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This paper introduces autonomous soaring methods that enhance the performance of
small autonomous gliders in a thermal soaring environment. Thermal centering control
is aided by an asymmetric Savitzky-Golay filter that computes estimates of total energy,
rate of change of total energy and the second derivative of total energy using polynomial
approximations over a moving time window. Climb rate in the thermal is maximized using
extremum seeking control with turn radius as the varying parameter. A simulation envi-
ronment based on a commercially available multiplayer soaring simulator is described, with
low level aircraft control implemented on an Arduino Mega single board computer. Higher
level control is implemented on a laptop computer that communicates with the Arduino
autopilot over a serial link. The utility of the thermal soaring controller is demonstrated in
this high fidelity simulation: stable thermal centering and good convergence to a maximum
climb rate is observed, with climb performance of the new controllers exceeding previous
methods.

I. Introduction

Small unmanned aerial vehicles (uavs) have become prevalent in military operations (the RQ-11 Raven
and Wasp III are two examples) and have significant potential for civil and scientific missions such as

environmental monitoring and meteorology. However, range and endurance of small uavs is limited both
by the relatively small payload capacity (which limits the sensing package that can be carried as well as
fuel or batteries) and by the lower aerodynamic efficiency typical of smaller aircraft (due to lower operating
Reynolds numbers). Flight control methods that enhance range and endurance can therefore greatly improve
overall utility of these vehicles.

Large birds such as hawks, eagles and vultures as well as human sailplane pilots exploit energy available
in the atmosphere to fly several hours and cover distances of many hundreds of kilometers without flapping
wings or the use of engines. Exploiting this atmospheric energy is known as soaring, and it has the potential
to significantly change the missions that can be flown with small uavs.

Autonomous soaring flight has become the focus of a significant amount of research over the past several
years, with both simulations and hardware demonstrations showing the utility of soaring for extending
endurance of small uavs.1–3 Soaring by manned gliders has also been the subject of a large amount of
research.4–8

This paper focuses on autonomous soaring in thermals (a column of rising, warm air, triggered by
uneven solar heating of the ground and instability in the atmosphere). Specifically, it seeks to maximize
the rate of energy gain during thermal soaring by: proposing an energy estimation method that increases
thermal centering performance and disturbance rejection; introducing an extremum seeking control method
for optimizing the rate of energy gain once the thermal is centered.9

The remainder of this paper is organized as follows. Section II discusses background and related research.
Section III describes the kinematics of soaring flight and outlines the equations governing thermal centering.
Section IV describes the use of Savitzky-Golay filters for estimating total energy and rates of change of
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total energy. Section V describes extremum seeking control as it applies to autonomous thermal soaring.
Section VI describes the Silent Wings simulation environment and Section VII presents results of simulations
that show the utility of the thermalling controller proposed here. Finally, concluding remarks are presented
in Section VIII.

II. Background and Related Work

Autonomous soaring uavs were proposed by John Wharington in 1998, with techniques such as rein-
forcement learning used for flight control.10,11 In 2005, Michael Allen published an analysis that showed
that the endurance of small uavs could be significantly increased using thermal updrafts.12 In 2007, Allen
proposed and demonstrated a soaring controller that is based on Reichmann’s method of thermal soaring.1,13

Allen’s controller estimated the total energy of the aircraft and the required turn rate (ψ̇) to properly center
the thermal at each time step. In addition, a queue of total energy estimates were kept and updated to
estimate the size, strength, and location of the thermal by iteratively fitting an assumed velocity profile.
Using this information, the turn rate was adjusted to correct for thermal drift caused by prevailing winds.
Allen successfully performed test flights using the proposed centering controller. According to Allen, the
uav climbed an average of 172 meters (567 feet) while experiencing 23 different thermals. However, the
controller’s performance diminished in smaller, weaker thermals due to latency in energy rate and energy
acceleration estimates.1

In 2008, Daniel Edwards built upon Allen’s research by improving thermal location estimates and demon-
strated successful thermal soaring by placing third in the Montague Cross-Country Challenge using a 5 kg
SB-XC glider named ALOFT (autonomous locator of thermals).2,14

In 2009, Andersson et al. performed an analysis demonstrating the benefits of using a cooperating team of
uavs to increase the probability of finding lift.15 It was shown that stable thermal centering can be achieved
by using strictly feedback control and omitting thermal drift estimation.16 In 2012, Andersson et al. pub-
lished successful flight test results using this centering controller. However, this thermal centering controller
suffered from degradation in thermal centering performance (especially in smaller, weaker thermals) due to
significant latency in the energy estimates.3 A modified centering controller was described that provided
phase lead by feeding back the third derivative of energy. However, a quantification of the improvement
provided by this altered controller was not published, it was described as potential future work.

III. Thermal Centering Control

A. Kinematics of a Glider in a Steady Turn

In order to acquire energy from a thermal, the glider must remain inside the region of rising air. This requires
the glider to remain in a turn about the thermal core. When an aircraft is in a steady turn, a component
of the lift vector is pointed towards the center of the turn. This component of force provides the centripetal
acceleration required for the turn. The vertical component of the lift vector counteracts weight, and in
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 Figure 1. Body forces in a

steady turn.

constant speed flight this vertical component must equal weight exactly. As
a result, the total lift force in a turn is greater than in level flight, thus the
aircraft must fly at a higher lift coefficient. A free-body diagram showing
this phenomenon is shown in Figure 1. This kinematics approach assumes
perfect control of the vehicle; that is the low-level flight controller is able to
track heading, bank angle, and airspeed commands with negligible delay. This
assumption allows the motion of the vehicle to be represented using a point-
mass model. Vehicle kinematics are given by:

