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Abstract

A major challenge to widespread use of small electric UAS is their limited energy
budgets and sensitivity to environmental conditions. Differences between forecast
and realized weather conditions are often large enough that the energy required
to complete a mission can differ significantly from that expected by a priori flight
plans. This makes autonomous awareness of and response to the environmental state
necessary in order to enable small UAS to conduct long-range missions. To develop
this capability, the uncertain atmospheric state is decomposed into stochastic and
systematic uncertainty which can be managed separately by the aircraft using speed
and power output commands respectively.

Speed variations enable an aircraft to preferentially spend longer in favorable
areas, making the atmosphere appear more conducive to UAS flight. A speed
command is developed which responds optimally to stochastic conditions while
meeting a specified arrival time at a destination.

A modeling system is developed which allows the aircraft to build a model
of the vertical structure of the atmosphere using in situ observations and to
transform the atmospheric state into a mission performance cost. This model is
then employed in a multi-armed bandit inspired trajectory planner which balances
reducing the aircraft’s mission performance cost with maintaining a model of the
environment. The planner solves the exploration-exploitation problem without
employing heuristics to value information and demonstrates good performance and
robustness when compared to a collocation-based optimal planner.

Together these techniques compose a system which allows small UAS to reduce
their energy expenditure and the effect of the uncertain atmospheric state on
their performance. Components of this system are tested in simulation and flight
experiments and demonstrate an improvement in the ability of small UAS to operate
in unknown and uncertain environments
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Chapter 1 |
Introduction

The objective of this thesis is to describe the development of a system that enables
an autonomous aircraft to understand and respond to variations in the environment
which influence the aircraft’s energy state. The work described here is especially
concerned with developing a system that can travel long distances and mixes the use
of energy stored onboard the aircraft with energy gathered from the environment.
Many of the developments are, however, equally applicable to aircraft which only
employ stored energy. This research was inspired by the needs of small fixed-wing
uninhabited aerial systems (UAS) equipped with solar panels and operating over
long ranges at relatively low altitude in remote environments.

This guiding problem highlights several interesting general problems in autonomy,
robotics, and UAS guidance. The aircraft operates in an environment characterized
by both stochasticity and uncertainty. That is, the environment has features
whose locations and characteristics cannot be predicted and in addition the mean
environmental state is not exactly known a priori. Since the aircraft energy state
is influenced by the environment, this uncertainty poses a challenge in choosing
control policies that efficiently use energy, especially since a significant fraction of
the energy budget is harvested from the environment through solar panels or flight
in updrafts.

This thesis examines the design and operating space for small UAS equipped
with solar panels but which do not rely only on solar power. It defines how to
separate response to the mean state and stochastic elements of the environment
and develops a method to manage stochasticity while navigating to a point. A
framework for modeling the mean state of the environment, updating it with in situ
observations, and fusing it with a priori predictions is then developed. Finally, a
means is developed to manage uncertainty in the environmental model while trying

1



Figure 1.1: Large UAS such as the Aurora Flight Sciences Odysseus can offer very
long range and endurance, but require large crews and significant infrastructure
to maintain and operate. Photo reproduced from Aurora Flight Sciences (2019)
“Odysseus – High Altitude, Ultra-long Endurance, Pseudo-Satellite – HAPS – Aurora
Flight Sciences” [1].

to minimize energy consumption.

1.1 Motivation

Small electric UAS have many compelling features – they have few moving parts,
simple logistics, and can be operated with little infrastructure. Unfortunately their
capability is constrained by battery technology; missions longer than a few hours
or about 100 kilometers are not yet practical to perform with electric aircraft. This
is not a particularly severe restriction in the current regulatory environment which
requires the aircraft be in sight of a human operator at all times. As regulations
evolve and permit UAS flight beyond line of sight and without human operators,
new applications will be available which would benefit from greater range and
endurance.

Large fixed-wing and rotorcraft UAS can offer hours of endurance and hundreds
of kilometers of range but bring the same logistics, maintenance, and capital costs as
existing piloted aircraft. In some applications, such as cargo and passenger transport,
a large aircraft is required regardless of whether the aircraft is piloted or autonomous.
Other missions such as mapping and air sampling can in principle be performed with
much smaller, less expensive platforms, but small UAS with adequate performance
and reliability do not yet exist. Increasing the range, endurance, and autonomy of
small electric UAS will help make aerial systems more accessible and enable their
use in more applications.
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Figure 1.2: Mid-air disintegration of the Helios solar aircraft. The need for atmo-
spheric pseudosatellite aircraft to be extremely lightweight makes them very fragile
and susceptible to damage from turbulence at low altitudes. Reproduced from Noll
et al. (2004) “Investigation of the Helios Prototype Aircraft Mishap; Volume I:
Mishap Report” [4].

1.1.1 Solar Augmented Aircraft

Advances in solar panels, electric motors, and power electronics have made it possible
to build fixed-wing UAS powered by solar energy, dramatically increasing range
and endurance. Even with these improvements, solar cells have low power density
so aircraft powered purely by solar energy must be very lightweight. Typically
solar aircraft are envisioned as “atmospheric pseudosatellites” which offer extremely
long endurance at high altitude, making them attractive as communications relays
and surveillance aircraft [2]. The low power density of solar cells and the thin air
at high altitudes requires very large, very lightweight airframes that are fragile
and expensive. Pseudosatellites must remain aloft for weeks to justify the risk
they face in takeoff, landing, and flight through the lower atmosphere. Several of
these aircraft have been damaged or destroyed while flying at low altitudes during
launch or recovery [3–6], including the spectacular mid-air disintegration of Helios
(Figure 1.2).

The unique capabilities of pseudosatellites are compelling, but these aircraft
are too expensive and too specialized for widespread use. If the requirement for
persistent solar flight is relaxed, the battery mass required to sustain the aircraft
overnight can be devoted to structure or payload. This opens the design space
to smaller, more conventional aircraft that cannot fly indefinitely on solar power
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alone, but can still achieve hours of endurance and hundreds of kilometers of range.
Several of these “solar augmented” aircraft have been constructed such as the
Solar Puma [7] and SoLong [8]. Even nominally persistent solar aircraft such as
AtlantikSolar [9] may operate as “solar augmented” aircraft when carrying a large
payload or in suboptimal solar conditions.

“Solar augmented” aircraft offer more range and endurance than previous small
UAS in a simpler, more robust platform that pseudosatellites. These aircraft are
capable of accomplishing many missions such as aerial mapping, air sampling, news
reporting, and tactical surveillance that require significant, but not indefinite range
and endurance.

1.1.2 Challenges to Small UAS Flight at Low Altitudes

To achieve smaller, simpler, more robust airframes, small solar augmented air-
craft must give up the very high altitude capability of pseudosatellites. This can
compromise some of the surveillance and communications relay missions that pseu-
dosatellites perform, but solar augmented aircraft can accomplish other tasks that
are impractical to perform from high altitude. For example, air quality monitoring
or other missions requiring in situ observations at low altitude clearly cannot be
performed from the stratosphere. Flying at low altitude can be beneficial even
in sensing applications as the same imaging resolution can be achieved with less
sophisticated sensors.

Flying at low altitudes does make flight planning and management considerably
more complicated however. The lower troposphere is a complex environment and a
challenging place to operate aircraft, especially solar powered ones. There are many
phenomena which can affect the energy budget of a small UAS. Horizontal winds
and vertical air motion can both be of similar magnitude to the aircraft’s maximum
performance, and clouds can interrupt solar energy [10]. Existing UAS are generally
operated close to a ground station so that the pilot can monitor conditions and
direct the aircraft’s response, but future UAS will need greater awareness of their
environment to fly reliably in this complex environment.

Numerical weather prediction systems are constantly improving and will help
to enable autonomous flight, but UAS cannot rely solely on forecasts. Clouds
and vertical motion in the lower atmosphere form stochastically and can have a
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Figure 1.3: Wind and cloud fields in the lower troposphere are much more compli-
cated and difficult to predict than the atmospheric state at higher altitudes. Photo
taken by the author from a sailplane at 13,500 feet over central Pennsylvania. The
complex cloud field at low altitude is formed by the interaction of orographic wave
and wind-aligned convection.

significant impact on an aircraft’s energy budget [10]. Further, interaction between
the stochastic features and mean atmospheric state combined with uncertainty in
boundary conditions limits the possible skill of weather prediction systems [11].

A robust autonomous aerial system needs to be able to deal with this uncertainty
and stochasticity in the environment. This is especially true for small, electric
and solar powered aircraft; the energy available and required for these aircraft to
complete a mission is more closely coupled to the environment. The capability
of small UAS can be enhanced by responding to the environment in a way that
reduces the mean energy consumption and makes the energy consumption more
certain.

1.1.3 Autonomy in Uncertain Environments

While the tight coupling between small UAS and the environment makes this
a particularly interesting application, the problem of navigating uncertain and
random environments is common to many autonomous systems. Representing a
complex environment without using an overly-specific model and building this
model with in situ observations is a common need for autonomous systems.

Unless the objective is to map an environment, a model alone is not enough. A
detailed map of the atmospheric state is not by itself enough to evaluate the cost
of reaching a point or the certainty in that cost. It is important that the model
employed by an autonomous aircraft can be easily transformed to compute the
impact the environment has on the aircraft, and that the confidence in this effect
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can also be determined.
When a vehicle must build a map from in situ observations it faces a choice

between gathering information to identify favorable regions and flying in known
areas of low travel cost. This problem is commonly known as the exploration-
exploitation dilemma [12]. It has been explored in a number of applications, but the
environmental structure and needs of solar aircraft poses an explore-exploit problem
with some novel features. The nonstationarity of the environment, continuous
exploration space, and high degree of coupling between the vehicle and environment
make this a particularly challenging problem.

1.2 Design Goals

The big picture problem this thesis seeks to solve is illustrated in Figure 1.4. A
solar augmented aircraft travels a long distance (such that its environment cannot
be assumed to be stationary). Some imperfect a priori information about the state
and evolution of the environment may be available at the beginning of the mission
and the aircraft can observe the wind vector and solar insolation at its location. The
aircraft’s objective is to reach a desired point while minimizing energy consumption
by intelligently controlling its speed and use of stored energy. To simplify the
planning problem, this thesis restricts environmental modeling and flight planning
to the vertical plane. This restriction is consistent with the limitations of in situ
observations – the atmosphere generally forms in strata so a series of observations
reveals more information about the best altitude to fly at than the best lateral
flight path.

