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Abstract— This paper addresses the problem of path plan-
ning for a small UAV operating in a complex four dimensional
(time and spatially varying) environment. A kinematic tree
path planner that explicitly accounts for time is presented.
This kinematic planner is shown to be resolution complete
through comparison with the RC-RRT, and simulation results
demonstrating planning in a complex time- and spatially-
varying wind field are presented. The simulation considers an
unpowered (i.e. gliding) aircraft, hence exploitation of vertical
components of wind is critical for feasibility of flights to the
goal.

I. INTRODUCTION

Wind is a potential source of energy which can be ex-

ploited to increase the range and duration of flights. Birds

and human glider pilots regularly utilize this wind energy

to stay aloft and reach their destination. However, wind (like

all natural occurring phenomena), varies both temporally and

spatially. The spatial variation of wind makes the problem of

planning an efficient trajectory extremely complicated. The

temporal variation further adds to the complexity. Thus the

energy optimal path is both time and space dependent.

Energy is available from atmosphere mainly through ver-

tical air motion, spatial velocity gradients and gusts (es-

sentially temporal velocity gradients). The time scale and

magnitudes of these energy gains also vary considerably.

Static soaring exploits vertical air motion, whose time scale

is of order minutes to hours; dynamic soaring exploits spatial

gradients and vehicle dynamics become important; and gust

soaring requires high rate control. Static soaring phenomenon

suits both the time scale and the amount of energy that can be

extracted from the atmosphere for long range path planning.

Vertical air motion mainly occurs due to uneven heating

of the ground or by deflection of air by the side of mountain

ranges. Cyclic oscillations of winds are noticed in the lee of

mountains called the mountain wave are also potential source

of upward moving air.

Path planning for air vehicles in the presence of winds has

been widely studied. In 1931 Zermelo solved the problem of

optimal navigation of small ships in presence of currents [1].

Recently the time optimal problem has been adopted as

a Markov Dubin problem as suggested by Sussmann [2].

In presence of steady uniform winds the Zermelo-markov-

dubins (ZMD) problem has been solved by McGee and

Hedrick using Maximum Principle of Pontryagin [3], [4].
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In [5] Bakolas has also given a time optimal synthesis for

the ZMD problem. However in all these cases only steady

uniform wind is considered; furthermore only minimum time

trajectories are examined.

This paper focuses on the problem of trajectory planning

in non-uniform, unsteady wind fields. Further, the focus is on

minimum energy flight paths, but the techniques developed

here can be extended to other optimization criteria. Because

of the significant spatial and temporal variation in the wind

field the state space of the vehicle is very large, leading

to a computationally intensive trajectory planning problem.

Sampling based path planning techniques [6] are widely used

to deal with this “curse of dimensionality”. Variants such

as Rapidly exploring Random Trees (RRT ) [7] are widely

successful in solving path planning problems in static and

dynamic environments. Although these planning techniques

are probabilistically complete there is no guarantee of opti-

mality for the solutions. Variants such as RRT ∗ [8] has been

used for optimal motion planning in static environments. In

[9] Ardiyanto et al. used arrival time fields and heuristically

random trees to deal with time complexity. Since there is

no guarantee of reaching the goal from a particular starting

time, arrival time fields cannot be used this application.

A tree-based approach to planning in complex wind fields

was introduced in [10]. Here the kinematic tree is extended

by: (1) adding an explicit representation of time; (2) adding

a continuous turn motion primitive, so that altitude can

change with only a small change in horizontal position;

(3) demonstrating resolution completeness of this kinematic

tree.

Resolution complete means that if a path exists then a

tree of sufficient resolution will find it: this is analogous to

probabilistic completeness of randomized motion planners.

This paper is organized as follows: Section II describes

the time- and spatially-varying wind field that is used as

the motivating example; Section III describes the kinematics

of soaring flight; Section IV describes the kinematic tree

algorithm; Section V compares the kinematic tree and RRT-

based approaches, demonstrating resolution completeness of

the kinematic tree; Section VI presents results of planning

in the 4D wind field; finally Section VII presents concluding

remarks.

