = −va
∑n

i=0 aiC
i
L

CL cosφ
+ w0e

− 1
2

(
R
Rth

)2

(2.28)

Using Equation 2.24, we can write this equation strictly in terms of va and φ:

ė = −va
∑n

i=0 aiC
i
L

CL cosφ
+ w0e

− 1
2

(
v2a

Rthg tanφ

)2

(2.29)

Equation 2.29 therefore suggests that one can schedule an airspeed and bank angle

that maximizes the climb rate for a given thermal. In practice, however, once the

airspeed is “close enough” to the optimal value, sink rate changes very little with

changes in airspeed for a given turn radius. Figure 2.5 shows the rate of change of

energy for an SB-XC circling in the thermal. Note the strong dependence of ė on

turn radius and comparatively weak dependence on airspeed. Flying at a nominal

airspeed of approximately 12.5 m/s gives good performance, and this remains true

as thermal radius varies.

The problem now is to determine the steady-state turn rate that maximizes

energy gain without perfect knowledge of the thermal. Thermal mapping has

been discussed in Section 2.2.3, but thermal mapping methods [12,26] have many

drawbacks. Thermal mapping methods typically:
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Figure 2.5. Climb rate as a function of turn radius and airspeed for the SB-XC glider
centered on the thermal shown in Figure 2.4.

• require significant processing power and have higher memory requirements

• take overhead time to generate a usable map

• require exploration that leads the aircraft out of high lift areas

• do not perform as well in windy conditions

• require an accurate aircraft model

However, an alternative solution to this problem is presented in Section 2.4. This

solution actively seeks areas where maximum climb rate can be achieved and

doesn’t require a map of the thermal.

2.4 Extremum Seeking Control for Steady-State

Turn Convergence

This section introduces a control method that increases the rate of energy gain by

actively tracking the optimal turn rate in a thermal. Using only a time history of

commanded turn rate and corresponding energy rates, the controller continuously

decides to tighten or widen the turn seeking out the maximum rate of energy gain.
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This is accomplished by perturbing turn radius around its current nominal

value and using the recorded energy information to determine the gradient ∂ė
∂R

, the

nominal turn radius is then changed in the direction of increasing ė. The repetition

of this process causes the steady-state turn radius to converge to the optimal value.

A flowchart illustrating this adaptive thermalling algorithm is shown in Figure 2.6.

The algorithm is triggered when the decision to take the thermal is made.

Methods for deciding when to lock on and when to leave the thermal are discussed

by Edwards [22] and Allen [10]. When the algorithm is first triggered, the turn

radius is initialized to a relative value that depends on the scale of the aircraft

being used. For a full-size glider with a 15 meter wingspan, 80 meters is a typical

starting radius. For the small-scale SB-XC glider, an initial turn radius could be

as small as 20 meters. This initial radius should be small enough that the thermal

won’t be lost by reaching a steady-state value that is larger than the thermal.

Additionally, a small initial radius allows centering to occur faster because more

loops can be completed in the same amount of time. However, thermal centering

performance diminishes as radius decreases due to the increasing effects of estimate

lag. Therefore, the initial turn radius must be chosen by negotiating a balance

between climb performance and stability.

Once the thermal is centered at this initial radius, the algorithm computes the

average rate of energy gain over a loop (or sequence of loops). Once the specified

number of loops are completed, the steady-state turn radius is altered for the next

sequence of loops. Once again, the average ė is calculated recursively while flying

at this steady-state radius. The current and previous ¯̇e values are compared. If an

increase is observed, the turn radius is perturbed in the same direction. However, if

a decrease is observed, the turn radius is perturbed in the opposite direction. The

algorithm follows the logic table presented in Table 2.1 and repeats this process

until the thermal dissipates or another task is assigned.
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Figure 2.6. Flowchart showing the structure of the turn radius convergence algorithm.

Table 2.1. Logic table for thermal radius convergence.

Condition Action

¯̇ek ≥ ¯̇ek−1 & Rss,k > Rss,k−1 Increase Rss

¯̇ek ≥ ¯̇ek−1 & Rss,k < Rss,k−1 Decrease Rss

¯̇ek < ¯̇ek−1 & Rss,k > Rss,k−1 Decrease Rss

¯̇ek < ¯̇ek−1 & Rss,k < Rss,k−1 Increase Rss
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While proofs of stability of extremum seeking control for thermal soaring have

not yet been derived, preliminary simulations in Simulink show stable convergence.

The following sample simulation shows the results of an SB-XC circling in a Gaus-

sian thermal with w0 = 2.56 and Rth = 75.

Figure 2.7. Convergence of ė to the optimal value.

Figure 2.7 shows the convergence of ė to the maximum value that can be

achieved with this aircraft/thermal combination. The aircraft initially centered

the thermal with a 40 meter turn radius (φ ≈ 27.5 deg). This centering period

is represented in Figure 2.7 by the magenta colored region. Once the thermal

was centered, the steady state turn conditions were determined by the extremum

seeking controller. Convergence of the corresponding bank angles can be seen in

Figure 2.8.
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Figure 2.8. Bank angle converging toward the optimal value.

Notice how the bank angle does not remain exactly on the optimal value. As

mentioned in Section 2.1, thermals have the tendency to expand as they rise; this

slight perturbation around the optimal value provides robustness by allowing the

controller to track the maximum climb rate throughout the lifetime of the thermal.

Also, this version of the controller perturbs the turn radius proportionally to the

magnitude of the scaled gradient with the intent of providing faster and more

accurate convergence. This is represented by:

|∆Rk+1| = Ksc

∣∣∣∣ ∆ėk
∆Rk

∣∣∣∣ (2.30)

where Ksc is a proportional gain. The flight path for this simulation is shown in

Figure 2.9.
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Figure 2.9. Flight path converging toward the optimal turn radius.

These preliminary simulations showed promising results. Further testing of the

extremum seeking controller was done in the Silent Wings soaring simulator with

a more accurate aircraft model as well as more realistic atmospheric conditions.

These results are presented in Section 4.4.2.



Chapter 3
Energy State Estimation

This chapter defines the problem of energy state estimation. It has three purposes:

(a) analyze on-board sensors capable of providing state information that is useful

for energy estimation; (b) explore current energy estimation schemes; (c) propose

a differentiation and filtering method to provide improved energy state estimates.

This chapter describes the acquisition of the ë estimate that is used as feed-

back in the thermal centering controller (Chapter 2). Section 3.1 discusses the

capabilities of sensors that can be carried on-board the aircraft and their potential

contribution to an accurate energy state estimate. Section 3.2 analyzes traditional

numerical differentiation and filtering methods. It then introduces the Savitzky-

Golay filter as a basis for performing successive numerical differentiations and de-

scribes an adapted version of the estimator that reduces phase lag thus improving

centering performance.