ẋ = va cos γ cosψ + wx (1)

ẏ = va cos γ sinψ + wy (2)

ż = va sin γ + wz (3)

where va is airspeed, γ is flight-path angle relative to the surrounding airmass, ψ is heading, φ is bank angle,
and wx, wy, wz represent the velocity of the airmass.17 The summation of the forces in the stability axes
for a glider performing a steady turn are:

2 of 25

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 J

ac
k 

L
an

ge
la

an
 o

n 
Ja

nu
ar

y 
17

, 2
01

4 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
4-

02
60

 



L sinφ =
mva

2

R
(4)

L cosφ = mg cos γ (5)

D = mg sin γ (6)

where R is the radius of the turn, L is the lift force and D is the drag force. To determine an equation that
relates turn rate (ψ̇) to turn radius (R), let’s focus on the forces acting in the radial direction. Assuming a
steady turn with no sideslip, Equation 4 can be written as:

L sinφ = mvaψ̇ (7)

Dividing equation Equation 7 by Equation 5 gives:

tanφ =
vaψ̇

g cos γ
(8)

This expression can be rearranged, solving for ψ̇:

ψ̇ =
g tanφ cos γ

va
=
va cos γ

R
(9)

Sink rate is determined by the aerodynamic properties of the aircraft. Using the standard definition of lift
and drag coefficients, Equations 5 and 6 become:

qSCL cosφ

mg
= cos γ (10)

qSCD

mg
= sin γ (11)

Dividing Equation 11 by Equation 10:
CD

CL cosφ
= tan γ (12)

Relating CD as a function of CL, the drag polar can be approximated using a polynomial of order n:

CD =

n∑
i=0

aiC
i
L (13)

Drag polar coefficients for the SB-XC are given in the Appendix. Substituting Equation 13 into Equation 12:

γ = tan−1

(∑n
i=0 aiC

i
L

CL cosφ

)
(14)

where CL is a function of airspeed. Equation 14 gives an expression for flight path angle as a function of
airspeed and bank angle. This implies that given a vehicle drag polar, ψ̇ can be written is a function of
only va and φ. Now that we have an expression that relates ψ̇, va, and φ, turn rate can be controlled by
scheduling va and φ commands.

B. Autonomous Thermal Centering

The autonomous thermal centering controller that was developed by Allen1 and altered by Andersson3 has
been shown to sufficiently center and maintain climb without the use of thermal mapping. This controller is
based on Reichmann’s thermal centering method.13 Reichmann’s centering method consists of the following
three rules (as illustrated in Figure 2):

1. As climb improves, flatten the circle (approximately 15–20 degree bank angle)

2. As climb deteriorates, steepen the circle (approximately 50 degree bank angle)
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C. Cooperation
The method used for the cooperation between the UAVs can best be described using the following example.

Consider two UAVs, A and B. If A is in soar mode, and B is in search mode, B will be guided towards the estimated
center of the thermal Pth2 where A is soaring, corrected for the altitude difference between A and B, (Fig. 13). The
location of Pth2 is computed by taking the estimated thermal location by A Pth1, and correcting it for the drift of the
thermal that has occurred between the altitudes of the two vehicles (Eq. 6). VD is the drift velocity of the thermal,
estimated by A, h1 and h2 are the altitudes of A and B respectively and Ėave is the average climb rate of A.

ave
Dthth E

hh
VPP

&
21

12

−
⋅−= (6)

Figure 13. UAV B guided towards anticipated location of the thermal A is soaring.

B

A

+ Pth1

Pth2 +

Wind

Ë<0 → increased turn rate

Ë>0 → decreased turn rate

Thermal center

Ë=0 → steady state turn rate

Figure 12. Implementation of the Reichmann’s centering technique for a UAV

UAV flight path

a) b) c)

Figure 2. Reichmann’s method of centering a thermal updraft using total energy acceleration.13,15

3. If climb remains constant, keep constant bank (approximately 25–30 degree bank angle)

Using the second derivative of energy (ë) as a feedback term, this method was written as a control law:

ψ̇cmd = ψ̇ss − kë (15)

where ψ̇ss is the desired nominal steady-state turn rate and k is a gain.15 This controller centers the aircraft’s
trajectory around the core of the thermal by adjusting the turn rate to follow a contour of constant ė. This
control law has the built-in assumption that the thermal profile somewhat resembles a Gaussian, circular in
shape with the highest updraft velocity at the core.

Choosing the steady-state turn rate (ψ̇ss) is equivalent to choosing the steady-state circling radius (Rss)
when the glider is holding a constant airspeed. The equation for steady-state turn rate (assuming a small
flight path angle) is

ψ̇ss =
va
Rss

(16)

The optimal steady-state turn rate is dependent on the sink polar of the aircraft and the characteristics
of the thermal. An important question now is to determine the values of va and Rss that maximize energy
gain in the thermal: this is discussed in Section V.

Climb performance is also affected by how quickly and accurately the thermal is centered. Using the
centering controller presented in Equation 15, energy “acceleration” must be determined accurately without
introducing excessive phase lag into the system.