Because information about the environment is uncertain, strict adherence to
a preplanned flight path is not likely to be optimal. A path planned a priori
may direct the aircraft to fly through a cloud or headwind layer that is either not
anticipated or forms at an altitude or time other than expected. Further, there
may be random variations in the environment which cannot be predicted. The
aircraft should build a map of its environment and decide how to respond to the
mean environmental state and to random fluctuations in a way that minimizes
expenditure of stored energy.

The autonomy guiding a low altitude solar augmented aircraft should meet
several criteria:
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Figure 1.4: An aircraft flying in a random and uncertain environment must decide
how to schedule its speed and power output to minimize energy expended in
flight. The solid line represents a notional optimal path that cannot be determined
without perfect knowledge. The dash-dot line represents a path planned using a
priori information which includes suboptimal portions due to forecast error and
stochastic phenomena. Finally, the dashed line indicates the objective – a (possibly
suboptimal) path which balances mapping the environment with saving energy.
The act of maintaining an environmental model requires expending energy but the
knowledge gained can allow the aircraft to avoid costly errors.

• Minimize expenditure of stored energy and reduce uncertainty in energy used.

• Be capable of operating with little to no communication with outside systems.

• Determine a course of action from information available in situ.

• Improve in performance if exogenous information is available.

• Respect constraints imposed by an operator and provide feedback on the cost
of constraints.

The first goal is relatively straightforward. The utility of an aircraft is often
restricted by the amount of energy it can carry. Whether a mission objective
requires the aircraft to carry a payload, reach a location, or orbit a point, its
ability to accomplish this mission is constrained by its energy budget. Solar-electric
aircraft have limited energy budgets with significant uncertainty. This has the
double impact of limiting utility and making the capability uncertain, requiring
larger reserves to ensure that enough energy is available to complete a mission.
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Reducing energy consumption and increasing confidence in the expected energy
required to complete a mission both have the effect of increasing an aircraft’s usable
energy budget and improving its utility.

The second goal is motivated by several needs. First, the aircraft should be
capable of safe and intelligent flight even if communication is lost. This also
allows the aircraft to operate in remote areas where communication is limited or
unavailable. The ability to operate independently also improves the scalability of a
system – if every aircraft requires a very high bandwidth data link then not many
can be operated simultaneously. This goal requires that the aircraft be capable
of making decisions using processing resources available on the aircraft and with
information either uploaded preflight or obtained by the aircraft in flight.

The third goal is motivated partly by communications independence, but also
by the nature of the environment at low altitudes. The scale of phenomena resolved
by numerical weather models and the skill of weather forecasts leaves significant
uncertainty in the optimal flight path and energy required to complete a mission.
Regardless of the link budget for providing flight plans or weather data, using
in situ observations has the potential to improve aircraft guidance by observing
stochastic features of the environment and error in a forecast.

Observations from onboard a single aircraft are necessarily limited in their
spatial scope and prognostic value. Observations from other aircraft or sensors
can reduce the need for exploration. Updated forecast information can also reduce
error in the aircraft’s a priori knowledge of its environment and energy budget.
Improvements in environmental knowledge and reduced need for exploration can
enable more intelligent and energy-efficient decisions to be made. The decision and
control system should be designed in a way that permits incorporating additional
information available from offboard sources if it is available.

Finally, the aircraft should be capable of respecting mission constraints. Even
small electric UAS are fairly complicated and expensive pieces of equipment. They
will be used by operators whose figures of merit are related to mission objectives,
not to aircraft operational details. An aircraft system which can fly indefinitely but
requires an indefinite time to reach a goal point has limited utility, the ability to
reposition to a region of interest without requiring ground infrastructure is a major
advantage that UAS offer over balloons, kites, and towers. This makes it important
to minimize energy while satisfying a schedule. The operator may also desire the
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aircraft to be at a given altitude to satisfy a sensing objective or to deconflict with
other aircraft. Some constraints may not be hard thresholds, if utility degrades
smoothly as a constraint is violated then it is desirable that the autonomy system
provide feedback on the operational cost of compliance with a proposed mission
constraint.

As long range flight by small UAS (and especially small solar UAS) is a relatively
new endeavor, there does not currently exist practical or theoretical tools solving
this suite of problems. Section 2 discusses the current state of the art in solar
aircraft planning and relevant work in other fields. This prior work does not provide
a comprehensive solution to these autonomy design goals, motivating the need this
thesis.

1.3 Primary Research Contributions and Reader’s

Guide

The contributions of this research are in several areas:

• Identifying the design space and operating environment for solar augmented
aircraft.

• Demonstrating that optimal control of the speed and motor power output
can be decoupled.

• Developing a control policy to schedule speed that minimizes power consump-
tion while meeting mission constraints.

• Modeling the environment from information available in situ in order to
enable autonomous decision making.

• Determining the optimal altitude and power output, taking into consideration
the value of exploring altitudes where the environmental conditions are
uncertain.

This thesis begins in Section 2 by reviewing literature relevant to small UAS,
solar aircraft, and energy exploitation from the atmosphere. Previous work relevant
to trajectory planning, environmental representation, and sampling strategy are
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also examined. The shortcomings of existing methods with respect to the autonomy
design goals are highlighted.

Section 3 reviews the operating environment for small UAS at low altitudes with
special regard for solar aircraft. Relevant aircraft motion and energetic equations are
reviewed, and several aircraft models are described which will be used throughout
this work.

As most of the literature on solar aircraft focuses on high altitude pseudosatellites,
it is important to carefully define what a solar augmented aircraft is, its design and
operating space, and the characteristics shared with and distinct from other UAS.
Section 4 explores the impact of relaxing the requirement of pure and persistent
solar flight, as well as the impact environmental variations have on small UAS and
especially solar powered UAS.

Section 5 demonstrates that speed and utilization of stored energy can be
optimized separately. A speed scheduling policy is developed that determines the
optimal response to stochastic energy input from multiple sources while meeting
mission constraints. The control policy is demonstrated in both simulation and
flight experiments.

Section 6 builds on the author’s Master’s work in developing a general repre-
sentation of the vertical structure of the atmosphere, building the model from in
situ observations. A method for relating the atmospheric model to the aircraft’s
travel cost is developed. The modeling system is demonstrated in flight test and
validated against weather balloon observations and numerical weather predictions.

In Section 7, a method for optimizing altitude is developed. This method
balances exploring the atmospheric profile with energy reduction by flying at
the minimum energy altitude. The problem of altitude optimization from in
situ observed conditions has novel features compared to previous explore-exploit
problems. The utility of the proposed solution is compared in simulation to optimal
paths computed with perfect knowledge, defining the cost of maintaining a model
of the environment and benefits of using the model to make decisions in situ.
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Chapter 2 |
Review of Relevant Literature

The preceding chapter described a need faced by an emerging class of small UAS, this
chapter reviews relevant work from aircraft flight planning, environment modeling,
and allocation theory.

2.1 Trajectory Planning

Trajectory planning is a topic of considerable interest to a wide variety of vehicles.
The field covers everything from coverage patterns for vacuum cleaners [13] to
intercontinental navigation for commercial aircraft [14]. The proliferation of small
autonomous systems has only further increased interest in planning methods that
can be used in complex environments and run on low performance computers.

2.1.1 Robotic Motion Planning

Enabled in large part by sensing and computing technology developed for smart-
phones, mobile autonomous robots have proliferated in the past decade. The push
for more capable and autonomous systems has driven considerable research in
robotic motion planning [15]. Interest in small UAS has also brought attention to
the specialized needs of robotic aircraft [16].

Robotic motion planning is typically concerned with finding trajectories through
obstacle cluttered environments. This imposes constraints on the problem distinct
from those under consideration here. Finding feasible trajectories (which do not
intersect obstacles) for the aircraft considered here is almost trivial as the density
of obstacles higher than one hundred meters tall is very low. Uncertainty exists
not in the location of obstacles in the environment, but in the cost to traverse
the environment. Common robotics planning algorithms such as A?, tree-based
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Figure 2.1: Environment representation and motion primitives for a number of
robotic planning techniques. Reproduced from González et al. (2016) “A Review of
Motion Planning Techniques for Automated Vehicles” [15].

algorithms, roadmaps, and Dubin’s car planners are capable of finding optimal
routes under these conditions. However, these approaches are not well suited to
planning routes robust to uncertainty in the travel cost. Many of these planners
also rely on encountering impassable regions to prune the search space, making
them slow to plan optimal routes in the absence of obstacles.

2.1.2 Long Range Aircraft Path Planning

Planning long-range flight in varying weather conditions is not a problem unique
to small UAS or to solar aircraft, although their tight coupling to the environment,
slow speed, and limited power budget makes it more important. The problem of
optimal navigation in a wind field has a history dating to the Zermelo problem
from the 1930s which examined optimal travel for a boat navigating a current [17].

More recently, a number of authors have investigated planning methods in
complex time and spatially varying fields. Jardin and Bryson develop a technique
using neighboring optimal control to plan paths through known spatially varying
wind fields and derive feedback gains that can be used to compensate for small
perturbations in the field as the aircraft flies [18]. Otte, et al. developed an anytime
method to plan through a known field, permitting successive refinement of an initial
path as time allows [19].

Several authors have directly addressed planning for aircraft which harvest
energy from the environment. Chakrabarty and Langelaan developed a kinematic

12



Figure 2.2: Optimized flight path for a solar UAS mission from Newfoundland
to Portugal. The purple contour joins locations with equal cost to reach. Repro-
duced from Wirth et al. (2015) “Meteorological Path Planning Using Dynamic
Programming for a Solar-Powered UAV” [22].

tree technique to plan an optimal path through a time and space varying wind field,
gathering energy from updrafts along the way [20]. Dai applies the Bellman-Ford
algorithm to maps of solar irradiance to maximize the solar energy gathered by
an aircraft [21]. Wirth et al. use a decision tree approach to plan transatlantic
paths for a solar powered UAS, minimizing a total cost which includes both battery
energy and safety of flight parameters [22].