II. A DYNAMIC WIND FIELD

The wind field used as the unsteady example for this

research is shown in Figure 1. The wind field data was

generated using WRF (Weather Research and Forecasting

tool, currently the state of the art numerical weather predic-

tion tool) version 2.2. The wind field was provided by the
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(a) t=0000h UTC (b) t=02000h UTC (c) t=0400h UTC

(d) t=0600h UTC (e) t=0800h UTC (f) t=1100h UTC

Fig. 1. Visualization of wind field data for a complex time varying wind field.

authors of [11], and it is a computational analysis of an actual

event that occurred on October 7, 2007. This wind field

shows the development of ridge lift and mountain wave over

central Pennsylvania. The wind field gives east, north, up

components of wind at 0.44km grid spacing horizontally. The

vertical resolution is descending in nature with more density

near the surface and gradually decreasing with altitude. Wind

is provided in intervals of 15 minutes starting at 0000 UTC

on October 7,2007 and ending at 1200 UTC on October 7,

2007 [11].

The visualization of Figure 1 shows regions where the

vertical component of the wind vector is greater than the

minimum sink rate of the glider used in this research, i.e.

regions where energy can be harvested. Blue isosurfaces

bound energy harvesting regions, with subfigures (a) through

(e) showing the time evolution of the wind field. Note

the significant spatial as well as temporal variation of the

wind field, leading to a particularly challenging planning

problem. Clearly a “good” path planning algorithm will find

trajectories that fly through these regions while avoiding

regions of downwards moving air.

III. KINEMATICS OF SOARING FLIGHT

It is assumed that an on-board controller is capable of

several control modes, including constant airspeed flight,

constant heading flight and constant bank angle (i.e. turning)

flight. As in [10] it is also assumed that the response to step

changes in commands is fast compared with the duration

of a particular command. A kinematic model is therefore

sufficient to describe vehicle motion. Kinematics of steady

straight flight (i.e. constant heading, constant airspeed) are

derived in [10]; this is briefly summarized here and extended

to steady turning flight.

While only gliding flight will be considered later, here

kinematics are derived including thrust. Later thrust will be

set to zero. Vehicle kinematics are given by

ẋ = va cosγ cosψ +wx (1)

ẏ = va cosγ sinψ +wy (2)

ż = va sinγ +wz (3)

ψ̇ = η (4)

where va is the air speed, γ the glide path angle ψ is

the heading and and η is the rate of change of heading.

Components of the wind velocity vector are denoted by wx,

wy, and wz

Consider the force equation of the aircraft which is in a

steady bank angle of φ and flight path angle γ (Figure 2).

Equating the forces in parallel and perpendicular to the the

flight path,

mgsinγ = D−T cosαi (5)

mgcosγ = Lcosφ +T sinαi (6)

where αi is the incidence angle between thrust vector and

the flight path (note that if the thrust axis is aligned with the

aircraft’s body x axis, αi = α , the aircraft’s angle of attack).

Assuming small flight path angle γ and αi = 0 (i.e, thrust is

aligned to the flight path angle, so that thrust has negligible
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Fig. 2. Point mass model.

contribution to force perpendicular to flight path),

mgγ = D−T (7)

mg = Lcosφ (8)

Using lift coefficient defined as L = 1
2
ρv2SCL,

CL = 2mg

ρv2Scosφ
(9)

The drag coefficient can be expressed as a polynomial

function of lift coefficient:

CD =
n

∑
i=0

aiC
i
L (10)

and with D = 1
2
ρv2SCD the flight path angle is thus

γ =
ρv2S

2mg

n

∑
i=0

aiC
i
L−

T

mg
(11)

To find the turn rate consider the horizontal components

of the forces perpendicular to the flight path.

Lsinφ = mvaψ̇ (12)

Dividing Equation 8 by Equation 12 gives,

tanφ =
vaψ̇

g
(13)

thus,

ψ̇ =
g tanφ

va

(14)

Thus the general equations of motion become

ẋ = va cosγ cosψ +wx (15)

ẏ = va cosγ sinψ +wy (16)

ż = va sinγ +wz (17)

ψ̇ =
g tanφ

va

(18)

Thus the flight path is completely specified by the inputs

u = [T va ψ φ ]T and the wind vector w = [wx wy wz]
T .

IV. TREE BASED APPROACH TO PATH PLANNING

The kinematic tree was outlined in [10]. The tree consid-

ered in this paper has explicit representation of time, which

enables handling of complex time varying wind fields and is

briefly outlined here.