3.1 Onboard Sensors Used for Estimation

Since there is no way of measuring ë directly, an alternative method must be

used to acquire this value. One method is to use a TE-compensated variometer

to measure ė and differentiate the incoming signal in real-time. Another method

is to measure va and h and differentiate to obtain values of va, v̇a, v̈a, and ḧ

that appear in Equation 2.19. However, discrete signal differentiation is a difficult

task, especially if significant sensor noise is present. According to Allen and Lin,

“Latency in energy rate and energy acceleration estimates was found to be the
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primary cause of reduced controller performance in weak thermals [10].” Therefore,

in order to accomplish robust and precise centering performance, we must choose

the method of obtaining ë based on the performance of available sensors.

Small autonomous uavs have the ability to carry a variety of sensing instru-

ments. Table 3.1 lists and discusses sensors that are typically found on autonomous

and manned gliders.

Table 3.1. Sensors Capable for Use on an Autonomous Soaring Aircraft

Sensor Symbol Measurement

Accelerometer ax, ay, az Accelerations in the inertial frame

Gyroscope ωx, ωy, ωz Rotation rates in the inertial frame

Magnetometer ψ Aircraft heading

GPS lat, lon, h Position relative to the Earth’s surface

Altimeter h Altitude

Pitot Probe va Indicated airspeed (IAS)

Variometer ḣ Climb rate

TE-Variometer ė Rate of energy gain/loss

TE-compensated variometers provide relatively accurate ė measurements; these

measurements can be differentiated numerically to obtain an estimate of ë. How-

ever, TE-variometers introduce a relatively large amount of measurement lag (typ-

ically 2 seconds or more). Human glider pilots are able to compensate for this lag

by creating a mental map of the thermal. However, autonomous thermal map-

ping adds complexity to the system and requires excessive amounts of processing

power and memory to run in real-time. Meeting these computational requirements

can increase costs, restrict the already limited payload of small uavs, and create

additional problems by altering mass, wing loading, inertia, and other aircraft

properties.

Unlike the TE-variometer, the measurement of va and h adds a negligible

amount of lag to the system. Airspeed can be measured using a pitot probe and

height can be measured using an altimeter or a gps unit. However, due to measure-

ment noise, acquiring an accurate representation of the first and second derivatives

of the airspeed and height measurements is difficult. Additionally, wind dynam-
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ics are very unpredictable and measurements can fluctuate significantly on short

time scales. Conventional filtering methods have been used to reduce measurement

noise so that reasonably smooth estimates of ė and ë can be obtained, but this

introduces significant phase lag that degrades centering performance (especially in

smaller thermals).

3.2 Differentiation and Filtering Methods

Various differentiation and filtering methods were explored for estimating v̇a, v̈a,

and ḧ. To assess the effectiveness of different filtering and estimation methods, an

analytic function that is qualitatively representative of the rate of energy change

of a thermalling glider was defined:

y(t) = (t/10) sin(2t) + 3t+ 10 (3.1)

This function was sampled at a rate of 31 Hz (matching the rate of the low-level

autopilot discussed in Section 4.2) and corrupted with zero-mean Gaussian random

noise with σ = 0.05 to represent sensor noise. The function of Equation 3.1 and

its time derivatives

y′(t) =

(
t

5

)
cos(2t) +

(
1

10

)
sin(2t) + 3 (3.2)

y′′(t) =
2

5
(cos(2t)− t sin(2t)) (3.3)

are used as reference signals to compare filtering and estimation methods.

3.2.1 Finite Difference Methods

In this section, estimating derivatives using a conventional finite difference method

is explored. Various order central difference methods were tested. The 3, 5, and 9

point central difference formulas are represented as:

f ′(t) =
f(t+ ∆t)− f(t−∆t)

2∆t
(3.4)
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f ′(t) =
f(t− 2∆t)− 8f(t−∆t) + 8f(t+ ∆t) + f(t+ 2∆t)

12∆t
(3.5)

f ′(t) =

f(t− 4∆t)− 32f(t− 3∆t) + 168f(t− 2∆t)− 672f(t−∆t) + · · ·
672f(t+ ∆t)− 168f(t+ 2∆t) + 32f(t+ 3∆t)− 3f(t+ 4∆t)

840∆t
(3.6)

respectively. These equations were used to estimate the first and second derivatives

of a noisy signal (σ = 0.05). These results can be seen in Figure 3.1.
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Figure 3.1. Estimating the first and second derivatives of a noisy signal (σ = 0.05)

using various central difference formulas.

It can be seen that by the addition of even a small disturbance to the original

signal, the estimate of the second derivative is nearly unrecognizable. It can also

be seen that the least noisy estimate is given by the 3-point central difference.

Increased noise presence is observed as higher order central difference formulas

are used. This may seem counterintuitive but this occurrence is explained in

Section 3.2.2. Additionally, the central difference formulas are non-causal (they
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require future measurements to compute current derivative estimates). This adds

estimation delay which is equal to one-half of the window size where M is the

number of measurements in the current window:

tlag =
(M − 1)∆t

2
(3.7)

Due to the extreme amount of noise in the derivative estimates, straightforward

numerical differentiation is not a feasible differentiation method. Pre-filtering the

signal can reduce measurement noise before numerical differentiation methods are

used. Because the measurement noise lives at a much higher frequency than the

energy dynamics, a low-pass filter is a viable candidate. Using various first order

low-pass filters combined with the 3-point central difference method, derivative es-

timates of the noisy signal were computed. These results can be seen in Figure 3.2.

Note that measurement noise added to this input signal is double the amount used

in Figure 3.1.
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Figure 3.2. Estimating the first and second derivatives of a noisy signal (σ = 0.1) using

a low-pass filter and 3-point central difference formula.
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The smoothest estimate of the second derivative was produced after filtering

and numerically differentiating twice. However, this estimate introduced over a

second of lag between the time the measurement was taken and the time the

estimate was available. Also, the amplitude of the estimates are significantly less

than the actual value. It can be observed that the smoother the estimate, the

higher the amplitude error. Figure 3.2 also shows that a trade off exists between

lag time and estimation error. With increased noise, this latency and estimate

error grows significantly. The energy filters used by Allen (shown in Section 4.4.1)

severely limited the centering performance due to lag on the order of∼3 seconds [6].

3.2.2 Savitzky-Golay Filter

Adaptive filters can use a higher order estimate and still provide much better

noise rejection. An example of an adaptive convolution filter is the Savitzky-Golay

(SG) filter [28]. This filter performs a polynomial fit on the measurements within

a moving window of time (Figure 3.3), and it is adaptive in the sense that the

computed polynomial fit to the measured values is continuously changing with

time.
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Figure 3.3. Approximating numerical derivatives using a Savitzky-Golay filter [7].