IV. Estimating Total Energy and its Rates of Change

The total energy of an aircraft can be represented by the sum of its potential, kinetic, and stored energies:

E = mgh+
1

2
mv2 + Es (17)

In this analysis, we are primarily concerned with the aircraft’s climb rate and the height of the aircraft
above the ground. For this reason, Equation 17 can be modified to show the vehicle’s specific energy using
units of height. Specific energy (e) is total energy divided by weight.

e = h+
v2

2g
+ es (18)

In the case of a glider, we are assuming no propulsion source and v is the velocity of the aircraft relative
to the wind (va). To optimize the amount of energy harvested from a thermal, the rate of energy gain (ė)
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must be maximized. Differentiating Equation 18, ė can be written as follows:

ė =
vav̇a
g

+ ḣ (19)

Note that v̇a is the rate of change of airspeed, and this cannot be measured directly using accelerometers
(which provide a measure of acceleration, i.e. the rate of change of inertial speed). Differentiating once more
gives an expression for ë:

ë =
v̇2
a + vav̈a

g
+ ḧ (20)

This ë term is used for the thermal centering controller as discussed in Section III. Obtaining an mea-
surement of ë is tricky, however: numerically differentiating total energy results in a very noisy signal;
filtering the the numerical derivative to remove enough noise that the signal is recognizably smooth results
in unacceptably large lag in the signal. A filter that can compute a smooth estimate of total energy and its
derivatives with acceptable lag is therefore required.

A. Savitzky-Golay Filter

Adaptive filters can use a high order estimate and still provide sufficient noise rejection. An example of an
adaptive convolution filter is the Savitzky-Golay (SG) filter.18 This filter performs a polynomial fit on the
measurements within a moving window of time (Figure 3), and it is adaptive in the sense that the computed
polynomial fit to the measured values is continuously changing with time.
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Figure 3. Approximating numerical derivatives using a
Savitzky-Golay filter.

The SG filter (along with other adaptive fil-
ters) require that the window contains an overde-
termined system, meaning the number of points
in the window is greater than the order of the
polynomial plus one. This allows the polynomial
coefficients to be determined using the Gauss-
Markov theorem. This theorem states that the
best linear unbiased estimate (BLUE) of the
polynomial coefficients is given by the ordinary
least squares estimate.19 Given a window of time
T containing M measurements, and a desired
polynomial of order N of the following form:

p(x) = a0 +a1x+ · · ·+aN−1x
N−1 +aNx

N (21)

where 1 < N + 1 < M , the minimum variance
estimate of the polynomial coefficients

â =
[
a0 a1 · · · aN−1 aN

]T
(22)

can be found using the linear least squares so-
lution. The linear least squares estimate of â is

â = Ky (23)

where y is the measurement vector and K is

K = (DTD)−1DT (24)

Because we are estimating the polynomial coefficients, D is the Vandermonde matrix:

D =


1 x1 x2

1 · · · xN1
1 x2 x2

2 · · · xN2
...

...
...

. . .
...

1 xM x2
M · · · xNM

 (25)
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Using M measurements taken every time step (∆t), the size of the window is:

T = (m− 1)∆t (26)

This time parameter is used to normalize the window, preventing any scaling problems that can arise from
fitting higher order polynomials. The equivalent Vandermonde matrix (D̄) becomes

D̄ =


1 t0−t0

T ( t0−t0
T )2 · · · ( t0−t0

T )N

1 t1−t0
T ( t1−t0

T )2 · · · ( t1−t0
T )N

...
...

...
. . .

...

1 tM−t0
T ( tM−t0

T )2 · · · ( tM−t0
T )N

 (27)

where tm, m = 0 . . .M is the time each corresponding measurement was taken and t0 is the oldest timestamp
in the current window. Using this Vandermonde matrix normalizes the window on the interval of [0, 1]. The
coefficients of this normalized polynomial fit (denoted by ā) can now be estimated using

ā = K̄y (28)

where y is the vector of measurements in the current window.
Once this normalized polynomial fit is acquired, the polynomial is evaluated at the center point of

the current window. In addition, the first and second derivatives at this point can be approximated and
evaluated by analytically differentiating the polynomial fit. Once this point is evaluated, the window is
shifted to incorporate the new measurement and the oldest point is eliminated.

If the number of points contained in the window (M) is equal to the order of the polynomial fit plus one
(N + 1) the system is no longer overdetermined and application of the SG filter simply becomes the central
difference solution of order (N). To demonstrate, consider a first order polynomial (N = 1,M = 2), and D
becomes:

D =

[
1 t−∆t

1 t+ ∆t

]
(29)

Substituting into Equation 24, K becomes:

K =
1

2

[
t

∆t + 1 − t
∆t + 1

− 1
∆t

1
∆t

]
(30)

Given two measurements, the measurement matrix for a central difference is

y =

[
f(t−∆t)

f(t+ ∆t)

]
(31)

Substituting into Equation 28 yields the coefficients of the polynomial fit. The second coefficient is the
numerical derivative (or slope) of the curve at time t. This estimated derivative evaluates to

f ′(t) =
f(t+ ∆t)− f(t−∆t)

2∆t
(32)

which is exactly equal to the first order central difference solution. Using an SG filter (where M > N + 1 by
definition), noise can be further reduced by essentially acting as a low-pass filter.

Performance of the SG filter in estimating polynomial coefficients is briefly demonstrated in Figure 4.
An analytic function

y(t) = (t/10) sin(2t) + 3t+ 10 (33)

is evaluated at increments of ∆t = 0.02 and corrupted by zero-mean Gaussian random noise with σ = 0.1.
The polynomial coefficients generated by the Savitzy-Golay filter were used to calculate the derivative at
each time step (using a third order polynomial and a window size of two seconds). Figure 4 shows that
smooth derivatives can be obtained (and, on the scale of the plot, the first derivative obtained using the
SG filter is lies on top of the analytic function’s derivative), while numerical derivatives (shown in gray) are
enormously affected by measurement noise.