The tree is initialized at the vehicle start position and

time. From this start configuration the tree is expanded by

computing a set of reachable configurations based on vehicle

kinematics. At the start position one of the allowable motion

primitives is zero velocity, so that the position remains

constant but time varies. This encodes the possibility of

delaying launch until a more favorable time.

The set of configurations that are reachable after some

time interval ∆t defines nodes in the tree. Each node encodes

inertial position, time, heading, airspeed, a cost for that node

and the distance from the node to the goal.

ni = [xi yi zi ti ψi va,i Ci rgoal,i] (19)

The tree is expanded incrementally by selecting a node

and computing the set of configurations reachable from that

node. To save computation time the motion primitives are

pre-defined and computed based on a set of allowable inputs.

A. Motion Primitives

The set of motion primitives used to build the tree is pre-

computed to reduce the computational time during incremen-

tal build of the tree.

A particular input u ∈ U (where U is the set of allowable

inputs) is

ui jkl = [Ti v j ∆ψk φl ] (20)

where each component is chosen from a discrete set of

allowable inputs:

Ti ∈ [T1 T2 T3 ... TI ] (21)

v j ∈ [v1 v2 v3 ... vJ ] (22)

∆ψk ∈ [∆ψ1 ∆ψ2 ∆ψ3 ... ∆ψK ] (23)

φl ∈ [0 φL] (24)

where ∆ψ represents a change a change in heading followed

by a straight flight at the beginning of the flight segment.

To ensure “reasonableness” of the reachable configurations

certain restrictions are are placed on allowable combinations:

0 ≤ Ti ≤ Tmax (25)

vmin ≤ v j ≤ vmax (26)

if φ 6= 0 then ∆ψ = 0 and v = vmin (27)

Here vmin is chosen to be the minimum power flight

condition (equivalent to minimum sink speed for a glider.)

Given a choice of input u ∈ U and a time ∆t the motion

primitives are computed using numerical integration.

The motion primitives for the SB-XC glider used in sim-

ulations are computed using the following sets of allowable
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Fig. 3. Motion Primitives in zero Wind.

inputs and ∆t = 120 seconds.

T = 0 (28)

Va = [15 20 25 30 35] (29)

∆ψ = [−50◦ −40◦ ... 40◦ 50◦] (30)

φ = [0◦ 30◦] (31)

Figure 3 shows the motion primitives in zero wind. Note

the small spiral motion primitive given by the steady bank

angle motion. In steady state bank, the air velocity of

the glider is the best sink rate airspeed. Thus the loss in

altitude for this motion primitive is smallest compared to

other motion primitives. This spiral motion essentially allows

altitude change with no change in x and y co-ordinates.

B. Node Selection and Expansion

Nodes are selected on the basis of survival of the fittest.

A cost function Ci dictates which nodes are selected for

expansion. The cost function Ci assigned to each node is

energy altitude hE divided by the distance to goal. where,

hE = h+
v2

a

2g
(32)

and

Ci =
hE

rgoal

(33)

This cost function ensures that the nodes chosen minimize

the distance to the goal and maximize the total energy (either

in terms of altitude gain or velocity gain).

Note that selecting the best node for expansion is a greedy

approach and may lead to dead nodes but this leads to fast

solutions if they exist. Another possible approach to node

selection is a weighted random method, where “good” nodes

are more likely to be chosen [10]. This results in more

exploration of the space at the cost of slower convergence to

a solution if there are few “dead ends” in the environment.

The selected node is expanded using the motion primitives

and wind speeds at each node. The net motion is the sum of

wind vector and zero-wind motion primitives. The wind vec-

tor is obtained for the selected node by linear interpolation in

both space and time from the wind field, and is assumed to

be constant over ∆t. The reachable configuration is computed

xint

xint

xnear

xnew

xrand

Fig. 4. Comparison of growth of RC- RRT (upper) and Kinematic Tree
(lower)

for the selected node and the net motion as in [10]. Feasible

(i.e, collision free) reachable configurations are added to the

tree.

C. End Game

The tree is terminated and successful path is reported once

the tree finds a node within the gliding distance of the goal.

The end game region (Xgoal) is defined as

Xgoal =

{

x :
rgoal

δ t
≤Vnom &

rgoal

∆h
≤

L

D
|nom

}

(34)

One can choose Vnom and L
D
|nom to specify the size of the

end game region in terms of nominal vehicle performance.