The SG filter (along with other adaptive filters) require that the window con-

tains an overdetermined system, meaning the number of points in the window is

greater than the order of the polynomial plus one. This allows the polynomial co-

efficients to be determined using the Gauss-Markov theorem. This theorem states

that the best linear unbiased estimate (BLUE) of the polynomial coefficients is

given by the ordinary least squares estimate [29]. Given a window of time, T ,

containing M measurements, and a desired polynomial of order N of the following

form:

p(x) = a0 + a1x+ · · ·+ aN−1x
N−1 + aNx

N (3.8)

where 1 < N + 1 < M , the minimum variance estimate of the polynomial coeffi-

cients

â =
[
a0 a1 · · · aN−1 aN

]T
(3.9)
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can be found using the linear least squares solution. The linear least squares

estimate of â is

â = Ky (3.10)

where y is the measurement vector and K is given by

K = (DTD)−1DT (3.11)

Because we are estimating the polynomial coefficients, D is the Vandermonde

matrix:

D =


1 x1 x2

1 · · · xN1

1 x2 x2
2 · · · xN2

...
...

...
. . .

...

1 xM x2
M · · · xNM

 (3.12)

Using M measurements taken every time step (∆t), the size of the window is:

T = (m− 1)∆t (3.13)

This time parameter is used to normalize the window, preventing any scaling

problems that can arise from fitting higher order polynomials. The equivalent

Vandermonde matrix (D̄) becomes

D̄ =


1 t0−t0

T
( t0−t0

T
)2 · · · ( t0−t0

T
)N

1 t1−t0
T

( t1−t0
T

)2 · · · ( t1−t0
T

)N

...
...

...
. . .

...

1 tM−t0
T

( tM−t0
T

)2 · · · ( tM−t0
T

)N

 (3.14)

where tm, m = 0 . . .M is the time each corresponding measurement was taken and

t0 is the oldest timestamp in the current window. Using this Vandermonde matrix

normalizes the window on the interval of [0, 1]. The coefficients of this normalized

polynomial fit (denoted by ā) can now be estimated using

ā = K̄y (3.15)

where y is the vector of measurements in the current window.
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Once this normalized polynomial fit is acquired, the polynomial is evaluated at

the center point of the current window. In addition, the first and second derivatives

at this point can be approximated and evaluated by analytically differentiating the

polynomial fit. Once this point is evaluated, the window is shifted to incorporate

the new measurement and the oldest point is eliminated.

If the number of points contained in the window (M) is equal to the order of

the polynomial fit plus one (N + 1) the system is no longer overdetermined and

application of the SG filter simply becomes the central difference solution of order

(N). To demonstrate, consider a first order polynomial (N = 1,M = 2), and D

becomes:

D =

[
1 t−∆t

1 t+ ∆t

]
(3.16)

Substituting into Equation 3.11, K becomes:

K =
1

2

[
t

∆t
+ 1 − t

∆t
+ 1

− 1
∆t

1
∆t

]
(3.17)

Given two measurements, the measurement matrix for a central difference is

y =

[
f(t−∆t)

f(t+ ∆t)

]
(3.18)

Substituting into Equation 3.15 yields the coefficients of the polynomial fit. The

second coefficient is the numerical derivative (or slope) of the curve at time t. This

estimated derivative evaluates to

f ′(t) =
f(t+ ∆t)− f(t−∆t)

2∆t
(3.19)

which is exactly equal to the first order central difference solution. Using an SG

filter (where M > N + 1 by definition), noise can be further reduced by essentially

acting as a low-pass filter.

This derivation exemplifies the reason why the SG filter outperforms the cen-

tral difference solution. Because the central difference solution fits a polynomial

curve with same number of polynomial coefficients as measurements in the chosen

measurement window, the size of the measurement window and the order of the
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polynomial fit are directly related. Therefore the central difference simply precom-

putes the weighting coefficients for the fully determined system. However, the SG

filter presents the ability to choose the order of the polynomial fit independent of

the window size, as long as the window size is greater than the number of coeffi-

cients in the polynomial. Tuning these values alter the amount of smoothing that

is performed on the signal.

The ability of the SG filter to accurately estimate polynomial coefficients is

briefly demonstrated in Figure 3.4. The analytic function given in Equation 3.1

was used as a comparison. The polynomial coefficients generated by the Savitzy-

Golay filter were used to calculate the derivative at each time step (using a third

order polynomial and a window size of two seconds). Figure 3.4 shows that smooth

derivatives can be obtained, while numerical derivatives (shown in gray) are enor-

mously affected by measurement noise.
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Figure 3.4. Estimating the first and second derivatives of a noisy signal (σ = 0.1) using

a symmetric Savitzky-Golar filter.

Note, however, that the symmetric SG filter is non-causal (it requires future
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measurements to compute current polynomial coefficients). Equivalently, it pro-

vides estimates that are delayed by half the time window. To reduce the effect

of delay, an asymmetric Savitzky-Golay filter is proposed; rather than computing

estimates at the center of the time window, estimates are computed at the end of

the time window.

3.2.3 Backward Savitzky-Golay Filter

Good thermal centering performance requires that ė and ë are available with min-

imal (ideally zero) delay. Given a polynomial order N and a window size T , the

least-squares estimate of the polynomial fit to total energy variation over the win-

dow is computed. At time tm,

e(tm) = a0 + a1

(
tm − t0
T

)
+ . . .+ aN

(
tm − t0
T

)N

+N (0, σ2) (3.20)

where t0 is time at the beginning of the window and N (0, σ2) denotes zero-mean

Gaussian random measurement noise. Given m = 1 . . .M measurements, an esti-

mate â for the polynomial coefficients is computed (as in the preceding section),

and finally total energy (and its derivatives) are computed at the desired time:

ê(tm) =
N∑

n=0

ân

(
tm − t0
T

)n

(3.21)

˙̂e(tm) =
N∑

n=1

nân

(
tm − t0
T

)(n−1)

(3.22)

¨̂e(tm) =
N∑

n=2

n(n− 1)ân

(
tm − t0
T

)(n−2)

(3.23)

To minimize delay, total energy and its derivatives are computed at the end of

the time window (i.e. when tm = t0 + T ), so
(
tm−t0

T

)
= 1. The energy estimates

reduce down to

ê(tm) =
N∑

n=0

ân (3.24)
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˙̂e(tm) =
N∑

n=1

nân (3.25)

¨̂e(tm) =
N∑

n=2

n(n− 1)ân (3.26)

essentially creating an asymmetric version of the SG filter. However, as one can

expect, the asymmetric filter’s estimates are not as smooth as those produced by

the symmetric filter. This is illustrated in Figure 3.5, which uses the analytic

function (given in Equation 3.1) corrupted with zero-mean Gaussian random noise

(σ = 0.1) to test the performance of both the symmetric SG filter and the asym-

metric (backward) SG filter.
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Figure 3.5. Estimating the first and second derivatives of a noisy signal (σ = 0.1) using

a delayed Savitzky-Golay filter and a backward SG filter.