Note, however, that the symmetric SG filter is non-causal (it requires future measurements to compute
current polynomial coefficients). Equivalently, it provides estimates that are delayed by half the time window.
To reduce the effect of delay, an asymmetric Savitzky-Golay filter can be used: rather than computing
estimates at the center of the time window, estimates are computed at the end of the time window.
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Figure 4. Estimating first and second derivatives of a noisy signal (σ = 0.1) using a backward difference filter
and a symmetric Savitzky-Golar filter.

B. Savitzky-Golay Filter for Total Energy Estimation

Good thermal centering performance requires that ė and ë are available with minimal (ideally zero) delay.
Given a polynomial order N and a window size T , the least-squares estimate of the polynomial fit to total
energy variation over the window is computed. At time tm,

e(tm) = a0 + a1

(
tm − t0
T

)
+ . . .+ aN

(
tm − t0
T

)N

+N (0, σ2) (34)

where t0 is time at the beginning of the window and N (0, σ2) denotes zero-mean Gaussian random measure-
ment noise. Given m = 1 . . .M measurements, an estimate â for the polynomial coefficients is computed (as
in the preceding section), and finally total energy (and its derivatives) are computed at the desired time:

ê(tm) =

N∑
n=0

ân

(
tm − t0
T

)n

(35)

˙̂e(tm) =

N∑
n=1

nân

(
tm − t0
T

)(n−1)

(36)

¨̂e(tm) =

N∑
n=2

n(n− 1)ân

(
tm − t0
T

)(n−2)

(37)

To minimize delay, total energy and its derivatives are computed at the end of the time window (i.e.

7 of 25

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 J

ac
k 

L
an

ge
la

an
 o

n 
Ja

nu
ar

y 
17

, 2
01

4 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
4-

02
60

 



when tm = t0 + T ), so
(
tm−t0

T

)
= 1. The energy estimates reduce down to

ê(tm) =

N∑
n=0

ân (38)

˙̂e(tm) =

N∑
n=1

nân (39)

¨̂e(tm) =

N∑
n=2

n(n− 1)ân (40)

essentially creating an asymmetric version of the SG filter. However, as one can expect, the asymmetric
filter’s estimates are not as smooth as those produced by the symmetric filter. This is illustrated in Figure 5,
which uses the analytic function (given in Equation 33) corrupted with zero-mean Gaussian random noise
(σ = 0.1) to test the performance of both the symmetric SG filter and the asymmetric (backward) SG filter.
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Figure 5. Estimating first and second derivatives of a noisy signal (σ = 0.1) using the backwards SG filter.

In Figure 5, the estimates that were computed using the symmetric filter are delayed by half the time
window (1 second) to show when the estimates would actually be available to a controller. There is a clear
reduction in latency at the cost of overshoot and a noisier estimate.

When the measurements change slope quickly, the polynomial fit often overshoots this change, causing a
delay in the derivative estimates. By altering the window size and fit order, we can tune the filter to perform
well by adequately rejecting noise with minimal overshoot and reasonable latency. Cases were run for several
different combinations of window size and fit order for the function given in Equation 33. The average error
for each of the cases is shown Figure 6.

This figure demonstrates that fitting small time windows (containing few measurements) with a high
order polynomial yields a great deal of error. Intuitively, this makes sense because higher order polynomials
can have many more turning points than lower order polynomials, causing the fit to track the measurement
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Figure 6. Average error for various polynomial orders and window sizes.

noise as well as the base signal. This is the equivalent of setting the filter’s crossover frequency too high.
Furthermore, fitting a large window with a polynomial of low order will shift the crossover frequency of
the filter the opposite direction to a point where the underlying data is being siginficantly affected. The
best performance exists at some balancing point between window size and fit order (and may be limited by
available computing hardware). The larger the window, the higher the fit order should be. The combination
that yields the best performance is dependent upon the dynamics of the aircraft and the quality of the sensors.
For testing purposes, the backwards SG filter was implemented on a low-level autopilot. This autopilot was
used in a feedback loop to remotely fly the SB-XC in Silent Wings flight simulator (www.silentwings.no).
Andersson’s centering controller, with the addition of the turn radius convergence algorithm as discussed in
Section V, was used to heuristically tune the energy estimator.

V. Maximizing Rate of Energy Gain Using Turn Radius Convergence

Once the thermal is centered using the energy estimation techniques discussed in Section IV, the energy
estimates at various turn radii can also be used to continually improve the turn radius and the associated
steady-state turn rate of the aircraft.

The climb rate in a thermal is the combination of the sink rate of the aircraft in still air and the thermal
updraft velocity. The sink rate in still air can be determined from the aircraft’s sink polar and adapted for
various bank angles. Assuming the thermal updraft velocity follows a Gaussian distribution with a set core
strength w0 and radius Rth, vertical wind speed varies with distance from the core as

wth(x, y) = w0e
−
(

(x−x0)2+(y−y0)2

2R2
th

)
(41)

where x0, y0 define the location of the thermal core. A profile is shown in Figure 7(a).
The net climb rate in the thermal is the sum of the glider’s sink rate (at its airspeed and bank angle) and

the vertical wind speed. Flying in a tight circle close to the thermal core will give the largest vertical wind
speed, but sink rate will be higher. Intuition therefore suggests that once a desired turn radius has been
selected, one should choose an airspeed and bank angle that minimizes the sink rate for that turn radius.
In practice, however, once the airspeed is “close enough” to the optimal value, sink rate changes very little
with changes in airspeed for a given turn radius. Figure 8 shows the rate of change of energy for an SB-XC
circling in a thermal of radius 70 m with core strength 4 m/s (properties of the SB-XC are given in the
Appendix).