V. COMPARING THE KINEMATIC TREE AND RRT

In this section the rationale behind using the tree based

planner in comparison to other popular path planning tech-

niques like the RRT is shown. A theoretical behavior of

the planner is analyzed and that the planner inherits the

resolution completeness of an RC-RRT is shown.

The resolution complete rapidly exploring random tree

(RC-RRT) was introduced by Chang et al. in [12] and was

shown to be resolution complete in [13]. However the RC-

RRT has not been used in time varying cases.

The RC-RRT algorithm incrementally builds upon a tree

G = (V,E) defined by its set of vertices V and edges E.

A random configuration is picked from the robots free

configuration space (X f ree). The vertex that is closest to the

random configuration is chosen for expansion. Then all the

available control inputs are checked to see which control

brings the robot closest to the random configuration.If the

path joining them is collision free then that new point is

added to the vertex set V and the edge joining the points is
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added to the edge set E. This process is repeated until the

goal is reached.

Function :Kinematic tree(xinit );

G.not extended(xinit );

for i=1 to K do

xrand state← random state(G.not extended);
G.extended(xrand state);

Extend(xrand state)
end

Return

Function :Extend(xrand state);

Xnext states← Steer(xrand state,U,∆t);
for all xstate ∈ Xnext states do

if collision free path(xrandom state,xstate) then

G.not extended.add node(xstate);
G.add edges(xrand state,xstate,u))

end

end

Return G
Algorithm 1: The Kinematic Tree Algorithm

The kinematic tree algorithm not only includes the res-

olution completeness of an RC-RRT but also explicitly

encodes time and grows towards favorable regions. Instead

of picking a random configuration from X f ree a random state

(xrand state) is picked directly from the non-extended part of

the Tree. Then the Steer function generates the reachable

configurations (Xnext states) by expansion of the random state

using the motion primitives. Now from all the states the ones

that are collision free are added to the tree. This process is

repeated until the end game region is reached.

Lemma 5.1: for all i ∈ N, V RC−RRT
i ⊂ V tree

i and

ERC−RRT
i ⊂ Etree

i

Lemma 1 implies that the paths discovered by RC-RRT

algorithm after each iteration is subset of those discovered

by the tree algorithm.

Proof: To prove the above lemma let us assume that

the function random state(G) in algorithm 1 picks the same

state for expansion as determined by the near procedure by

algorithm of RC-RRT. Note that xnear “can” also be randomly

chosen. This is again guaranteed by the resolution complete

property of RC-RRT. Taking xnear as xgoal one can always

find a vertex in RC-RRT which gives us the desired node.

If this assumption holds true for all i it is easy to see

V RC−RRT
i ⊂V tree

i and ERC−RRT
i ⊂ Etree

i

Theorem 5.2: If there exists a feasible solution from xint

to xgoal then limi→∞P(V RC−RRT
i ∩Xgoal 6= /0) = 1

For proof of theorem 5.2 a see [13]

From Lemma 5.1 and theorem 5.2 the following theorem

is immediate.

Theorem 5.3: The probability that the TREE initialized at

xint will contain xgoal as a vertex approaches 1 as the number

of vertices approach infinity

Remark 5.4: The kinematic tree algorithm thus provides a

solution if one exists. It must be noted that the computation

of obstacle avoidance for each of the branches is computa-

Fig. 5. Scenario For simulation. The goal is shown by the black dot and
start regions are shown by blue,yellow and red dots.

tionally expensive, but in this case only height above ground

is concerned. Moreover the tree is biased in such a way that

the nodes away from obstacles (the ground in this case) are

chosen to be expanded. Also a lot of computation time is

saved by avoiding sorting of nodes in near function like in

RC-RRT. The big advantage of using the tree based planner

is that time is inherently integrated in the way the tree is

built. Also note that the motion primitives are precomputed

to reduce computation time.

VI. SIMULATION RESULTS

Here a flight to a distant goal is considered from different

starting positions (Figure 5). The starting locations are blue

[10 60 1.5] km, yellow [10 10 1] km and red [30 10 1]

km. The goal location is a distant [60 60 1]km given by the

black dot. The average ground elevation is approximately

500 m. Thus given the starting altitude of 1km (500 m from

the ground), the maximum gliding distance is only 12 km

(at best L/D). Clearly to reach the goal wind energy has to

be utilized.