In Figure 3.5, the estimates that were computed using the symmetric filter are

delayed by half the time window (1 second) to show when the estimates would

actually be available to a controller. There is a clear reduction in latency at the
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Figure 3.6. Average error for various polynomial orders and window sizes.

cost of overshoot and a noisier estimate.

When the measurements change slope quickly, the polynomial fit often over-

shoots this change, causing a delay in the derivative estimates. By altering the

window size and fit order, we can tune the filter to perform well by adequately

rejecting noise with minimal overshoot and reasonable latency. Cases were run for

several different combinations of window size and fit order for the function given

in Equation 3.1. The average error for each of the cases is shown Figure 3.6.

This figure demonstrates that fitting a small time window (containing few mea-

surements) with a high order polynomial yields a great deal of error. Intuitively,

this makes sense because higher order polynomials can have many more turning

points than lower order polynomials, causing the fit to track the measurement

noise as well as the base signal. This is the equivalent of setting a conventional

filter’s crossover frequency too high. Furthermore, fitting a large window with a

polynomial of low order will shift the crossover frequency of the filter the oppo-

site direction to a point where the underlying data is being siginficantly affected.

The best performance exists at some balancing point between window size and

fit order (and may be limited by available computing hardware). The larger the

window, the higher the fit order should be. The combination that yields the best

performance is dependent upon the dynamics of the aircraft and the quality of

the sensors. For testing purposes, the backward SG filter was implemented on a

low-level autopilot. This autopilot was used in a feedback loop to remotely fly full-
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size gliders in Silent Wings flight simulator (www.silentwings.no). The thermal

centering controller (presented in Section 2.2.4 ) was used to heuristically tune the

energy estimator.



Chapter 4
Modeling, Control, and Simulation

This chapter describes the simulation environment that was used and presents the

results from various thermal soaring simulations. Specifically, it has four purposes:

(a) validate the aircraft model that was used in simulations; (b) construct the

simulation environment including physical hardware that was used; (c) implement

a low-level flight controller; (d) analyze the performance of the thermal soaring

algorithms presented in this thesis.

As the SB-XC was the selected aircraft for this implementation, a build-up of

the aerodynamic model and validation of this model is introduced in Section 4.1.

Section 4.2 outlines the simulator structure and provides details about the hard-

ware and software that was used for each of the different systems. Section 4.3

describes the control laws used to implement low-level aircraft control. Section 4.4

concludes the chapter with a performance analysis of the proposed thermal soaring

techniques.

4.1 Aircraft Modeling and Validation

Simulations using the SB-XC model were performed in the Silent Wings simulation

environment. To ensure accurate vehicle performance, an SB-XC aerodynamic

model was created using XFLR5 (www.xflr5.com). XFLR5 is a software package

designed specifically for the analysis of aircraft flying at low Reynolds numbers. By

utilizing XFoil’s airfoil analysis tool combined with 3D wing analysis capabilities

based on Lifiting Line Theory, Vortex Lattice Method, and 3D Panel Methods, an
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aerodynamic model was created for the SB-XC. The interface for this software is

shown in Figure 4.1 where the results of a flow path analysis can be seen.

Figure 4.1. Interface showing the SB-XC model in XFLR5

An estimate of the stability derivatives provided a basis for modal frequency

and damping ratio estimates. Using this XFLR5 model as a starting point, a model

of the SB-XC was developed in Silent Wings.

The Silent Wings simulator accepts two types of aerodynamic models, a panel

model and a linear model. The panel model is much more sophisticated in that

it breaks the aircraft down into panels and simulates the flow over each panel.

By the addition of the various force contributions due to each panel, the aircraft

behaves in a realistic manner for a wide range of flight conditions. The linear model

uses various stability derivatives that provide realistic dynamics near a specific

operating condition. Originally, a linear SB-XC model was created but a panel

model was later developed to ensure greater accuracy and ease the constraints of
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the operating condition.

Due to unforeseen complications with autonomous soaring regulations and time

constraints, actual flight testing was unable to be performed to verify this model.

However, because the SB-XC has been a popular vehicle for the autonomous soar-

ing community, the performance of this vehicle has been the focus of past analyses.

In 2007 (updated in 2008), Dan Edwards published a performance analysis of the

SB-XC using previously recorded data and data that he collected specifically for

this purpose [8]. A sink polar was generated for the aircraft as shown in Figure 4.2.

 

10 of 17 

The experimentally measured data points and the curve fit approximation are shown in 

Figure 7. 

 
Figure 7: SBXC Sink Polar 

 

The experimentally determined L/D points and the L/D curve using the approximated 

sink polar are shown in Figure 8.  Note that the L/D curve is the derivative of the sink 

polar. 

 
Figure 8: SBXC L/D performance curve at 11 lb 

 

Figure 4.2. Sink polar generated using flight test data [8]

As suggested by Reichmann [5], a second order polynomial fit was used to

represent the sink polar. Edwards calculated the coefficients of this polynomial

which can be seen in Equation 4.1 (using units of kts).

Vvert = −0.0095V 2
horiz + 0.3782Vhoriz − 4.6072 (4.1)

This sink polar was adapted to account for the mass difference of our specific
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SB-XC flight system. Our flight-ready SB-XC was measured at 5.7 kg; this in-

creased mass is likely due to the on-board energy estimation computer as well as

other contributing factors. The additional mass changes the wing loading which re-

sults in a down and rightward shift in the sink polar. As discussed by Edwards [8],

this shift is proportional to a scale factor that is determined by the ratio of the

reference mass to our vehicle mass as shown in Equation 4.2.

mrat =
mref

m
(4.2)

Scaling both the vertical and horizontal wind speeds yield the corresponding

velocities.

Vvert =
Vvert,ref
mrat

(4.3)

Vhoriz =
Vhoriz,ref
mrat

(4.4)

Our scaled sink polar (Equation 4.5) was compared to the original. This can

be seen in Figure 4.3.

Vvert = −0.0162V 2
horiz + 0.3782Vhoriz − 2.7018 (m/s) (4.5)
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Figure 4.3. Shifted sink polar due to mass difference

Using this sink polar as a benchmark, the SB-XC drag model was fine tuned

to match this curve (Figure 4.4).
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Figure 4.4. Comparison of model performance against the expected sink polar

This tuned aircraft model allows the SB-XC to be flown in simulation with

confidence that the performance characteristics are similar to that of the actual

aircraft.