Note the strong dependence of ė on turn radius and comparatively weak dependence on airspeed. Flying
at a nominal airspeed of approximately 13 m/s gives good performance, and this remains true as thermal
radius varies. The problem now is to determine the thermalling radius that maximizes energy gain in an
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Figure 7. Left: Gaussian thermal model with a Rth = 70 m and w0 = 4 m/s; Right: Climb rate as a function
of distance from the thermal center for SB-XC. The thermal pictured on the left was used. The maximum
climb rate for this aircraft/thermal combination is 3.04 m/s and the optimal turn radius is 25.8 m.

10

15

20

25
20

40
60

80
100

120
140

160

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Turn Radius (m)Airspeed (m/s)

ė
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Figure 8. Sink rate as a function of turn radius and airspeed for the SB-XC glider.
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unknown thermal. Various approaches to mapping the thermal (so that an optimal radius can be computed)
have been proposed,2,20 but these methods can become computationally intensive.

Extremum seeking control is a non-model based approach where system parameters are continuously
perturbed to compute a gradient. This gradient is used to autonomously seek an extremum and track the
extremum.21 It has been used in many applications including flow control22 and uav motion planning.23

This approach has several advantages for thermal soaring:

1. An estimate of the thermal profile is not required.

2. The aircraft’s sink polar is not required.

3. The algorithm works for multiple aircraft without the need for additional tuning.

4. The algorithm is simple to implement; computation and memory requirements are minimal.

5. The algorithm adapts to changing thermal conditions.

To maximize energy gain during thermal soaring, the gradient ∂ė
∂R is computed by perturbing turn radius

around its current nominal value; the nominal turn radius is then changed in the direction of increasing ė.
A flowchart of the adaptive thermalling controller is shown in Figure 9. Using this algorithm the aircraft
flies at or near the optimal radius and has the capability to adapt as the thermal profile changes.

The algorithm is triggered when the decision to take the thermal is made. Methods for deciding when
to lock on and when to leave the thermal are discussed by Edwards14 and Allen.1 When the algorithm is
first triggered, the turn radius is initialized to a relatively small value. This value depends on the scale of
the aircraft being used. For a full-size glider with a 15 meter wingspan, 80 meters is a viable starting radius.
For the small-scale SB-XC glider, an initial turn radius could be as small as 20 meters. This prevents the
aircraft from “losing” smaller thermals by reaching a steady-state radius that is larger than the thermal. In
addition, it allows centering to occur faster because more loops can be completed in the same amount of
time.

Once the thermal is centered at this initial radius, the algorithm computes the average rate of energy
gain over a loop (or sequence of loops). When the specified number of loops are completed, the steady-state
turn radius is increased for the next sequence of loops. Once again, the average ė is calculated recursively
while flying at this steady-state radius. The current and previous ¯̇e values are compared. If an increase
is observed, the turn radius is once again increased. However, if a decrease is observed, the turn radius is
perturbed in the opposite direction. The algorithm follows the logic table presented in Table 1 and repeats
this process until the thermal dissipates or another task is assigned.

Table 1. Logic table for thermal radius convergence.

Condition Action
¯̇ek ≥ ¯̇ek−1 & Rss,k > Rss,k−1 Increase Rss

¯̇ek ≥ ¯̇ek−1 & Rss,k < Rss,k−1 Decrease Rss

¯̇ek < ¯̇ek−1 & Rss,k > Rss,k−1 Decrease Rss

¯̇ek < ¯̇ek−1 & Rss,k < Rss,k−1 Increase Rss

While proofs of stability of extremum seeking control for thermal soaring have not yet been derived,
performance tests using a high-fidelity soaring simulator shows that the controller indeed converges to the
maximum climb rate and that this rate is maintained. Further, stable thermal centering still occurs. The
simulator and results are described in the next two sections.
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Figure 9. Flowchart showing the structure of the turn radius convergence algorithm.
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VI. Simulation

The Silent Wings flight simulator (www.silentwings.no) was used as the primary testing environment for
the methods discussed throughout this paper. Silent Wings is a commercially available soaring simulator
and multiplayer game that is committed to replicating the soaring experience as accurately as possible.

Figure 10. Glider autonomously climbing in a thermal.
Simulation was performed using an SB-XC model in Silent
Wings flight simulator.

Silent Wings is used by soaring pilots around
the world for training purposes, to practice soar-
ing, or to compete against other pilots.

This simulator generates extremely realis-
tic atmospheric conditions, including accurate
pressure and temperature distributions and dy-
namic thermal formations that follow the full
thermal cycle from release to decay. Wind char-
acteristics such as average wind speed, wind di-
rection, turbulence levels, and wind shear can
be adjusted as well as thermal properties such as
average thermal size, average core strength, and
the number of thermals present in the current
map. The aerodynamics of the preloaded air-
craft are accurately modeled by simulating the
airflow over each section of the aircraft model.
However, the simulator is robust in the sense
that it allows you to create and fly add-on air-
craft using the native panel model or a lin-
earized aircraft model. Silent Wings also simu-
lates the load factor and various stresses on the aircraft, causing damage to specific aircraft regions if the
limits are exceeded. The gliders also use simulated instruments such as a TE-compensated variometer and
a gps allowing measurements to be generated in real-time. These measurements, along with the current
state of the aircraft, can be retrieved in real-time. Unlike Condor (www.condorsoaring.com), another com-
parable soaring simulator, Silent Wings provides the capability to control aircraft remotely through a UDP
connection. This enables the simulation of flights where aircraft are controlled autonomously using state
feedback. Figure 10 shows a glider thermal soaring under autonomous control in Silent Wings. In addition,
Silent Wings provides the ability to join or set up your own multiplayer server where you can soar with other
aircraft. This permits the performance of different controllers to be compared by flying in the exact same
environmental conditions as well as the testing of autonomous versus manned flight.