These techniques provide a means to plan energy optimal paths, but do so
assuming that there is no uncertainty in the planning field. Other authors have
examined energy optimal planning in uncertain fields. Al-Sabban et al. use a
Markov decision process to plan through an environment where the wind at each
cell is represented by a Gaussian distribution [23]. Cheung et al. use an ensemble of
weather predictions to approximate the distribution of energy required to complete
a long-range flight but do not address planning to manage this uncertainty [14].
Steiner et al. use a weather forecasting ensemble to forecast air transport delays by
computing the distribution of weather-induced reduction in air route capacity [24].
They note that the approach could be used to define a map of regions where hazards
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(or beneficial conditions) exist with high confidence and a conventional planner
applied – similar to thresholding obstacle belief maps.

Stochastic collocation has emerged as a powerful approach to plan trajectories
that are robust to random perturbations [25]. This involves writing the stochastic
components of the system as inputs then decomposing these random inputs into
a set of deterministically chosen vectors that describe the input distribution. A
deterministic solution to the system equation can be computed for each of these
input vectors, and the distribution of the state and output vector recovered. This
approach is analogous to the Unscented Transform approach to computing the
covariance of the output of a nonlinear system subject to Gaussian inputs by
propagating “sigma points.” In stochastic collocation, the state distribution can be
penalized by an optimal control planner as part of the cost function to produce
trajectories that are both low-cost and likely.

Several authors have employed stochastic collocation in flight planning. González-
Arribas et al. directly plan flight paths to manage uncertainty in a combination
of arrival time and fuel required [26]. They draw the atmospheric state distribu-
tion from an ensemble of weather forecasts and employ optimal control to find
trajectories which confidently achieve desired arrival times and minimum fuel burn.
Flanzer et al. use stochastic collocation to develop dynamic soaring orbits which
are robust to aircraft model and initial condition errors [27]. The approach can
quantify the likely flight path perturbations (Figure 2.3) and which are penalized
in the cost function to produce trajectories which are much more likely to sustain
flight than a deterministic optimal control planner.

Decomposing the random input vector has a cost however – the system dynamics
must be computed for each input vector. The number of points in the decomposition
grows rapidly with the number of random inputs [28]. While sparse point selection
can reduce this cost somewhat, the number of trajectories which must be solved
is still several times more than a deterministic planner. This can make stochastic
collocation challenging to employ using the computational resources available
onboard an aircraft.

Stochastic collocation has another weakness shared with any a priori planning
approach – it produces trajectories robust to random disturbances but it cannot
respond to observed realizations of these disturbances. Using a receding horizon
controller offers one approach to incorporate the observed environment, but requires
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Figure 2.3: Stochastic collocation can be used to quantify trajectory perturbations
introduced by environmental uncertainty. This uncertainty can be penalized in
the cost function of an optimal control formulation to produce robust trajectories.
Reproduced from Flanzer et al. (2012) “Robust Trajectory Optimization for
Dynamic Soaring” [27].

a fast optimal control formulation to run continuously.
Computational challenges aside, any planner needs a realistic representation of

the environment. To employ a planner robust to uncertainty, this representation
must describe not only the mean state but its distribution. Existing approaches
require that the entire field and its uncertainty is known a priori. An aircraft
with no prior information or information old enough to have degraded significantly
cannot make intelligent decisions using existing approaches.

There are also stochastic variations in the atmospheric environment that are
not resolved by weather forecasts at all. Clouds and wind field perturbations
introduced by convection and terrain can have a significant impact on the energy
budget of small UAS but will not be addressed by even robust a priori planners
as these features are often below the resolved scale of weather models. Increasing
grid resolution of weather forecasts does not offer an immediate solution. Higher
resolution does make the features produced by numerical weather prediction systems
more realistic, but position and timing errors in the features resolved make planning
for these features challenging [11].

In the long-term UAS may help solve these problems by gathering the high
resolution observations needed to correctly place features in weather models. This
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is only a viable approach in areas densely traveled by UAS, requires a constant
high bandwidth data link, and faces a “bootstrapping” problem of getting UAS
reliably and ubiquitously into the air in the first place.

2.1.3 Solar Aircraft Flight Planning

Optimal control approaches used for flight planning can be applied specifically to
solar aircraft. A number of authors have examined maneuvering solar aircraft to
maximize the illumination of solar arrays. Klesh and Kabamba used an optimal
control approach to determine a bank angle and velocity schedule which reaches a
desired point while maximizing energy by orienting the solar arrays favorably to
the sun [29]. Dai et al. construct the aircraft kinematics using quaternions and
employ quadratic programming to maximize array illumination when maneuvering
[30]. Hosseini and Mesbahi examine trajectory generation with the addition of a
surveillance cost, to maximize both energy gathered and coverage of a surveillance
area [31]. They use the results from solving a nonlinear programming problem to
develop a state machine for energy management and introduce a technique to learn
the optimal open-loop climb rate command to use in the state machine. Edwards
et al. develop a method to compute the optimal turn radius when exploiting a
mix of both vertical air motion and solar energy [32]. Finally, Martin et al. use a
collocation based optimal planner to determine optimal solar gathering trajectories
subject to a station keeping constraint [33].

This previous work provides a number of approaches that can generally be
classed as planning to maximize solar array illumination. While some of the papers
address optimal trajectories over the course of a day, the constraints imposed
typically require the aircraft to perform some type of station keeping, so that these
solutions are often repeated applications of short range planners. With the exception
of Hosseini and Mesbahi, the environment is assumed to be known perfectly a
priori. Even in their paper, stochastic solar input is only considered when selecting
an open-loop climb rate when simplifying their nonlinear programming solution to
a state machine.

The primary weakness with the planning methods described here is that they
do not address the uncertain and stochastic nature of solar energy availability in
the troposphere. This could be ameliorated to some degree by the application of
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Figure 2.4: Evolution of the optimal flight path for a solar aircraft keeping station
near a point. The long axis of the flight path tracks the vector to the sun projected
on the ground plane. Reproduced from Martin et al. “Dynamic Optimization
of High-Altitude Solar Aircraft Trajectories Under Station-Keeping Constraints”
(2018) [33]

stochastic collocation or if the planners are rapid enough to be run onboard using in
situ observation of the solar energy available. Stochastic collocation cannot address
unresolved atmospheric properties however, and while it can provide a path robust
to uncertainty in the a priori belief of the environmental state, it cannot seek out
information in the realized state of the environment and respond to this information.
Even a planner rapid enough to run on board using in situ observations requires
heuristic choices be made about how to weight the value of seeking information and
still cannot respond to short-period stochastic perturbations in the environment.

2.1.4 Soaring as a Stochastic Planning Problem

The weaknesses in existing planning techniques for small UAS and solar aircraft
can largely be classified into two categories. First, forecast error in the mean state
and structure of the atmosphere can lead to suboptimal routes or altitude guidance.
Second, there will be stochastic variations in the energy available to a small UAS
which can not be forecast a priori either because they are on a scale which is not
resolved by weather forecast models, or because it is not possible to forecast the
exact time and location at which the variations will occur. This is particularly true
of intermittent solar input caused by scattered clouds in the lower troposphere and
of disturbances caused by vertical air motion in a convective boundary layer.
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Figure 2.5: Speed to fly computed for a spatially varying wind field near a hill.
Reproduced from Barnaby (1930) “Gliders and Gliding” [36].

Since the 1920s sailplane pilots have been concerned with selecting the speed
that maximizes the range of unpowered aircraft in stochastic fields of up- and
downdrafts [34–36]. The classic solution to speed to fly theory is developed for an
aircraft which occasionally “stops” and circles in regions where it can gain energy
before continuing its mission. Several extensions have been developed which enable
speed to fly to be applied to a continuous flight. Arho [37] examined optimal soaring
as a sequence of responses to environmental inputs and de Jong [38] generalized
the aircraft performance model in a way that permits climbing and cruising flight
to be treated identically.

It is not clear how to apply soaring speed to fly theory to solar flight however.
Speed to fly solutions are parameterized by the “MacCready number,” which
represents the power available during brief and isolated energy harvesting periods.
For solar aircraft which continuously harvest energy, it is not clear how to define
the MacCready number – there is no isolated energy harvesting period. Further, it
would be desirable to satisfy the objectives of an outer loop planner or a mission
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operator who specifies a time enroute to a destination, this is not possible with
conventional speed to fly theory. Finally, as the magnitude of vertical air motion
and solar energy input are of similar order, it would be desirable to have a means
to combine exploitation of the two.

2.2 Environmental Modeling

In order to respond intelligently to the environment, the aircraft needs a repre-
sentation of the environment that can be carried with it and maintained onboard.
Because planning is restricted to the vertical plane in this work, this means a profile
of the atmospheric conditions which are relevant to aircraft performance. The
method employed to represent the environment should permit fusing observations
taken on the aircraft with those taken by other aircraft, ground based sensors, or
satellites. It should also permit information from numerical weather models to be
incorporated.

A number of authors have examined building maps of the environment around
an aircraft. Lawrance and Sukkarieh used Gaussian process regression to model the
winds around a small aircraft and plan optimal flight paths [39]. Depenbusch et al.
used a grid of one state Kalman Filters to estimate a 2-d map of updrafts [40]. This
permitted a small UAS to find thermals and climb without running its motor. Bird
used basis splines to model the vertical wind structure for dynamic soaring [41].

Glasheen et al. evaluated high resolution weather forecasts as a way to provide
the aircraft with an environmental model [42]. Recognizing issues with boundary
conditions, position, and timing of forecast phenomena they compare the distribu-
tions of relevant atmospheric properties observed by the aircraft to those forecast by
a large eddy simulation. The results show systematic differences between forecast
and observed conditions, identifying a need for using in situ observations to provide
calibration to forecasts.