4.2 The Simulation Environment

Silent Wings soaring simulator (www.silentwings.no) was used as the primary test-

ing environment for the methods discussed throughout this thesis. Silent Wings

is a commercially available soaring simulator and multiplayer game that is com-

mitted to replicating the soaring experience as accurately as possible. It is used

by soaring pilots around the world for training purposes, to practice soaring, or to

compete against other pilots. This simulator generates extremely realistic atmo-

spheric conditions, including accurate pressure and temperature distributions and

dynamic thermal formations that follow the full thermal cycle from release to de-

cay. Wind characteristics such as average wind speed, wind direction, turbulence
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levels, and wind shear can be adjusted as well as thermal properties such as aver-

age thermal size, average core strength, and the number of thermals present in the

current map. The aerodynamics of the preloaded aircraft are accurately modeled

by simulating the airflow over each section of the aircraft model. However, the

simulator is robust in the sense that it allows the user to create and fly add-on

aircraft using the native panel model or a linearized aircraft model. Silent Wings

also simulates the load factor and various stresses on the aircraft, causing damage

to specific aircraft regions if the limits are exceeded. Many of the gliders come with

simulated instruments such as a TE-compensated variometer and a gps, allowing

measurements to be generated in real-time.

Figure 4.5. Glider autonomously climbing in a thermal. Simulation was performed
using an SB-XC model in Silent Wings flight simulator.

A UDP interface facilitates the retrieval of these real-time measurements, along

with the current state of the aircraft, by an outside source. Unlike Condor (http://

www.condorsoaring.com), another comparable soaring simulator, Silent Wings pro-

vides the capability to control aircraft remotely through a similar UDP interface.

This enables the simulation of flights where aircraft are controlled autonomously
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using state feedback. Figure 4.5 shows a glider while thermal soaring under au-

tonomous control in Silent Wings. In addition, Silent Wings provides the ability to

join or set up your own multiplayer server where you can soar with other aircraft.

This permits the performance of different controllers to be compared by flying

in the exact same environmental conditions as well as the testing of autonomous

versus manned flight.

Using the real-time data from Silent Wings, a low-level autopilot system was

designed to remotely control the aircraft in simulation. This autopilot is powered

by an Arduino Mega 2560 microcontroller and communicates with Silent Wings

(at a specified rate of 30-50 Hz) using an external Ethernet shield. The low-level

autopilot software was designed in-house and uses successive loop closure to control

the desired longitudinal and lateral/directional aircraft states. It has the ability to

control airspeed, pitch attitude, bank angle, heading, turn rate etc. This autopilot

facilitated the testing of the energy estimator, thermal centering controller, and

the extremum seeking controller in the Silent Wings flight simulator.

Matlab/Simulink was used as a mission computer to send high-level commands

to the autopilot system through a serial connection. Additionally, state information

was forwarded from the autopilot to the mission computer at a rate of 1-2 Hz so

that high-level decisions could be made such as when to switch to soaring mode,

etc. Figure 4.6 shows a graphical representation of the testing and simulation

network that was used.
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Figure 4.6. Complete testing and simulation architecture. This system can be used to

test and compare an unbounded number of aircraft and corresponding control systems

in the same environment by setting up a multiplayer server.

Although real flight testing was unable to be completed, the infrastructure for

real autonomous flight using the SB-XC was set in place. Low-level autonomous

control is handled by the commercially available Piccolo SL autopilot (by Cloud

Cap Technology). The Piccolo SL (shown in Figure 4.7) has the ability to track

the following commands for fixed wing aircraft:

• Indicated Airspeed

• Altitude

• Bank Angle
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• Flap Angles

• Heading

• Vertical Rate

• Pitch

in addition to a navigational mode that can use the aforementioned command loops

to follow a flight plan. Various Piccolo autopilots have been used successfully for

this specific application [10,13,22].

Figure 4.7. Piccolo SL autopilot by Cloud

Cap Technology

In order to support the estima-

tion and control algorithms discussed

throughout this document, an on-

board computer system communicates

directly with the Piccolo. This payload

receives state information (around 25

Hz) and returns bank angle commands

to the Piccolo when thermal soaring

mode is engaged. Both the Piccolo autopilot and the thermal soaring computer

are controlled and monitored from the ground station computer via a 900 MHz

frequency hopping spread spectrum (FHSS) radio system. Additionally, a ra-

dio transmitter connected to the ground station maintains the ability for a pilot

takeover in case of an emergency. This system is illustrated in Figure 4.8.

Figure 4.8. Structure of the flight testing system.
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The Piccolo Command Center and Payload Interface GUIs can be seen in Fig-

ures 4.9 and 4.10 respectively.
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4 PCC Overview 
The screen shown below displays an overview of what the PCC looks like in a nominal 
configuration with urban area map information loaded and one autopilot in the network. 

 
Figure 2 - Typical Configuration 

All of the windows in the PCC (except the map window) can be turned on or off, and can be 
docked or left floating. In the screen shown above, there are three windows docked to the right 
side of the display. To undock a window simply click and drag the title bar with the mouse. To 
dock a window, drag it to the right or left side of the screen and wait for the dock to open. You 
can also double-click on the title bar of a floating window to cause it to dock.  
In addition to windows there are several toolbars in the PCC. These can also be moved and, in 
some cases, turned off. To move a toolbar, click on the left side of the bar and drag it with the 
mouse. Toolbars cannot be left floating, they will always dock to either the top or bottom of the 
PCC.  

Figure 4.9. A screenshot of Piccolo Command Center. This software is used to monitor

and manage the Piccolo autopilot.

Figure 4.10. Graphical user interface created for interaction with the payload from the

ground station computer.
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4.3 Low-Level Control

The purpose of the low-level aircraft controller is to drive various vehicle states to

a desired value. Using commanded values and an estimate of the vehicle states, the

low-level autopilot sends commands to the actuators to force the states to match

their corresponding desired values. This state feedback occurs at every time step,

controlling the motion of the aircraft. A single-input single-output (SISO) feedback

system is shown in Figure 4.11.

Figure 4.11. Feedback control of a SISO system [9].

The difference between the state estimate and the commanded value is fed

through a compensator. The purpose of the compensator is to amplify the error

signal and potentially filter an undesired part of the signal such as high frequency

sensor noise. This signal is then used as the input to the plant system; in our

case this is the aircraft. The aircraft reacts to these inputs and sensors once again

measure the state of the system. This process is repeated at every time step driving

the measured error to zero.

The control loops in our specific autopilot implementation use PID compen-

sators. PID compensators apply tunable gains to the proportional, integral, and

derivative values of the error signal. This approach attempts to eliminate past

(steady-state) error, current error, and future (overshoot) error. The robustness of

PID compensators make them an ideal choice for our autopilot application. Using

a model of the aircraft, the PID gains can be analytically determined based on de-

sired response characteristics. However, for an aircraft model oftentimes the trans-

fer functions are very complex, especially for control inputs to higher-level states

such as airspeed. This requires a significantly more complicated compensator to

meet the response requirements. This problem is simplified using successive loop

closure.
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Successive loop closure consists of closing several feedback loops around the

open loop plant. This enables the design of multiple, much simpler compensators

due to the dissection of the aircraft dynamics into first and second order trans-

fer functions [30]. Since the longitudinal dynamics of an aircraft are decoupled

from the lateral/directional modes, each decoupled mode can be controlled using

a set of loop closures. The succession of loop closures for the longitudinal and

lateral/directional dynamics can be seen in Figure 4.12.