Using the states being sent from Silent Wings in real-time, a low-level autopilot system was designed to
remotely control the aircraft in simulation. The autopilot is powered by an Arduino Mega 2560 microcon-
troller and communicates with Silent Wings (at a rate of 30-50 Hz) using an external Ethernet shield. The
low-level autopilot software was designed in-house and uses successive loop closure to control the desired
longitudinal and lateral/directional aircraft states. It has the ability to control airspeed, pitch attitude, bank
angle, heading, turn rate etc. Matlab/Simulink was used as a mission computer to send high-level commands
to the autopilot system through a serial connection. Additionally, state information was forwarded from the
autopilot to the mission computer at a rate of 1-2 Hz. Figure 11 shows a graphical representation of the
testing and simulation network that was used.

Initially, an aerodynamic model of the SB-XC was created for this aircraft using XFLR5 (www.xflr5.com).
XFLR5 is a software tool that was created specifically for aerodynamic analysis of aircraft flying at low
Reynolds numbers. This program uses XFoil, a subsonic airfoil analysis tool developed at the Massachusetts
Institute of Technology (web.mit.edu/drela/Public/web/xfoil) to estimate the 2-dimensional drag polar,
maximum lift coefficient, and other aerodynamic properties. XFLR5 utilizes this 2-D airfoil data to build
a 3-D aerodynamic model using lifting line theory, vortex lattice method, and a 3-D panel method. This
aerodynamic model was then implemented (as a nonlinear panel model) in Silent Wings soaring simulator.
This model was fine tuned using flight test data published by Edwards? and adapted for our aircraft weight.
This SB-XC model was used to test the performance of the soaring algorithms in a realistic environment.
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Figure 11. Complete testing and simulation architecture. This system can be used to compare an unbounded
number of aircraft and control systems in the same environment by setting up a multiplayer server.

VII. Results

The results of various thermal soaring simulations are reported in this section. The purpose of these
simulations is to analyze the proposed improvements and their ability to extend the endurance of small-scale
soaring uavs via thermal soaring. A model of the SB-XC small-scale glider was used exclusively for testing
in Silent Wings soaring simulator. The simulations discussed in this section investigate: thermal centering
performance based on energy estimation methods; the utility of the extremum seeking controller.

A. Centering Performance

The performance of the thermal centering controller (Equation 15 in Section III) is directly dependent on the
quality and timeliness of the ë estimates. For this reason, the merit of the state estimator can be determined
by examining thermal centering performance. Centering performance includes the aircraft’s ability to center
a thermal quickly, maintain climb in a large range of thermal sizes and strengths, and reject disturbances
such as turbulence and wind shear.

An energy estimator that has been successfully used for thermal soaring with the SB-XC can be seen
in Figure 12. This estimator was designed by Allen and Lin1 and uses a series of filters to reject noise and
differentiate the energy signal.
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Equation (1) is solved using gravity, g , airspeed, V , and the estimated aircraft altitude, hest , from 
a representation of the standard atmosphere (ref. 16). Equation (2) gives a reasonable fit to the 
standard atmosphere for altitudes below 10 000 m.

hest = 1−
pstatic

101325

⎛

⎝⎜
⎞

⎠⎟

0.1903⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

44333.7

An approximate pressure altitude estimate was adequate for autonomous soaring because only 
the rate of change of energy is used by the guidance and control. The total energy calculations are 
illustrated in figure 3. Total energy was filtered and differentiated with filter 1 and filter 2 to obtain 
specific energy rate, E .

2
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Total energy
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Figure 3. Total energy estimation.

Energy rate was corrected to account for the energy added to the aircraft by the motor. The 
correction term was calculated by differentiating eq. (1) and solving for motor terms only. The 
resulting relationship is given in eq. (3).

E
motor

=
V Vmotor

g

Equation (3) was solved using an approximation of  V
motor

 given in eq. (4)

V
motor

=
T

m

(2)

(3)

(4)

Figure 12. Energy estimator designed by Allen and Lin1

Andersson et al. discuss the possibility of augmenting the thermal centering controller to accept an
...
E

term in an attempt to reduce latency.24 However, this was discussed as potential future work and an analysis
has yet to be completed showing the efficacy of this controller. It is known that other energy filters have been
successfully used for autonomous thermal centering, unfortunately these filter values remain unpublished.
Therefore, for the sake of comparison, the energy estimator shown in Figure 12 was used as a baseline for
the following thermal soaring simulations.

The following analysis was performed to examine the estimator’s ability to enable thermal centering in a
wide range of thermals.9 The thermals were generated by Silent Wings and resemble a Laplacian of Gaussian
surface. An example thermal profile can be seen in Figure 13.

Figure 13. Thermal generated by Silent Wings (Rtherm = 80m, wcore = 4m/s).

Thermals ranged from a minimum radius of 55 m to a maximum radius of 105 m and core strengths
ranging from 2 to 6 m/s. Figure 14 shows the initial behavior of the SB-XC as it encounters these different
thermals. The aircraft was flown directly into the core of the thermal; this was to analyze the robustness of
the system by starting at the most difficult location for the estimator/controller to center a thermal.
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Figure 14. Initial centering response of the SB-XC model to various thermals.

Results for each of these simulations are summarized in Tables 2, 3, and 4.

Table 2. SB-XC model flying in thermal (Rth = 55 m).