Several authors have sought to bridge this gap by assimilating observations
from small UAS into a weather model [43] [44]. This is a promising approach,
current efforts have reduced wind forecast error by approximately 10%. There
are some operational disadvantages to the approach however; it requires constant
communication between the aircraft and ground, and the aircraft cannot make
use of its observations until a subsequent model analysis or forecast is complete
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Figure 2.6: Systematic errors in the wind forecast observed in flight tests. Repro-
duced from Glasheen et al. (2019) “Experimental Assessment of Local Weather
Forecasts for Small Unmanned Aircraft Flight” [42].

and transmitted back to the aircraft. This approach also does not address how to
include and respond to subgrid-scale perturbations

On a more fundamental level, there may be limits to the error which can be
eliminated using data assimilation. A small number of observations may not be
sufficient to correct the state of a numerical weather model, especially if an error
is caused by unmodeled dynamics or large-scale error in the boundary conditions.
The dimension of the atmospheric state tracked by a numerical weather model is
very large (order 107), so it is not feasible to fully describe the covariance between
states or between an observation and all states. While a few observations may
provide meaningful information about the entire atmosphere, if the correlation
between that observation and distant states is not known, then the model cannot
fully reflect the impact of the observation. For instance the forecast position of a
cold front has significant implications for the entire atmospheric state on a large
scale, but a few UAS observations that the front is moving faster (or slower) than
expected may not be enough to force adjustment in the entire field of a weather
model.

Oettershagen et al. employ a diagnostic flow solver onboard an aircraft to solve
potential flow equations over complex terrain [45]. This produces high resolution
and rapidly updated predictions of horizontal and vertical air motion without
coupling observations back into the dynamics of the atmosphere on a large scale.
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This approach is promising for identifying and exploiting orographically induced
winds at high resolution, but does not address responding to perturbations from
other atmospheric processes or variations in solar energy.

Frew et al. describe a system for combining a priori forecasts with aircraft
observations and remote sensing to enable intelligent response to complex atmo-
spheric environments [46]. The approach divides the computational load between
the aircraft and a ground station: the aircraft builds a Gaussian Process model
of its immediate environment and employs receding horizon control; the ground
station fuses multiple data sources and provides long-range guidance. In concept,
the division made between local planning on the aircraft and global planning
performed offboard is similar to the objective of independent planning in support
of a human operator or autonomous tasking system identified in Section 1.2. Frew
et al. model only the very-near environment on the aircraft however, limiting the
vehicle’s independence and ability to operate in remote areas. Use of Gaussian
Processes to model the local environment in 3-D permits accurate description of
the environment and allows the aircraft to make detailed flight plans, but variations
in the wind field are not correlated at scales longer than one-half of the boundary
layer depth (order one kilometer) [47], limiting the range over which this planner
can operate.

2.3 Exploration vs Exploitation

Even in an environment with no stochasticity the decision-making system needs
a way to address error in its knowledge of the mean atmospheric state. This
error could be introduced by large-scale unmodeled dynamics, by subgrid-scale
phenomena, or by the interaction of unresolved and resolved scale processes. If the
aircraft is permitted to change altitudes to maintain its environmental knowledge
or to reach a more favorable environment, then planning can be viewed as an
exploration vs exploitation problem.

2.3.1 Sensor Placement

One approach to solving this problem is to minimize energy consumption while
maximizing knowledge about the environment. This is a sensor placement problem
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where the goal is to maximize information while minimizing the sensor purchase
and placement budget. Krause et al. developed a sensor placement algorithm which
maximizes mutual information between the observed and underlying distributions.
The algorithm can rapidly achieve results close to the optimal solution [48]. DeVries
et al. use empirical observability to locate sensors in highly informative regions so
that a fixed number of observations maximized knowledge of the environment [49].

There is one significant difference between the aircraft navigation and sensor
placement problem however – there is no explicit need to maximize environmental
knowledge in the aircraft navigation problem. A high quality map of the environment
is only valuable in so far as it permits selecting the best route of flight. This
necessitates selection of some heuristic in order to balance the trade of energy for
information. Selection of this heuristic becomes a very important design choice, one
which is difficult to accomplish in a principled way and which makes communicating
the value of exploration and rationale for selecting a flight path to an operator or
autonomous monitoring system difficult.

2.3.2 Multi-Armed Bandits

The problem of choosing an action that balances information and reward gain when
information is only valuable as a means to select high-reward actions is generally
referred to as a “multi-armed bandit” [50,51]. The canonical form of this problem
proceeds in rounds. In each round an action is chosen from a set of possible actions
xi ∈ X = {x1, x2, ..., xn} known as “arms.” Each action (“pulling” an arm) confers
an reward which is unknown a priori and may be drawn from a random distribution.
The objective is to maximize the total reward by choosing the arm which confers
the greatest reward x? = arg maxx J(x). At each round there is a tradeoff between
the cost of exploring (requiring the play of arms which have uncertain reward) and
the best known arm.

There are a number of solutions to the classical multi-armed bandit problem.
An algorithm is said to “solve” the bandit problem if its regret (cost relative to an
“oracle” planner with perfect knowledge) grows with O(log T ) where T is the number
of rounds [50]. Lai and Robbins devised the first general solution, assuming that
the space of arms X is finite and that the reward distribution does not change [52].
A particularly interesting solution is the POKER algorithm which affixes a price to
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the information which can be gained by playing an arm and includes that price in
the expected reward [51].

Many other versions of the bandit problem have been formulated. Of particular
interest here is the continuum bandit (where X is not finite but a continuous
function) [53,54] and the nonstationary bandit (where the reward distribution J(xi)

changes in time) [55–58]
In the continuum bandit problem actions are drawn from a continuous space

xi ∈ [xmin, xmax]. This introduces the complication that the action space can never
be completely explored, equivalent to having a discrete action space with an infinite
number of arms. If the reward is a continuous function of the actions then the
problem becomes tractable. The typical way to solve the continuum bandit problem
is to discretize the environment into regions and apply a conventional bandit
approach over the discretized action-reward space [54]. This approach introduces
another source of regret from the error in approximating the environment, so its
regret scales with O(

√
T ) [53].

In the nonstationary bandit problem the reward distribution J(xi) changes in
time. This is a particularly challenging problem as information about previous
“pulls” of a particular arm become less and less relevant. Continuous exploration
is required and explore-then-exploit approaches are not appropriate. Adaptations
to a number of algorithms have been proposed to force continued exploration, but
these generally require some exploration heuristic [55]. Slivkins and Upfal show
that the regret for a finite-armed case where the reward of each arm follows a
Brownian motion is lower bounded by kσ2 where k is the number of arms and σ2

is the process noise.
The configuration of the problem – information degrading and the background

environment changing suggests that a Bayesian approach to monitoring and selecting
actions might be appropriate. Granmo and Berg took this approach, tracking the
value of a each arm of a finite-armed bandit with a Kalman Filter and selecting
arm with the greatest expected value [57]. This approach demonstrated good
performance, but is developed only for discrete domains and for problems where
the number of rounds is very large.
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2.4 Summary

Robotic motion planning under uncertainty is a well-studied field but the constraints
and objectives of aircraft in cruising flight are distinct from those faced by many
other robots. A cruising aircraft has a relatively unrestricted search space but the
cost to traverse points in the domain can vary significantly with space and time.
Optimal control planners perform well in these situations, though their typical
formulation cannot address uncertainty in the environment. Stochastic collocation
offers an optimal control approach which can manage uncertainty in the system but
requires significantly more function evaluations. Regardless of the approach taken,
planners which operate a priori are not able to incorporate knowledge gained about
the realized state of the environment as the aircraft carries out a mission.

Flight planning for solar powered aircraft has also been the subject of several
investigations, but the focus has been almost exclusively on maximizing illumination
of the solar array. This is a reasonable approach for high altitude aircraft, when
the energy variation is dominated by array pointing. At low altitudes clouds can
reduce energy production more than suboptimal array orientation so investigation
into approaches for dealing with interruptions in energy is required.

Regardless of whether a deterministic or probabilistic planner is used, an accurate
representation of the environment is required. Especially for UAS operating at low
altitudes, determining the environmental state to high accuracy before flight is not
possible.

This makes in situ environmental modeling an appealing technique. Several
authors have explored building maps onboard the aircraft. Most of these maps
were only suitable for operations in small areas either because of limited domains or
because the cost of building the model was impractical for long flights. Assimilating
aircraft observations into numerical weather prediction models offers one way to
provide longer-range awareness but requires constant high-bandwidth links to
offboard computational resources. To operate reliably in challenging conditions
and remote areas an aircraft will need to be able to make atmospherically aware
decisions using only resources available before flight and onboard the aircraft.

Finally, making tradeoffs between gaining information and optimally accomplish-
ing a mission is a challenging problem. Sensor placement approaches put demands
on the system designer to choose heuristics that balance mission performance and
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information. The multi-armed bandit framework better describes the needs of an
independently operating aircraft, but existing formulations of the approach do not
work for continuous, time-varying reward domains.
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Chapter 3 |
Environment, Models, and Platforms

To help frame the developments detailed in this thesis, this chapter describes the
operational environment the autonomous system is designed to operate in. The
aircraft dynamics and aircraft models used in simulation are described as well as
the aircraft platforms used in simulation and flight tests.

3.1 Relevant Characteristics of the Lower Atmo-

sphere

For the purposes of this work the aircraft is confined to relatively low altitudes.
It is important to clarify what “low altitude” means in order to understand the
implications of this choice. The motivation for flying at low altitude is driven by
vehicle design and operational constraints, so this region will not correspond exactly
to a unique dynamical region of the atmosphere.

• The aircraft must be permitted to fly below the lowest layer of clouds if
required for imaging. In cases of fog this may not be achievable, so the lower
limit should be motivated by terrain and obstacle clearance, to roughly 100
meters above ground level (AGL).

• The aircraft should be permitted to fly within the planetary boundary layer
to sample weather conditions or trace chemicals in the atmosphere. This
means the aircraft should be permitted to fly below 1-3 kilometers AGL.

• When imaging or sampling constraints are not in place the aircraft should be
permitted to climb as high as practicable in search of favorable regions for
cruise or loiter.
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Figure 3.1: Most small aircraft operations take place between 100 m above ground
and 3 kilometers above sea level. This provides separation from most transport
aircraft, permits high resolution imaging, and avoids many obstacles.