A vehicle representative of the RnR Products SB-XC is

used here: parameters are given in Table I. Simulations were

carried out on 2.6GHz dual core Intel processor.

TABLE I

PARAMETERS FOR SB-XC GLIDER.

variable value description

m 10 kg mass

S 1 m2 wing area

f (CL) 0.1723C4
L−0.3161C3

L +0.2397C2
L

−0.0624CL +0.0194
va,min 12 m/s
va,max 35 m/s

L/D|max 25 best glide ratio

Figure 6 shows all the paths starting from different starting

locations at different starting times. Reachability of goal

varies considerably with starting location and start time.

While almost all the paths starting from start location yellow

reach the goal, paths starting only at specific times make
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Fig. 6. Trajectories starting at Different Times of Day.

TABLE II

SIMULATION RESULTS FOR DIFFERENT START POINTS.

Start Point Earliest departure time Time of flight

for successful arrival

blue 0600 UTC 36 mins
red 0900 UTC 42 mins

yellow 0100 UTC 32 mins

it to the goal from start locations blue and red. Because

the winds are both temporally and spatially varying the

feasibility of gliding (i.e. unpowered flight) from the various

start positions to the goal changes with time. Note that the

starting altitude of the blue starting point is higher than the

other two. Simulation results have shown that no paths reach

the goal for blue starting points with altitude of 1 km.

Table II tabulates the earliest start times from the different

locations that successfully reach the goal. Paths starting at

the point blue reaches the goal only for starting times of 0600

UTC , 0700 UTC and 1100 UTC and the fastest to reach the

goal starts at 0600 UTC. Paths starting at any other times fail

to rach the goal from blue starting point. Paths starting at

red reaches the goal only after the wave has fully developed.

All the paths starting after 0900 UTC reach the goal. Paths

starting at yellow are analyzed in details next.

Table III shows the comparison of the flights forced to

start at different times of day (i.e. the null transition was

disallowed) for the start point yellow. As seen from the

results trajectories starting only at specific time of the day

actually reach the goal. Among the paths that reach the

goal, the one starting at 0100 UTC reach the goal fastest.

Thus to make this flight the optimal start time of travel

would be 0100 UTC, while the time of travel is shortest for

trajectories starting at 1000 UTC. The effect of wind on the

paths computed is clearly visible(Figure 6). The paths tend

to follow the ridges showing evidence of ridge lift along the

ridges. Some of the paths, the ones starting at 0300, 0700

TABLE III

TIME OF TRAVEL AND MINIMUM DISTANCE TO GOAL FOR

TRAJECTORIES STARTING AT DIFFERENT TIMES OF THE DAY

Start Time Time of Travel Closest Distance Status

to goal

UTC (minutes) (km)

0000 12 52.030 failed
0100 42 0.0 Xgoal reached
0200 40 0.0 Xgoal reached
0300 12 51.220 failed
0400 42 0.0 Xgoal reached
0500 48 0.0 Xgoal reached
0600 50 0.0 Xgoal reached
0700 12 54.898 failed
0800 48 0.0 Xgoal reached
0900 4 61.123 failed
1000 36 0.0 Xgoal reached
1100 42 0.0 Xgoal reached

and 0900 UTC, end very quickly because there is no vertical

air motion of sufficient strength near the start point at those

times..

Figure 7 shows the time evolution of the trajectory of

the flight starting at at 1100 UTC. Recall that the blue

isosurface regions are the regions where the glider can gain

energy. Clearly the planner was able to utilize these regions

of upward moving air. Note that the wind updates after every

15 mins and thus the the change in environment is updated

only in 15 minutes intervals. This represents approximately

14 km travelled between wind field time updates. Note that

if higher update rate is available it can be exploited.

VII. CONCLUSIONS

This paper has described the kinematic tree, an approach

to path planning that can explicitly model time varying,

complex environments. The paper also has demonstrated

some theoretical insights into the resolution completeness

of the tree based planner. The tree based planner inherits the

resolution completeness of an RC-RRT and at the same time,
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(a) t=1100h UTC (b) t=115h UTC

(c) t=1130h UTC (d) t=1145h UTC

Fig. 7. Flight starting at 1100 UTC for yellow starting position.

time is inherently embedded in the tree structure. The time

varying tree has demonstrated the successful utilization of

energy available from the atmosphere to get to the destination

only by utilizing winds aloft.
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