(a) Longitudinal
Control loops.

(b) Lateral/
Directional
Control Loops.

Figure 4.12. Sequences of control loop closures used for low-level aircraft control.

4.4 Simulation Results

The results of various thermal soaring simulations are reported in this section. The

purpose of these simulations is to analyze the proposed improvements and their

ability to extend the endurance of small-scale soaring uavs via thermal soaring.

A model of the SB-XC small-scale glider was used exclusively for testing in Silent

Wings soaring simulator. The simulations discussed in this section investigate:

thermal centering performance based on energy estimation methods; the utility of

the extremum seeking controller.
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4.4.1 Centering Performance

The performance of the thermal centering controller (Equation 2.1 in Section 2.2.4)

is directly dependent on the quality and timeliness of the ë estimates. For this

reason, the merit of the state estimator can be determined by examining thermal

centering performance. Centering performance includes the aircraft’s ability to

center a thermal quickly, maintain climb in a large range of thermal sizes and

strengths, and reject disturbances such as turbulence and wind shear.

The nearly exclusive energy estimator that has been used for thermal soaring

with the SB-XC can be seen in Figure 4.13. This estimator was designed by Allen

and Lin [10] and uses a series of filters to reject noise and differentiate the energy

signal.

6

Equation (1) is solved using gravity, g , airspeed, V , and the estimated aircraft altitude, hest , from 
a representation of the standard atmosphere (ref. 16). Equation (2) gives a reasonable fit to the 
standard atmosphere for altitudes below 10 000 m.
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An approximate pressure altitude estimate was adequate for autonomous soaring because only 
the rate of change of energy is used by the guidance and control. The total energy calculations are 
illustrated in figure 3. Total energy was filtered and differentiated with filter 1 and filter 2 to obtain 
specific energy rate, E .
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Figure 3. Total energy estimation.

Energy rate was corrected to account for the energy added to the aircraft by the motor. The 
correction term was calculated by differentiating eq. (1) and solving for motor terms only. The 
resulting relationship is given in eq. (3).

E
motor

=
V Vmotor

g

Equation (3) was solved using an approximation of V
motor

 given in eq. (4)

V
motor

=
T

m

(2)

(3)

(4)

Figure 4.13. Energy estimator designed by Allen and Lin [10]

In a paper by Andersson published in 2012, there is mention of adapting the

thermal centering controller to accept an
...
E term in an attempt to reduce latency

[25]. However, this was discussed as potential future work and an analysis has yet to

be completed showing the efficacy of this controller. For the sake of comparison, the

energy estimator shown in Figure 4.13 was used as a benchmark for the following

thermal soaring simulations.

The following analysis was completed to examine the estimator’s ability to

enable thermal centering in a wide range of thermals. The thermals were generated

by Silent Wings and resemble a Laplacian of Gaussian surface. An example thermal

profile can be seen in Figure 4.14.



54

Figure 4.14. Thermal generated by Silent Wings (Rtherm = 80m, wcore = 4m/s).

Thermals ranged from 55 to 105 m radius and core strengths from 2 to 6 m/s.

Figure 4.15 shows the initial behavior of the SB-XC as it encounters different

thermals. The aircraft was flown directly into the core of the thermal; this was to

analyze the robustness of the system by starting at the most difficult location for

the estimator/controller to center a thermal.



55

−50

0

50

2 m/s
80

 m
4 m/s 6 m/s

−50

0

50

12
0 

m

 

 

BSG
Allen

−50 0 50

−50

0

50

16
0 

m

−50 0 50 −50 0 50

Figure 4.15. Initial centering response of the SB-XC model to various thermals.

The corresponding data for each of these simulations can be found in Ta-

bles 4.1, 4.2, and 4.3.

Table 4.1. SB-XC model flying in thermal (Rth = 55 m).

Core Str (m/s) Filter Locked On? Avg ROC (m/s)

2 m/s BSG Yes 1.23

Allen No N/A

4 m/s BSG Yes 3.27

Allen No N/A

6 m/s BSG Yes 5.30

Allen No N/A
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Table 4.2. SB-XC model flying in thermal (Rth = 80 m).

Core Str (m/s) Filter Locked On? Avg ROC (m/s)

2 m/s BSG Yes 1.37

Allen Yes 1.35

4 m/s BSG Yes 3.36

Allen Yes 3.32

6 m/s BSG Yes 5.24

Allen Yes 5.20

Table 4.3. SB-XC model flying in thermal (Rth = 105 m).

Core Str (m/s) Filter Locked On? Avg ROC (m/s)

2 m/s BSG Yes 1.33

Allen Yes 1.34

4 m/s BSG Yes 3.41

Allen Yes 3.40

6 m/s BSG Yes 5.27

Allen Yes 5.24

The results show that both filtering methods were able to steadily climb in the

80 and 105 m thermals. However, only the model using the BSG filter was able to

lock on to the 55 m radius thermals. Figure 4.15 also shows that the BSG filtering

method allowed for much quicker and smoother centering; typically centering the

thermal within the first 11
2

rotations. The degradation in centering capability

seems to be caused by latency in the energy estimates thus causing the controller

to react out of phase. Allen’s energy filter is discussed in the AIAA publication

Cooperating UAVs Using Thermal Lift to Extend Endurance where it is stated that

”with a delay of around 2.5 to 3 s. the centering still functions well for bigger and

stronger updrafts, but the performance will degrade when the size and strength

of the thermal decreases.” However, with the BSG filtering method the latency

seems much more manageable, allowing the aircraft to successfully track smaller

thermals. When the aircraft was able to successfully center a thermal, the average

climb rate was nearly the same with the BSG averaging only 0.6% increase in climb
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rate over Allen’s energy filter.

The next simulation tests the estimator/controller’s ability to reject distur-

bances. The motion of wind in the atmosphere is extremely random; this un-

predictability must be filtered by the energy estimator. This simulation imposes

disturbances in the form of thermal drift and change of wind direction.

The lateral directions of the disturbances are illus-
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Figure 4.16. Cross-wind al-

titude locations.

trated in Figure 4.16. The rapid change of wind

direction exemplifies possible wind shear situations

while simulating thermal drift between the nodes.