• Large, fast commercial and tactical aircraft typically fly at above 3 km.
While air traffic control systems exist to provide separation, it becomes more
challenging as the relative speed increases. Given the slow speeds of small
UAS it is desirable to keep them clear of larger and faster aircraft.

These considerations motivate a permitted altitude band ranging from approxi-
mately 100 meters above the surface up to 3 kilometers above sea level. While this
definition breaks down in mountainous regions or over high altitude plateaus, for
most of the world this provides a band which is responsive to the criteria listed.
From a meteorological perspective this means that the aircraft could fly within
the atmospheric boundary layer and the overlying free troposphere, but not up
to the tropopause. To help frame the research problem, a brief overview of this
environment and its influence on the aircraft’s energy budget is provided

3.1.1 Clouds

Several cloud formation mechanisms and structures occur in this operating envi-
ronment (Figure 3.2). The majority of clouds below 3 km are formed either by
convective lifting induced by surface heating, by lifting associated with frontal
systems, or by advection of moist air [59].
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Figure 3.2: Several cloud types occur in the the operating envelope of small UAS.
Reproduced from University Center for Atmospheric Research (2012) “Cloud Types
| UCAR Center for Science Education” [60].

Cumuliform, or convectively driven clouds typically form at the top of a con-
vective boundary layer. These clouds can form in single formations (cumulus
humilis), sky covering layers (stratocumulus), or large formations associated with
storms (cumulus congestus and cumulonimbus). They will typically have spatial
and temporal scale smaller than the resolution of weather models. The average
impact they have on the surface radiation and heat budget is forecast, but their
individual location, lifespan, and influence cannot be predicted. Any response to
these clouds will have to be based on in situ observations.

Stratiform clouds are formed by broad uplifting of air until it condenses, often
associated with either warm fronts or with advection of moist air up a slope [59].
Because stratiform clouds are associated with large meso- to synoptic-scale weather
features, their presence and extent can be forecast more precisely. Uncertainty in
the moisture field at low altitude or with the position and timing of the warm front
or advecting winds can introduce error in their precise location and altitude. This
again makes an aircraft response based on in situ observation desirable as a means
to respond to stratifrorm clouds.

In addition to clouds at the aircraft altitude, altocumulus and cirrus clouds
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can form above the altitude band examined in this work. These clouds will have
the effect of modulating the overall solar energy available to the aircraft without
changing the level at which the aircraft harvests the most solar energy.

3.1.2 Winds

Winds have a significant and ubiquitous impact on the performance of all aircraft.
The slowest aircraft, such as small UAS are especially affected. Even in the lower
atmosphere, winds exceeding 15 m s−1 regularly occur – the same magnitude as
the cruise speed of many small UAS. Understanding and responding appropriately
to the wind environment is important to intelligent flight of all aircraft.

Wind patterns in the atmosphere are generally driven by synoptic-scale pres-
sure gradients. The pressure gradients and Coriolis force interact to create the
geostrophic wind that circulates around centers of high and low pressure. At
the surface, the wind loses momentum to surface friction, reducing its velocity
and changing its direction as the pressure gradient and Coriolis force balance is
altered [59]. These interactions give rise to several patterns of vertical structure in
the wind which can occur in the low altitude environment.

Within a convective boundary layer eddies can efficiently transfer momentum
throughout the boundary layer. Friction at the surface reduces the wind speed,
but momentum is constantly mixed down from higher in the boundary layer. This
friction causes the entire convective boundary layer to be subgeostrophic – the
wind is less than the pressure gradients would indicate. Above the boundary layer
there is almost no friction so wind in the mid troposphere is almost geostrophic [59].
Shear between the boundary layer top and the free troposphere mixes momentum
down into the boundary layer, though stability in the free troposphere suppresses
eddies and slows this mixing. The greatest shear in a convective boundary layer
is thus very near the surface (generally where aircraft aren’t flying) and at the
boundary layer top (where an aircraft trying to stay above the clouds will fly).

Stable boundary layers inhibit momentum transferring eddies associated with
convective boundary layers. This makes stable boundary layers much thinner and
increases shear near the surface. Stable boundary layers are generally no more
than a few hundred meters thick [10] so they are of themselves not particularly
consequential for aircraft.
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Figure 3.3: Decoupling of the surface and convective boundary layer can create
a layer of high speed wind at low altitudes at night. From Stull (1988) “An
Introduction to Boundary Layer Meteorology” [10].

One exception to this is the nocturnal low level jet. It forms when a nocturnal
temperature inversion decouples the residual daytime convective boundary from
the surface [10]. The momentum sink at the surface disappears and the pressure
gradient accelerates the overlying air, overshooting geostrophic balance and forming
a jet of high speed wind above the nocturnal boundary layer as shown in Figure 3.3

While in general wind varies smoothly, transitions between wind regimes are
typically aligned with dynamical regimes in the atmosphere. This means than
an error in, for example, the boundary layer depth will create an error in the
forecast wind field. Since clouds can also occur at the boundary between dynamical
regimes this error can be significant, Figure 3.4 illustrates how an error in the
forecast boundary layer depth can significantly affect an aircraft trying to fly above
a stratocumulus layer and below a strong headwind. This makes planners which
rely solely on a priori information brittle as they can give a false indication of the
cost to complete a mission.

3.1.3 Vertical Motion

The mean vertical motion in the atmosphere is very small, rarely exceeding 10
cm s−1 [61]. Significantly greater vertical motion occurs in small pockets however,
often reaching several m s−1 – approximately the vertical rate of a small UAS.
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Figure 3.4: A small error in the forecast for the boundary layer depth can impact
both the cloud and wind field leading an a priori planner to choose a suboptimal
altitude. Dashed lines represent the forecast conditions and solid the observed
conditions.

This makes exploitation of pockets of significant vertical motion attractive, in fact
a number of researchers have demonstrated flights of several hours powered by
vertical air motion [62–67].

The most ubiquitous vertical motion is caused by thermals, convective eddies
in the boundary layer which transfer heat from the surface and mix it throughout
the boundary layer. While thermals can be used by themselves to sustain flight,
doing so requires the aircraft to stop and circle to climb. This significantly reduces
the speed at which the aircraft progresses toward a goal since roughly 30% of its
time is spent circling to gain energy. Because it significantly impacts the aircraft’s
mission speed, and thus operational utility, this thesis does not focus on sustaining
flight using updrafts alone. The magnitude of these updrafts is comparable to the
solar energy which can be gathered on an aircraft and to the aircraft’s sink rate, so
it is desirable to be able to exploit this energy as much as possible without having
to stop to circle.

3.1.4 Weather Hazards

The modern air transport system is incredibly effective at permitting safe operation
in almost any weather condition. The capabilities of transport aircraft de-icing
systems, approach guidance, and navigation systems makes it easy to overlook the
hazard that weather can pose to aircraft. Small UAS weather capabilities are more
comparable to small general aviation aircraft than to transport aircraft, requiring
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care to be taken in order to operate safely.
The most significant hazards to small aircraft are icing and thunderstorms. Ice

accretion on the aircraft can impact the aircraft weight, center of gravity, and
adversely alter the aerodynamic shape. Thunderstorms present heavy precipitation,
strong up- and downdrafts, lightning, hail, and often heavy icing. Identifying and
avoiding these hazards is an important capability for autonomous aircraft, but it is
beyond the scope of this thesis.

3.2 Aircraft Motion and Energetic Models

The primary problems of concern in this work are of guidance rather than control.
That is, rather than being concerned with generating actuator commands to achieve
a desired aircraft state, the objective is to select the optimal states. From this
perspective, the precise dynamics of the vehicle are less important than its gross
motion and energetics. This section describes several kinematic and energetic
models used throughout this work as well as several exemplar aircraft used in
simulation and flight testing.

3.2.1 Aircraft Energetics

For the purposes of this development, it is assumed that most altitude targets
are “soft” so that the aircraft can seek favorable conditions and use altitude as its
primary energy storage medium [68]. This avoids round-trip charging losses in
the battery and ensures that the results are applicable to aircraft equipped with
non-renewable energy stores (e.g. primary batteries or a fuel cell). The results
are equally applicable when excess solar energy is stored in a rechargeable battery
onboard the aircraft provided a round-trip efficiency ηround−trip is used to account
for inefficiencies in charging and discharging. In this case the stored energy can be
related to the altitude storage as:

ealtitude = h =
Ebatteryηround−trip

mg
(3.1)

The focus of this work is on straight-line flight segments where the aircraft is
traveling to a destination. For efficient aircraft, the aircraft pitch attitude changes
relatively little as a function of airspeed, so the effect of aircraft maneuvering on
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solar incidence angle is neglected. The details of the solar panels, power electronics,
motor, and propeller are simplified by working with the aerodynamic power output
due to the solar power harvested (i.e. electrical power produced by the solar array
adjusted for the efficiency of the drivetrain and propeller). Since the primary focus
is the effect of solar energy on flight path, power harvested by the solar array is
written as specific solar power:

ppv,aero =
Ppvηpropeller

mg
=
IαSpv
mg

cos(i)ηpvηpropeller (3.2)

where Ppv is the electrical power output from the solar power system, I is the
clear sky solar insolation, α is the fraction of incident solar radiation blocked by
clouds, i is the solar incidence angle, ηpv the solar array efficiency in converting
solar radiation into electricity, and ηpropeller the efficiency in converting electrical
power into aerodynamic power.