Core Str (m/s) Filter Locked On? Avg ROC (m/s)

2 m/s BSG Yes 1.23

Allen No N/A

4 m/s BSG Yes 3.27

Allen No N/A

6 m/s BSG Yes 5.30

Allen No N/A
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Table 3. SB-XC model flying in thermal (Rth = 80 m).

Core Str (m/s) Filter Locked On? Avg ROC (m/s)

2 m/s BSG Yes 1.37

Allen Yes 1.35

4 m/s BSG Yes 3.36

Allen Yes 3.32

6 m/s BSG Yes 5.24

Allen Yes 5.20

Table 4. SB-XC model flying in thermal (Rth = 105 m).

Core Str (m/s) Filter Locked On? Avg ROC (m/s)

2 m/s BSG Yes 1.33

Allen Yes 1.34

4 m/s BSG Yes 3.41

Allen Yes 3.40

6 m/s BSG Yes 5.27

Allen Yes 5.24
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Figure 15. Cross-wind alti-
tude locations.

The results show that both filtering methods were able to steadily climb
in the 80 and 105 m thermals. However, only the model using the BSG filter
was able to lock on to the smallest (55 m radius) thermals. Figure 14 also
shows that the BSG filtering method allowed for much quicker and smoother
centering; typically centering the thermal within the first 1 1

2 rotations. The
reduced latency in the BSG filter allows accurate centering of small thermals.
Note that simulations where the Allen filter was able to lock onto a thermal,
the average climb rate was similar to that of the BSG filter (with the BSG
filter averaging a climb rate about 0.6% greater).

The next simulation tests the estimator/controller’s ability to reject dis-
turbances (which may arise from wind shear, turbulence, and many other
factors). This simulation imposes disturbances in the form of thermal drift
and change of wind direction. A series of shear layers were defined, which
causes the thermal to change its drift direction rapidly. The lateral direc-
tions of the disturbances are illustrated in Figure 15. Note that this scenario
was designed specifically to be severe, and it is unlikely that one would en-
counter a sequence of shear layers of this magnitude. The thermal tracking
performance was tested using the backward Savitzky-Golay (BSG) filter and
Allen’s differentiation filters. Each filter was subjected to three different sets
of cross-winds of varying strength. These simulations were performed with
1.5, 3, and 5 m/s lateral wind strengths. The thermal used for this simula-
tion maintains a profile similar to the one shown in Figure 13 and an average
radius and strength of 80 meters and 4 m/s respectively. The path of the
aircraft through the thermals can be seen in Figure 16 and the corresponding
altitude plot is shown in Figure 17.
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Figure 16. Path of the SB-XC in a thermal subjected to rapidly-changing cross-winds.

Table 5. Results of SB-XC subjected to rapidly-changing cross-winds

Wind Filter Finished Avg ROC (m/s) Vertical Gain (m)

1.5 m/s BSG Yes 3.34 1058

Allen No 3.05 872

3.0 m/s BSG Yes 3.24 1052

Allen No 2.23 895

5.0 m/s BSG No 3.19 310

Allen No 3.10 261
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Figure 17. Altitude of SB-XC in a thermal subjected to various cross-winds.

The proposed BSG energy filter was able to provide better average climb rate and thermal tracking than
Allen’s energy filter. The BSG estimator allowed the thermal centering controller to maintain steady climb
through the entire life of the thermal in both the 1.5 and 3 m/s cases. In these cases, Allen’s filter enabled
climbing through multiple wind shear layers but both lost tracking around 950 m AGL. The 5 m/s cross-wind
proved to be too much for both cases, as they lost tracking almost immediately upon experiencing such large
disturbances. The inability of Allen’s filter to track the thermals is likely due to excessive estimate lag.

B. Extremum Seeking Control

This section shows the results of performance testing of the extremum seeking controller (discussed in
Section V). This high-level controller uses the rate of energy gain gradient ( ∆ė

∆R ) to choose steady-state
turn commands that ultimately converge to the optimal value. Results are compared with constant-radius
thermalling controllers; in all cases the backward Savitzky-Golay energy filter and the centering controller
presented in Section III were used. Simulations were performed in Silent Wings soaring simulator.

Simulations of flights in thermal sizes ranging from an 80 to 200 m radius were conducted. The per-
formance of the extremum seeking controller was compared to the fixed turn radius values of 25 and 35
m. These fixed values were chosen because they represent a typical thermalling radius that provides near
optimal climb rate for the SB-XC. Additionally, the extremum seeking controller was initialized with a turn
radius of 35 m; this radius is large enough that phase lag in energy estimates won’t cause the thermal to be
lost but small enough that it should provide good lift during the initialization phase with almost any usable
thermal. Figure 18 shows the altitude, rate of energy gain, and commanded turn radius of the SB-XC while
flying in a medium-sized thermal (wcore = 4 m/s, Rth = 120 m). Table 6 shows the corresponding average
climb rate values.
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Figure 18. Extremum seeking control in a thermal (wcore = 4 m/s, Rth = 120 m).

Table 6. Average climb rates (wcore = 4 m/s, Rth = 120 m).

Radius Cmd (m) Avg ROC (m/s)

Extremum Seeking 3.63

R = 25 3.67

R = 35 3.50

This simulation shows good convergence for the extremum seeking controller. The rate of change of
energy starts low (as with the 35 m case) but the controller consistently tightens the turn until it converges
to a near-optimal radius that is likely just under 25 m; the exact value is unknown due to unknowns in the
simulated thermal environment. This is demonstrated by the fact that ė slightly surpasses the 25 m case as
the commanded radius was tightened below 25 meters. Although the 25 m case had a slightly better average
rate-of-climb than the extremum seeking controller, the extremum seeking controller achieved a higher peak
energy than both the 25 and 35 m flight paths. Despite the extremum seeking controller starting with an
initial turn radius of 35 m, after the (∼1,000 m) climb it outperformed the 35 m case by almost 4%. Figure 19
and Table 7 show results for flight within a wide thermal with a slightly weaker core (wcore = 3 m/s, Rth

=200 m).
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Figure 19. Extremum seeking control in a thermal (/mathbfwcore = 3 m/s, Rth =200 m).