These disturbances alter the thermal direction and

the aircraft’s flight path through the airmass. Al-

though it is extremely unlikely that this scenario

would occur naturally, it magnifies the estimator’s

response to disturbances. The thermal tracking per-

formance was tested using the backward Savitzky-

Golay (BSG) filter and Allen’s differentiation fil-

ters. Each filter was subjected to three different sets

of cross-winds of varying strength. These simula-

tions were performed with 1.5, 3, and 5 m/s lateral

wind strengths. The thermal used for this simula-

tion maintains a profile similar to a Laplacian of

Gaussian and an average radius and strength of 80

meters and 4 m/s respectively. The path of the aircraft through the thermals can

be seen in Figure 4.17 and the corresponding altitude plot is shown in Figure 4.18.
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Figure 4.17. Path of the SB-XC in a thermal subjected to various cross-winds.
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Figure 4.18. Altitude of SB-XC in a thermal subjected to various cross-winds.

Table 4.4. Results of SB-XC subjected to various cross-winds

Wind Filter Finished Avg ROC (m/s) Vertical Gain (m)

1.5 m/s BSG Yes 3.34 1058

Allen No 3.05 872

3.0 m/s BSG Yes 3.24 1052

Allen No 2.23 895

5.0 m/s BSG No 3.19 310

Allen No 3.10 261

The proposed BSG energy filter was able to provide better average climb rate

and thermal tracking than Allen’s energy filter. The BSG estimator allowed the

thermal centering controller to maintain steady climb through the entire life of

the thermal in both the 1.5 and 3 m/s cases. In these cases, Allen’s filter enabled
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climbing through multiple wind shear layers but both lost tracking around 950

m AGL. The 5 m/s cross-wind proved to be too much for both cases, as they

lost tracking almost immediately upon experiencing such large disturbances. The

inability of Allen’s filter to track the thermals is likely due to excessive estimate

lag.

4.4.2 Extremum Seeking Control

This section shows the results of performance testing of the extremum seeking

controller (discussed in Section 2.4). This is a high-level controller that uses the

rate of energy gain gradient ( ∆ė
∆R

) to choose steady-state turn commands that

ultimately converge to the optimal value. Using the backward Savitzky-Golay

energy filter (Section 3.2.3) and the centering controller presented in Section 2.2.4,

simulations were performed in Silent Wings soaring simulator.

These simulations exposed the SB-XC aircraft to various thermal sizes ranging

from an 80 to 200 m radius. The performance of the extremum seeking controller

was compared to the fixed turn radius values of 25 and 35 m. These fixed values

were chosen because they represent a typical thermalling radius that provides near

optimal climb rate for the SB-XC. Additionally, the extremum seeking controller

was initialized with a turn radius of 35 m; this radius is large enough that phase

lag in energy estimates won’t cause the thermal to be lost but small enough that

it should provide good lift during the initialization phase with almost any usable

thermal. Figure 4.19 shows the altitude, rate of energy gain, and commanded turn

radius of the SB-XC while flying in a medium-sized thermal (wcore = 4 m/s, Rth

= 120 m). Table 4.5 shows the corresponding average climb rate values.
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Figure 4.19. Extremum seeking control in a thermal (wcore = 4 m/s, Rth = 120 m).

Table 4.5. Average climb rates (wcore = 4 m/s, Rth = 120 m).

Radius Cmd (m) Avg ROC (m/s)

Extremum Seeking 3.63

R = 25 m 3.67

R = 35 3.50

This simulation shows good convergence for the extremum seeking controller.

The rate of change of energy starts low (as with the 35 m case) but the con-

troller consistently tightens the turn until it’s ė is larger than that of the 25 m

case. It converges to a near-optimal radius that is likely just under 25 m; the

exact value is unknown due to unknowns in the simulated thermal environment.

This is demonstrated by the fact that ė slightly surpasses the 25 m case as the

commanded radius was tightened below 25 meters. Although the 25 m case had a

slightly better average rate-of-climb than the extremum seeking controller, without
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previous knowledge of the thermal there is no way to know what the optimal value

is. Despite the extremum seeking controller starting with an initial turn radius of

35 m, after the (∼1,000 m) climb it outperformed the 35 m case by almost 4%.

Figure 4.20 and Table 4.6 show results for flight within a wide thermal with a

slightly weaker core (wcore = 3 m/s, Rth =200 m).

1000

1500

2000

A
lt
it
u
d
e

(m
)

2.25

2.3

2.35

ė
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Figure 4.20. Extremum seeking control in a thermal (wcore = 3 m/s, Rth =200 m).

Table 4.6. Average climb rates (wcore = 3 m/s, Rth = 200 m).

Radius Cmd (m) Avg ROC (m/s)

Extremum Seeking 2.72

R = 25 m 2.65

R = 35 2.68

This simulation also shows good convergence of the controller as it converged

rapidly to a value around 28 m and maintained a higher climb rate throughout

the climb. Performance gains over the 25 and 35 m cases were 2.5% and 1.5%
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respectively with the 35 m case outperforming the 25 m case (as opposed to the

previous simulation). The next set of simulations exposed the controller to a

narrow but strong thermal (wcore = 5 m/s, Rth =80 m). These results are shown

in Figure 4.21 and Table 4.7.
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Figure 4.21. Extremum seeking control in a thermal (wcore = 5 m/s, Rth =80 m).

Table 4.7. Average climb rates (wcore = 5 m/s, Rth = 80 m).

Radius Cmd (m) Avg ROC (m/s)

Extremum Seeking 4.73

R = 25 m 4.88

R = 35 4.33

This simulation initially shows rapid convergence of the turn radius. However,

since the thermal is narrow with a strong core, the optimal turn radius is very

small. Despite hard limits on the bank angle command, the tight turn commands

combined with disturbances in the thermal cause the controller to become slightly
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unstable. This instability is likely caused by: attempting to fly near stall conditions

in a turbulent environment; pushing the limits of the phase margin of the centering

controller; and frequent changes in the commanded turn rate (since this frequency

is dependent on loop size). Because all of these factors are a result of attempting

to fly an extremely tight turn, this problem could be corrected by performing a

stability analysis and adjusting the limits (and gains) accordingly. Although this

stability analysis has not yet been completed, it is a good candidate for future

work. Despite the instability towards the end of the simulation, the controller

provided an average climb rate of 4.73 m/s. This showed 9% improvement over

the 35 m case but was 3% slower on average than the 25 m case.



Chapter 5
Conclusion

This thesis is motivated by the potential that small, unmanned soaring aircraft

have to efficiently accomplish various civil and scientific missions. The utility

of these vehicles can be significantly improved by increasing their range and en-

durance. Autonomous soaring in thermal updrafts has been demonstrated as an ef-

fective method of atmospheric energy harvesting. However, the drawbacks of these

thermal soaring algorithms have prevented small, soaring uavs to reach their full

potential. This thesis focused on improving autonomous soaring performance by

the reduction of latency in energy estimates and the development of an extremum

seeking controller that optimizes the climb rate in a given thermal.