When energy is drawn from onboard storage (such as a battery) to power the
aircraft, it supplements the power output from the solar panels. Power output
from storage will also be expressed as specific power, and have the appropriate
efficiencies applied:

poutput,aero =
Poutputηpropeller

mg
(3.3)

The total specific power available is

pavailable = ppv + poutput (3.4)

Clearly, if no power is drawn from storage, poutput = 0.
The aircraft’s rate of change of altitude (climb rate) at constant speed is

dependent on excess specific power and the vertical component of wind speed [69]:

ḣ = pavailable −
Dv

mg
+ wwind = ppv + poutput + wwind −

Dv

mg
(3.5)

Where Prequired = Dv is the aerodynamic power required for steady, constant
altitude flight [69]. This explicitly shows the equivalence of vertical air motion,
solar power, and stored energy. The drag will be modeled using the speed polar,
a performance model commonly used in the sailplane community to describe
performance [35, 38, 70, 71]. The speed polar relates airspeed to the vertical rate
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in a steady-state glide at constant airspeed. It thus represents the relationship
between speed and the rate of specific work done on the aircraft by drag:

ws(v) = pdrag =
Pdrag
mg

= −Dv
mg

(3.6)

where v is airspeed, D is drag, and ws is the sink rate, the aircraft’s vertical rate
with respect to the local air mass in an unpowered glide. Note that the sink rate is
always negative but is often referred to colloquially without a sign. In sailplane
performance analysis it is common to represent the sink rate with a best-fit second
order polynomial [35]:

ws(v) = av2 + bv + c (3.7)

Provided that the polar can be adequately represented by Equation 3.7, this
form offers a number of advantages, among them that it can easily be corrected
for changes in the mass of an aircraft (provided that Reynolds number effects are
neglected) [35]:

w′s(v) = a′v2 + b′v + c′ = a

√
m0

m
v2 + bv + c

√
m

m0

(3.8)

where m0 is the reference mass for the speed polar from Equation 3.7 and m is the
actual mass of the vehicle.

3.2.2 Kinematic Models

The focus of this thesis is guidance, developing the desired vehicle states, rather
than controlling the vehicle to those states. In general the slowest longitudinal
mode of motion for an aircraft is the phugoid. The phugoid natural frequency
can be approximated ω =

√
2 g
V

[72], for a small UAS this implies a period of
6-10 seconds. This gives a characteristic length scale for the aircraft motion of
100-200 meters. The next fastest longitudinal mode is the short period which is
approximately a factor of 10 faster. Characteristic scales in the lower atmosphere
range from 100-1000 meters, so the airspeed dynamics might be relevant, but faster
motions of the aircraft should be decoupled from its response to the environment.

Reflecting this, simulations in this thesis use a kinematic aircraft model, depicted
in Figure 3.5. To represent the airspeed change dynamics, airspeed commands are
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Figure 3.5: Aircraft kinematics used in simulations.

run through a first-order filter with a time constant of 5.0 seconds. The aircraft is
restricted to maneuvering in the longitudinal plane, and the world is simplified to
a flat earth. The states of interest are then: position, altitude, indicated airspeed,
and stored specific energy. Inputs are speed command, power output from the
onboard storage, horizontal and vertical winds, and solar power input. The state
equations are given:

∂

∂t


x

h

vias

e

 =


vias√
σ

ws(vias)√
σ

0

0

+


0

P̃ ηpropeller
mg

vias command−vias
τ
−P̃
mg

+


uwind

wwind +
Ppvηpropeller

mg

0

0

 (3.9)

The first term represents the system dynamics where σ is the ratio of air density
at the aircraft’s location to sea level air density, and ws is the sink rate. The
second term is the aircraft response to control inputs, P̃ is the power output from
the onboard storage system, and ηpropeller is the propeller efficiency, and τ is the
airspeed control time constant. The final term is the response to environmental
inputs, Ppv is the electrical power output from the solar array, uwind the horizontal
wind component, and wwind the vertical wind component. The stored energy, e is
defined such that its rate is negative when energy is drawn from storage. Rather
than assuming an energy storage capacity, it is initialized to zero and its negative
represents the amount of stored energy required to complete a flight.

3.2.3 Solar Power System

Since an aircraft equipped with solar cells was not available for flight tests, response
to solar power is evaluated through simulation or in some cases using vertical air
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velocity as a surrogate. In simulation a simplified solar power system model is
used, the solar cell and power electronics are modeled with static power conversion
efficiencies. The solar array efficiency used is 26%, the best reported installed
efficiency [73]. Component and powertrain efficiencies are modeled after the work
done by Edwards et al. [32]. The convention used here is that any solar-specific
component efficiency is combined into an effective solar efficiency, ηpv, while ef-
ficiencies that occur regardless of the source of electrical power (e.g. motor and
propeller) are included in the propeller efficiency. The component efficiencies are
detailed in Table 3.1. The solar array is assumed to be integral with the wing upper
surface, the fraction of the wing covered by the solar array is varied depending on
the simulation.

Table 3.1: Solar power system and powertrain efficiencies.

component efficiency source

solar array 0.26 [73]
maximum power-point tracker 0.97 [32]
DC-DC converter 0.97 [32]
ηpv 0.24

motor controller 0.95 [32]
motor 0.85 [32]
gearbox 0.97 [32]
propeller 0.85 [32]
ηpropeller 0.67

The nominal solar insolation is either specified as a static value or generated
using the Python pvlib library [74]. When the exact geographic location of the
aircraft is not important, the insolation is kept constant, at other times it is
generated using pvlib. In all cases, the effect of aircraft maneuvering on the solar
array incidence angle is neglected. Because the aircraft is in constant heading cruise
flight the bank angle is approximately zero. In constant speed cruise flight pitch
angles are small, typically less than ±5◦, so a small angle approximation is made
and the solar array can be approximated as a plane parallel to the earth’s surface.
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3.2.4 Stored Energy

There are a number of ways that an aircraft can store energy onboard. Batteries,
engine-driven generators, and fuel cells can all provide supplemental power. A
general purpose energy-saving autonomy algorithm should be agnostic to the
method of storing energy on the aircraft. For this reason, the details of the energy
storage are neglected in this thesis. Because energy storage density varies widely
between the storage medium and because energy storage technology is constantly
advancing the amount of energy available is not specified in this work. Instead, the
aircraft is permitted to use whatever energy is required, and the amount of energy
expended (and thus the amount which must be available) is examined. The only
constraint placed on the energy storage mechanism is that it is not recharged, the
aircraft stores excess energy in altitude, though this constraint can be relaxed by
introducing appropriate efficiencies for storing and later using energy.

3.3 Environmental Models

Since the atmospheric environment is of primary concern in this research, models of
some atmospheric phenomena are required. Clouds, horizontal winds, and updrafts
all can have an effect on the aircraft’s energy budget so all are implemented in the
simulations used in this research. Depending on the simulation and its purpose
the parameters for the models of these phenomena may be drawn from numerical
weather prediction models or specified manually for illustrative purposes.

3.3.1 Clouds

When a discrete cloud is required, its shadow is modeled as a sharp-edged reduction
in the solar input. Cloud shadows are assumed to lie directly underneath a cloud.
Shadows can obviously be offset depending on the sun angle, but since the exact
location of a shadow is not important, the simple direct projection is used. The
effect of a cloud is defined by a “cloud factor,” α, the fraction of incident solar
energy which is transmitted through a cloud and is thus available beneath:

Icloud = αIclearsky (3.10)
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Figure 3.6: The effect of clouds is captured by the “cloud factor,” the fraction of
light transmitted through a cloud. Every level within the cloud blocks the same
fraction of light so the cloud factor decreases exponentially within the cloud.

The cloud is assumed to be homogeneous internally, so each unit depth of the
cloud blocks the same fraction of light. This means that the cloud factor decreases
exponentially within a cloud, depicted in Figure 3.6.

Generating cloud effects from a numerical weather model is slightly more
complicated because weather model output files generally do not include incident
solar radiation at every level. The surface solar insolation is available and a total
cloud factor can be determined based on the nominal clear-sky solar insolation
obtained from pvlib. The fraction of sky that is covered by cloud is generally
available, assuming that the cloud fraction at each model level is statistically
independent then the cumulative fraction of sky covered above a given altitude can
be computed:

ftot(z) = 1−
K∏

i s.t. zi>z

(1− f(zi)) (3.11)

Where f(z) is the cloud coverage fraction. Since the actual locations of the
clouds are not determined, and the optical thickness of clouds at different altitudes
likely varies considerably, the logarithmic transmittance model is not used here.
Instead, the cloud factor is a linear function of the cumulative solar fraction:

α(z) = 1− (1− α(zsurface))
ftot(z)

ftot(zsurface)
(3.12)

This model has some clear shortcomings, for instance once an overcast layer is
encountered the cloud factor is the same at all lower levels regardless of whether
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subsequent cloud layers exist (because the cloud fraction is saturated at 1.0), it also
allows solar power to vary smoothly rather than jumping up and down as cloud
shadows are encountered. It does however create a model where the amount of
solar energy available is dependent on the vertical structure of the atmosphere and
decreases in the presence of clouds.

3.3.2 Wind

In comparison to the solar model, the wind profile is relatively simple. Since the
aircraft is restricted to the longitudinal plane of motion, the only wind component
considered is the wind aligned along the direction of travel. A tailwind is defined
as positive. Note that the assumption that the wind acts along the aircraft flight
path is slightly different than the assumption that the aircraft flies in a single
plane – flying in a crosswind requires a crab angle to correct a drift component
which reduces the aircraft groundspeed. This effect is neglected here to simplify
simulations.

When the weather model is not driven by numerical weather predictions, a
constant wind is specified at all altitudes. When driven by a numerical weather
model, the wind vector is retrieved from the model fields and projected onto the
aircraft travel direction.

3.3.3 Updrafts

Thermals are the only type of updraft considered in this work, the distribution of
vertical velocity within a thermal is modeled with the exponential function.

wwind = exp(− r

rscale
)wscale (3.13)

Where the r represents the distance between the aircraft and the thermal core,
rscale determines the thermal size, and wscale the maximum strength. Rather
than incorporating downdrafts surrounding the thermal core [75], the thermal
strength is permitted to be negative, introducing areas of sinking air into the
environment. This is simpler than the updraft distribution used by a number of
other researchers [40,75,76]. Since the aircraft is not attempting to loiter within
the thermals, the exact details of the thermal profile is less important. Using
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exponential functions is simple and permitting “negative thermals” introduces areas
of strong sink that are absent in past simulations of soaring flight.

3.3.4 Numerical Weather Prediction

For some simulations a dynamically consistent and time-evolving environment was
desired. In these cases, output from the High Resolution Rapid Refresh HRRR
model is used. This is a numerical weather prediction model with 3 kilometer
resolution over the contiguous United States, it is run hourly with hourly output
intervals over an 18 hour forecast [77]. The HRRR model provides surface solar
insolation, turbulent kinetic energy, 3-D cloud fraction, and the 3-D wind vector.