Table 7. Average climb rates (wcore = 3 m/s, Rth = 200 m).

Radius Cmd (m) Avg ROC (m/s)

Extremum Seeking 2.72

R = 25 2.65

R = 35 2.68

This simulation also shows good convergence of the controller as it converged rapidly to a value around
28 m and maintained a higher climb rate throughout the duration of climb. Additionally, the extremum
seeking controller provided a more uniform ė than the other controllers. Performance gains (in the form of
climb rate) over the 25 and 35 m cases were 2.5% and 1.5% respectively with the 35 m case outperforming
the 25 m case (as opposed to the previous simulation). The next set of simulations exposed the controller to
a narrow but strong thermal (wcore = 5 m/s, Rth =80 m). These results are shown in Figure 20 and Table 8.
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Figure 20. Extremum seeking control in a thermal (wcore = 5 m/s, Rth =80 m).

Table 8. Average climb rates (wcore = 5 m/s, Rth =80 m).

Radius Cmd (m) Avg ROC (m/s)

Extremum Seeking 4.73

R = 25 4.88

R = 35 4.33

This simulation also shows rapid convergence of the turn radius. Additionally, the maximum ė for the
extremum seeking controller is noticeably higher than the other two cases. However, since the thermal is
narrow with a strong core, the optimal turn radius is very small. Despite hard limits on the bank angle
command, the tight turn commands combined with disturbances in the thermal cause the controller to
become slightly unstable. This instability is likely caused by: attempting to fly near stall conditions in
a turbulent environment; pushing the limits of the phase margin of the centering controller; and frequent
changes in the commanded turn rate (since this frequency is dependent on loop size). Because all of these
factors are a result of attempting to fly an extremely tight turn, this problem could be corrected by performing
a stability analysis and adjusting the limits (and gains) accordingly. Although this stability analysis has not
yet been completed, it is a good candidate for future work. Despite the instability towards the end of the
simulation, the controller provided an average climb rate of 4.73 m/s. This showed 9% improvement over
the 35 m case but was 3% slower on average than the 25 m case.

In all three of the previous scenarios, although convergence was observed from an initial turn radius of 35
m it appears that using 25 m as an initial radius for the extremum seeking controller would have provided
better initial climb rates. For this reason, the first case was flown using a 25 m initial radius. This is shown
in Figure 21 and Table 9.
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ė
(m

/s
)

0 50 100 150 200 250 300
10

20

30

40

R
cm

d
(m

)

Time (sec)

ESC, R
0
 = 35

ESC, R
0
 = 25

R
cmd

 = 25

R
cmd

 = 35

Figure 21. Extremum seeking control in a thermal (wcore = 4 m/s, Rth =120 m).

Table 9. Average climb rates (wcore = 4 m/s, Rth = 120 m).

Radius Cmd (m) Avg ROC (m/s)

Extremum Seeking (R0 = 35) 3.63

Extremum Seeking (R0 = 25) 3.76

R = 25 3.67

R = 35 3.50

It can be seen that the extremum seeking controller is able to significantly outperform all of the other
cases. Starting at the same steady-state turn radius of 25 m, the extremum seeking controller was able to
improve the climb rate by almost 4% over the case where the radius remained constant. This result solidifies
the utility of the extremum seeking controller via improved climb rate.

VIII. Conclusion

This paper has introduced a method for optimizing climb rate during thermal soaring through extremum
seeking control. This is a model-free approach (neither a model of the thermal nor a model of the aircraft is
required) that can adapt to changing thermal conditions in real-time.

Thermal centering is aided using estimates of total energy, rate of change of total energy and second
derivative of total energy using an asymmetric (backward) Savitzky-Golay filter. This filter computes a
polynomial fit to the measurements of total energy over a moving time window, and then computes derivatives
of the estimated total energy from the computed polynomial. This approach significantly reduces the phase
lag associated with other filtering approaches, improving performance of the thermal centering algorithm.
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A simulation environment based on a commercially available soaring simulator was briefly presented.
This environment allows hardware in the loop simulations: here low-level flight controls were implemented
on an Arduino Mega single board computer communicating with the simulator over UDP; higher level control
was implemented on a laptop communicating with the autopilot over a serial link.

Successful simulations were conducted using the small-scale SB-XC glider to autonomously track and
improve climb rate in thermals. Stable thermal centering, in addition to improvements caused by the
extremum seeking control algorithm, were observed from these simulations once again demonstrating the
feasibility of using small-scale autonomous sailplanes to complete long endurance missions.
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Appendix: Vehicle Properties

Note that a third order polynomial is used to relate CD to CL: this provided a better fit to the computed
data over the full speed range.

Table 10. Parameters for SB-XC glider.

variable value description

m 5.7 kg mass

S 0.996 m2 wing area

f(CL) 0.0166CL
3 + 0.0535CL

2

−0.0437CL + 0.0276

va,min 10 m/s

va,max 35 m/s

ηp 0.80 efficiency of the propeller

ηm 0.90 efficiency of motor

ηesc 0.95 efficiency of speed controller

a,b,c -0.0162, 0.3782, -2.7018 sink rate polar fit in m/s
va
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