Silent Wings, a high-fidelity, commercially available flight simulator enabled the

testing of the algorithms proposed in this thesis. An aerodynamic model of the

SB-XC glider was constructed in Silent Wings and validated using published flight

test data. Control calculations were performed on an Arduino-based autopilot that

was placed in loop with the simulator via UDP connections. This environment was

used as the primary testing unit and allowed the comparison of proposed methods

with current capabilities.

Thermal centering performance dictates the range of thermal sizes that can

be used as well as what level of disturbances can be rejected without losing the

thermal. The centering controller relies on the second derivative of energy as

a feedback term. This is problematic because numerically differentiating sensor

data amplifies noise significantly. Current estimation methods handle this using a

series of low-pass filters. Consequentially, significant latency is introduced into the
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energy estimates; this has been recognized as the primary hindrance to thermal

centering capability.

This problem was handled by adapting a Savitzky-Golay filter to produce min-

imal lag while accurately estimating the signal derivatives. This was accomplished

by fitting a polynomial of a desired order to a time window of data up to the

current time step. The polynomial acts a smoothing filter while providing smooth

derivative estimates based on the coefficients of the polynomial fit. Using a back-

ward version of this filter provides an estimate of energy states at the current

time step with significantly less lag. Due to the asymmetry of this filter, a larger

time window provides more smoothing at the expense of increased lag. By choos-

ing a good window size and polynomial fit order, it was demonstrated that good

estimates can be acquired with significantly less latency.

Significant improvements were observed in centering time and accuracy, the

range of thermals that can be tracked, and rejection of disturbances such as wind

gusts and sensor noise . In a series of 9 simulations, the aircraft was introduced

to a wide range of thermal sizes and shapes. The proposed estimator was able

to maintain thermal lock in all of these simulations whereas the filtering method

used by Allen enabled only the largest 6 to be utilized for thermal soaring. The

proposed estimator also centered thermals much more accurately; usually within

a turn and a half from the time the centering algorithm was triggered. Addition-

ally, enhanced disturbance rejection was observed while encountering various wind

shear conditions. Of the three cases explored, the proposed estimator was able to

maintain thermal lock on two of them whereas Allen’s estimator lost the thermal

on all three occasions. Reduced latency in energy estimates proved to be a valuable

contribution to the performance of autonomous soaring aircraft.

In addition to thermal tracking, optimal trajectory planning also has the poten-

tial to increase soaring performance. Path planning methods for optimal thermal

soaring via thermal mapping have been recently explored. However, these meth-

ods haven’t been effective in solving the optimization problem because they re-

quire significant exploration time to build an initial map. Commanding a constant

steady-state turn radius typically outperforms the thermal mapping algorithm in

single-peak thermals because of the it’s ability to start climbing immediately upon

detection.
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This thesis introduced an adaptive extremum seeking control algorithm that

promotes the convergence of the steady-state turn rate to the optimal value. This

method uses past energy gradient information to predict the optimal turn rate and

continuously perturbs this turn rate to track changes in thermal structure thus

adapting to the new optimal turn rate. In simulation this controller converged

quickly and seemed to track the optimal turn conditions exceedingly well. Up to

a 9% increase in climb rate was observed during these simulations. The largest

benefit of this algorithm is it’s ability to climb well in a wide range of thermal

structures. However, slight instability was observed in exceedingly narrow but

strong thermals. This instability was detected in thermals that were significantly

out of the range of previous thermal centering algorithms and can be easily avoided

by redetermining the turn limits for future cases.

5.1 Summary of Contributions

5.1.1 Energy State Estimator

An energy estimation scheme was developed that uses an asymmetric Savitzky-

Golay filter to estimate the first and second derivatives of total vehicle energy.

The energy estimates are used as a feedback term to initially center and maintain

course within a thermal. This estimator significantly reduces latency in energy

estimates compared to previous estimation methods. This provides better distur-

bance rejection and thermal tracking, increased centering stability, and expands

the range of thermals that can be utilized.

5.1.2 Extremum Seeking Controller

A high-level controller was developed that generates steady-state turn commands

that seek the optimal energy conditions in a given thermal. The thermal centering

controller uses these commands as a reference to track while maintaining centered

about the thermal. Using the extremum seeking controller, as opposed to com-

manding a constant steady-state turn rate, increased robustness was observed as

well as improved climb rate without prior knowledge or mapping of the thermal.
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5.1.3 Performance Testing and Comparison

A high-fidelity simulator was used to analyze the performance of the system and

verify initial predictions. Additionally, these simulations allowed the comparison

of previous methods with the methods described in this thesis. This provided

performance quantification of the proposed methods.

5.2 Recommendations for Future Work

5.2.1 Stability Analysis for the Extremum Seeking Con-

troller

While the extremum seeking controller demonstrated promising convergence re-

sults, it showed stability issues for narrow thermals with exceptionally strong core

updraft velocities. An example of this occurrence can be seen in Figure 4.7. As

mentioned in Section 4.4.2, this instability was likely caused by attempting to fly

near stall conditions in a turbulent environment, pushing the limits of the phase

margin of the centering controller, and frequent changes in the commanded turn

rate (since this frequency is dependent on loop size).

The simple remedy would be to impose more restrictive limits on bank angle

commands. However, a stability analysis would likely reveal the root cause of

the issue as well as provide insight into a enhancements that could be made to

improve stability and overall performance of the controller. A direct impact of this

analysis would allow a more calculated determination of the controller gain (shown

in Equation 2.30) which affects the size of the radius perturbation.

5.2.2 Flight Testing and Verification

Although the methods proposed in this thesis were validated in simulation, actual

flight testing will provide conclusive insight into their validity. Flight testing will

expose the controllers to actual thermal conditions and define their true utility.

Additionally, implementation on a real aircraft will certainly provoke any problems

that might have been overlooked, principally any hardware related issues.

Flight testing infrastructure was set up to run these tests including: set-up of
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the Piccolo autopilot for use with the SB-XC; development of an on-board com-

puter system to perform the energy estimation and thermal centering algorithms

in real time; creating an interface to communicate with the on-board payload; and

running test simulations in Piccolo Command Center . However, acquiring the

necessary approval to test autonomously controlled aircraft combined with time

limitations prevented actual flight testing to be conducted.



Appendix A
Vehicle Properties

Note that a third order polynomial is used to relate CD to CL: this provided a

better fit to the computed data over the full speed range.

Table A.1. Parameters for SB-XC glider.

variable value description
m 5.7 kg mass
S 0.996 m2 wing area

f(CL) 0.0166CL
3 + 0.0535CL

2 − 0.0437CL + 0.0276
va,min 10 m/s
va,max 35 m/s
ηp 0.80 efficiency of the propeller
ηm 0.90 efficiency of motor
ηesc 0.95 efficiency of speed controller

a,b,c -0.0162, 0.3782, -2.7018 sink rate polar fit in m/s
va
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