3.4 Aircraft

Two small unmanned aircraft models are used in this work. The SB-XC is a large
Group 1 to small Group 2 UAS, depending on its payload. The Vulture is a Group 1
UAS. While the two aircraft vary in size they have similar aerodynamic performance
and a similar flight envelope, the inclusion of both in this work represents a transition
in equipment available rather than an illustrative choice.

3.4.1 SB-XC

The SB-XC is a 4.2 m span aircraft used by a number of authors for autonomous
soaring investigations [62–64,66]. It is generally flown at a mass of approximately 6.5
kg. The SB-XC aircraft is depicted in Figure 3.7a. While the aircraft is nominally
a pure glider it can be modified with an electric motor offering an endurance of
roughly one hour. The SB-XC has very good aerodynamic performance for an
aircraft of its size, offering a best lift-to-drag ratio exceeding 20 [66]. The speed
polar relating descent speed in a glider and airspeed is depicted in Figure 3.7b
while its basic characteristics are given in Table 3.2.

As the SB-XC is a well characterized aircraft used by a number of authors and
is a large enough aircraft to carry a mission payload it will be used for most of the
simulations in this work.
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(a) RnR products SB-XC sailplane modi-
fied with an electric motor.
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(b) Speed polar for the SB-XC.

Figure 3.7: The SB-XC, a small UAS commonly used for soaring research.

Table 3.2: Basic parameters of the SB-XC aircraft.

mass 6.5 kg

Sref 0.97 m2

wingspan 4.2 m

3.4.2 Vulture

The Vulture (Figure 3.8) is a small UAS based on the G2 aviation Vera2V model
sailplane. It is used in flight test experiments in this work as it is easier to transport,
launch, and recover than the SB-XC. Basic parameters of the Vulture are given
in Table 3.3. Since a speed polar based on flight data was not available for the
Vulture, its performance was assumed to be similar to the SB-XC as they are of
similar configuration.

Table 3.3: Basic parameters of the Vulture aircraft

mass 2.2 kg

Sref 0.46 m2

wingspan 2.5 m

Low-level control of the vehicle is provided by a pixhawk autopilot running a
customized version of the PX4 flight stack [78]. The autopilot was modified to add a
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Figure 3.8: The Vulture UAS.

flight mode permitting bank angle and airspeed to be commanded by a companion
computer rather than the default attitude command mode. An onboard Odroid C1+
computer running Linux and the Robot Operating System generates bank angle
and airspeed commands [79]. In addition to the sensors integral to the pixhawk
a GPS, pitot-static probe with absolute and differential pressure sensors, and an
outside air temperature probe are fitted. This permits the aircraft to determine
its inertial and air-relative velocities, including the air density for computing true
airspeed.

The wings each carry one 10 Ah single cell lithium ion battery. These batteries
are connected in series are capable of powering the flight computer, autopilot, and
servos for approximately 10 hours. A serial radio modem in the tailboom provides a
datalink to provide information about the aircraft state, but all control and decision
takes place on the vehicle.
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Chapter 4 |
Hybrid Solar Aircraft

Before developing guidance algorithms for solar augmented aircraft, it is worth
exploring the design and operating space that these aircraft occupy and understand-
ing how their capabilities compare to small UAS in general. “Solar aircraft” that
cannot fly on solar power alone are hardly new: early piloted solar aircraft could
not fly on solar energy alone [3]. These aircraft would soar in updrafts charging a
battery using solar power, allowing periodic motor runs.

As technology improved the focus on solar aircraft shifted to high altitude
pseudosatellites. Only recently has attention returned to solar augmentation,
but now as a way to significantly improve the capability of small electric UAS
[70,73,80,81]. In principle, relaxing the requirement for pure and sustained solar
flight could permit small UAS to achieve greater endurance, payload, and speed.
This chapter will examine the impact that solar augmentation can have on the
capability of small fixed-wing UAS.

Figure 4.1: The Silent Falcon is one of an emerging class of small solar augmented
UAS. Reproduced from Silent Falcon (2019) “Silent Falcon” [81]
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4.1 Solar Aircraft Performance

To understand the rationale for employing solar augmented rather than pure solar
aircraft it is worth examining the performance and limitations of pure solar aircraft.

4.1.1 Maximum Speed in Pure Solar Flight

For many missions high cruise speed is desirable to increase flexibility or improve
utilization of an air vehicle. Aircraft speed is relevant even for loitering missions –
in high winds it may be necessary to fly relatively fast in order to remain in the
desired area. The maximum speed a solar aircraft can sustain can be defined by
equating the energy gained from the solar cells to that lost to aerodynamic drag.
Recalling the solar power available from Equation 3.2 and equating this to specific
power due to drag:

ppv,aero =
Dv

mg
(4.1)

Expanding both sides of Equation 4.1:

I cos(i)Spanelηpvηpropeller
mg

=
1

2

ρv2SrefCDv

mg
(4.2)

Dividing by Sref :

I cos(i)ηpvηpropeller
Spv
Sref

=
1

2
ρv2CDv (4.3)

This can be thought of as balancing the power produced to that consumed per
unit wing area. The fraction Spv

Sref
can be thought of the fraction of the wing covered

in solar panels, though it is not strictly limited to the range [0, 1]. For instance
if the horizontal tail were covered in panels it is possible that Spv > Sref . At first
glance this makes the wing coverage fraction seem a little nonsensical, but in many
ways it parallels the usage of the wing reference area, Sref . Aircraft lift and drag
coefficients nondimensionalized by Sref include the contributions of components
other than the wing’s aerodynamic forces, but as the wing is the largest component
of the aircraft these forces scale well with wing area. Similarly, the wing provides
the greatest area for mounting solar panels so the available solar energy will scale
with wing area.
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If the fractional coverage is written βpv = Spv

Sref
and equation 4.3 is rearranged,

the maximum speed attainable by a solar aircraft in level flight can be determined.

vmax =
3

√
2I cos(i)βpvηpvηpropeller

ρCD,min
(4.4)

Equation 4.4 shows that achieving high speed on solar power requires very low
drag and low air density (high altitude). This is a familiar approach to achieving
high cruise speed, but the constraint of flying on solar power alone severely limits
speed outside of this regime. For instance under ideal conditions with panels
reaching the 86% efficiency limit derived by Araújo and Martí [82] covering the
entire wing surface, a fully illuminated sky with normal solar incidence, a perfectly
efficient propeller, and a minimum drag coefficient of 0.005 (approximately the best
achieved by modern sailplane airfoils [83]) the maximum achievable speed at sea
level is 66 m s−1. This is quite fast for a small UAS but is slower than many light
aircraft. Reducing the solar cell efficiency to 26% [73] and using typical powertrain
efficiencies [32] limits the maximum speed at sea level to 37 m s−1.

An operational aircraft would have higher drag as it also has induced and trim
drag as well as drag caused by sensors, communication antennas, and mission
equipment. For small UAS operating at low altitude a drag coefficient of 0.02
(roughly the minimum drag coefficient of the SB-XC) is probably a realistic minimum.
Assuming a propeller efficiency of 85% [32] then the maximum achievable speed is
24 m s−1. This is above the nominal cruise speed of the SB-XC, so under ideal
conditions solar flight is within the operating envelope of an efficient small UAS.

4.1.2 Maximum Wing Loading in Pure Solar Flight

Another way to consider the performance limitations of solar aircraft in cruise is
to consider how heavy a solar aircraft can be and sustain flight. This is obviously
relevant from the perspective of maximizing the amount of payload that can be
carried. Xiongfeng et al. derive a limit on the maximum wing loading that can be
sustained by a solar aircraft [84]:

W

S
= (Ppvηpvηpropeller)

2
3

(ρ
2

) 1
3

(
C1.5
L

CD

) 2
3

(4.5)
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By writing
(
C1.5

L

CD

) 2
3 as

(
CL

CD

) 2
3 C

1
3
L and then expanding the lift coefficient normally

and Ppv according to Equation 3.2 then Equation 4.5 can be written in a form more
compatible with the analysis in Section 3.2.1:

m

Sref
=

1

g
SpvαI cos i ηpvηpropeller

L

D

1

v
=

1

g
SpvαI cos i ηpvηpropeller

−1

ws(v)
(4.6)

Since sink rate is itself a function of wing loading, Equation 4.6 is an implicit
equation for the maximum wing loading at which level flight can be achieved on solar
power alone. Assuming that the solar and propeller efficiencies are independent of
speed, then the greatest wing loading occurs when sink rate is least (the minimum
power flight condition), so when iterating to solve this equation only the minimum
sink rate condition need be checked.

For the SB-XC with wings fully covered in solar panels, perfect solar conditions,
and the theoretical maximum solar efficiency of 86%, this yields a wing loading
of 42.2 kg m−2, lower than the wing loading at empty weight for the Cessna 172
or General Atomics MQ-1. With the current state of the art installed solar cell
efficiency of 26% [73], and typical power train efficiencies [32], this wing loading
drops to 19.0 kg m−2, well below light general aviation and mid-size tactical UAS
wing loadings. At a latitude of 40.8◦ (central Pennsylvania) the solar insolation, I,
is about 80% of its value at the equator and the permissible wing loading drops
even further to 15.8 kg m−2.

A wing loading below 15 kg m−2 is not unreasonable for small UAS – the
nominal wing loading of the SB-XC is below 7 kg m−2. This shows that aerody-
namically efficient small UAS can be made capable of sustained solar flight, a fact
that is also reflected in the number of authors that have explored designs for this
class of aircraft [80,85,86].

4.2 Solar Augmented Performance

Section 4.1 showed that many small fixed-wing UAS are capable of flying purely
under solar power in ideal solar conditions and at slow speeds. If enough additional
energy can be carried to power the aircraft in off-nominal solar times (such as
morning, evening, or when traversing a cloudy region) or when making a high speed
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Figure 4.2: Battery energy required for a 12 hour mission on the equinox for an
SB-XC cruising at its speed for best range.

dash, then it should be possible to achieve all-day endurance for small UAS using
current solar technology, motivating the concept of a solar augmented aircraft.

The capabilities of solar augmentation can be demonstrated by considering a
notional solar augmented UAS with aerodynamic and mass properties similar to the
SB-XC. Based on a rough survey of the mass of hand- and bungee-launched UAS,
the maximum practical weight of a small UAS which does not require sophisticated
launch and recovery infrastructure is about 8 kg. The basic airframe weight of
the SB-XC is 5.5 kg without batteries, assuming that 80% of the wings can be
covered in solar cells and that solar cells have an areal density of 0.59 kg m−2 [9]
the aircraft’s useful load is 2.1 kg.

Assuming the payload and aircraft systems require 10 W of power each (the
avionics power reflects that reported by Depenbusch et al. [66]), the energy budget
can be evaluated for a candidate mission by integrating the excess power and
computing the mass of batteries required. For a baseline mission, consider a 12 hour
(sunrise to sunset) mission in Centre County, Pennsylvania on 20 March 2019 (the
vernal equinox) with the aircraft flying its best range speed at all times. Figure 4.2
illustrates the state of a rechargeable battery throughout this mission for several
different “cloud factors.”

When the cloud factor is greater than 0.5 (more than half of the incident sunlight
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Figure 4.3: Battery mass required and capacity for solar augmented SB-XC flying
a 12 hour mission on the equinox.

reaches the aircraft), then a 12 hour flight can be accomplished with only a nominal
battery capacity required.

4.2.1 Performance Sensitivity to Atmospheric Conditions

Assuming a pack-level battery energy density of 200 W hr kg−1, the mass of the
battery required and the payload which can be accommodated by the SB-XC as
a function of the cloud factor is shown in Figure 4.3a. Note that when no solar
power is available (α = 0) that the payload mass is negative, indicating that the
aircraft cannot reach 12 hours of endurance even if all of the useful load is dedicated
to batteries. In general however, the payload capacity is relatively resilient to
reductions in solar power and as long as some solar energy is available it is possible
to achieve very long endurance when flying the best cruise speed.

Figure 4.3b shows the payload capacity for the 12 hour mission when it is flown
at an airspeed of 17 m s−1. The payload capacity is significantly reduced for all
solar conditions, and the mission cannot even be completed with no payload unless
more than half of the clear sky solar insolation is available. Comparing Figures
4.3a and 4.3b shows that a small increase in speed has a greater impact on the
aircraft payload carrying capacity than reducing the solar insolation by half.

The reason for this sensitivity is shown in Figure 4.4 which compares speed
polars for the basic and solar augmented SB-XC. Solar augmentation shifts the
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Figure 4.4: Basic and solar augmented polars for the SB-XC at a mass of 8 kg
flying at noon in Pennsylvania with a cloud factor of 0.75. Solar augmentation
moves the polar up, reducing energy input but does not affect the shape of the
polar so high speed is still quite costly.

polar up, reducing the cost of flight at all conditions. It does not change the shape
of the polar however, so flight at high speeds is still very costly. In this case the
aircraft can maintain flight under pure solar power at up to 14 m s−1 but by 19
m s−1 the solar augmented aircraft requires more power than the minimum power
without augmentation.

The speed difference between Figures 4.3a and 4.3b is approximately equal
to the analysis skill (difference between the true atmospheric state and posterior
state expected by a weather model after incorporating observations) for numerical
weather prediction in the contiguous United States [87,88], so a 2.5 m s−1 speed
perturbation would not be uncommon when the aircraft is tracking a flight planned
a priori using a weather forecast if the time of arrival is specified.

Solar augmentation can significantly enhance the range and endurance of a small
UAS, but it does not change the sensitivity of the aircraft to environmental condi-
tions. In order to operate effectively over long ranges, both solar augmented and
conventionally powered small UAS therefore need awareness of their environment.
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4.3 Summary

The energy budget of small solar augmented UAS is sensitive to small changes in
speed but fairly robust to variations in solar insolation. If operating under the
guidance of an a priori plan then relatively small errors between the expected and
true wind can significantly impact the payload and range capability of the aircraft,
especially if an arrival time is specified. This sensitivity makes using small UAS for
missions over long ranges difficult and is likely responsible for the fact that there
are few small UAS – solar augmented or otherwise – employed in missions requiring
more than a few kilometers of range or an hour of endurance.

To be robust to these sensitivities a small UAS that is useful for long-range
missions should have significant endurance (to provide some “padding” in the energy
budget). It should also have a system capable of identifying departures from the
anticipated conditions and responding in a way which minimizes the impact of
these perturbations on the aircraft’s energy budget. These objectives are familiar
– extending endurance is the motivation for solar augmentation and the other
objectives are the design goals for this work that were identified in Section 1.2
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Chapter 5 |
Speed to Fly

Many planners for solar aircraft assume that variations in energy input are driven
entirely by celestial mechanics and the aircraft attitude [31,32,89]. For low altitude
solar aircraft the situation is more complex. The exact location of clouds in the
lower atmosphere cannot be perfectly forecast, so the shadows these clouds cast will
cause stochastic variations in energy input. Vertical air motion in the convective
boundary layer also cannot be forecast with enough precision to enable a priori
planning, so it provides another (potentially negative) stochastic energy input.

Further complicating the problem, updrafts and clouds shadows might be
correlated as clouds frequently form at the top of updrafts. Near solar noon
when cloud shadows are located directly underneath the clouds, the aircraft may
simultaneously experience a decrease in solar energy and an updraft. At other
times, cloud shadows are offset so that the correlation could be absent or even
reversed. To minimize energy expended from onboard storage, a method is needed
that can simultaneously manage the interruptions in solar power and variations in
updraft intensity.

For guidance in the vertical plane, the aircraft’s control action is limited to
speed and power output. Any solar power available should be used to its full extent,
so “power output” as a control means non-renewed output from an onboard store
of energy such as a battery.

5.1 Speed to Fly with Stochastic Energy Input

We will begin by deriving a speed control which minimizes energy consumption. A
speed control is particularly useful as it is equally applicable to solar augmented
aircraft and pure solar aircraft which cannot use “power output” as they must
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Figure 5.1: Definition of the solar speed to fly problem, the aircraft traverses cloud
shadows over a fraction, f , of its flight path.

satisfy their entire energy budget with solar power.

5.1.1 Pure Solar Flight with Interruptions

Sailplanes must collect energy in concentrated areas of upward moving air, then
traverse regions of sinking air before reaching the next energy source. This is
similar to the challenge faced by a solar aircraft flying at low altitude. The aircraft
gains energy flying in sunny regions and then must traverse a shadowed area where
there is less energy available. It is desirable to find the optimal strategy for a
solar powered aircraft to adopt when traversing areas of varying solar energy. This
strategy is known in the soaring literature as “speed to fly” [35].

Continuing the analogy with soaring flight, a development similar to classic
soaring speed to fly theory is used here [35, 70]. A two-segment flight is considered:
the aircraft flies underneath a cloud, losing altitude which must be regained during
a subsequent climb in sun. This situation is depicted in Figure 5.1. It is analogous
to a sailplane traversing an area of sinking air. In this situation, a soaring aircraft
should speed up to minimize the time spent in the sinking air. It is expected then,
that the optimal strategy here will be to speed up when traversing cloud shadows,
then slow down to “recharge” by climbing in sun.

The cloud cover is assumed to be uniformly shaped and scattered and vertical
air motion is neglected for the moment. Cloud cover is defined by the fraction
spent in shadow while flying a leg of length L. The aircraft loses altitude h while
traversing the shadowed region and regains that altitude in a cruise-climb while in
a sunny segment so that there is no change in total energy over a cloud-sun cycle.
Shadowed regions are assumed to be brief enough with sufficient length of sunny
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regions in between to enable the altitude to be regained. The solar incidence angle
is assumed to be constant. First, the time spent in each flight segment is computed:

tcloud = f
L

vcloud
(5.1)

tsun = (1− f)
L

vsun
(5.2)

The mean cross-country speed is then:

v =
∆X

∆t
=

L

tcloud + tsun
=

L

f L
vcloud

+ (1− f) L
vsun

=
vcloudvsun

fvsun + (1− f) vcloud
(5.3)

The altitude gained and lost when traversing sunny and cloudy areas can be
expressed as hsun and hcloud respectively:

hsun = (ws(vsun) + psun) tsun = (ws(vsun) + psun) (1− f)
L

vsun
(5.4)

hcloud = (ws(vcloud) + pcloud) tcloud = (ws(vcloud) + pcloud) f
L

vcloud
(5.5)

Where pcloud and psun represent the specific solar power output in shadow and sun
respectively. Since the altitude lost under clouds must be regained in the sunny
segments, hcloud = −hsun. Substitution of the expressions from Equation 5.5 and
Equation 5.4 yields:

(ws(vcloud) + pcloud) f
L

vcloud
= − (ws(vsun) + psun) (1− f)

L

vsun
(5.6)

simplifying,

(ws(vcloud) + pcloud) f
vsun
vcloud

+ (ws(vsun) + psun)) (1− f) = 0 (5.7)

gives an implicit equation for the relationship between the speed under cloud and
the speed in sun. The method of Lagrange multipliers could be used to maximize
Equation 5.3 subject to Equation 5.7, but the analytic form is complex. Thus, to
explore this relation, Equation 5.7 is solved for a range of speeds when traversing
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Figure 5.2: Solar powered cross-country performance for a small UAS.

clouded regions and the corresponding mean speed is then computed. Figure 5.2
details the relationship between cloud and sun speeds and the average cross-country
speed. The solution is illustrated for the SB-XC aircraft described Section 3.4.1,
assuming that 80% of its wing is covered in solar panels (so that it can sustain
flight on solar power). Clouds are assumed to cover one third of the sky and fully
block incident solar energy with a clear sky insolation of 750 W m−2.

Figure 5.2a illustrates the relationship between speed under cloud and in sun
required in order to meet a specified net energy after one cycle, with net specific
energy expressed as a fraction of the cycle length. Figure 5.2b illustrates the
average speed achieved as a function of the net energy. Expressed this way, the net
energy is equivalent to the flight path angle, γ. The speed relationships are smooth
throughout the flight envelope of the aircraft, suggesting that numerical solutions
optimizing Equation 5.3 will be reliable and fast to compute.

The dashed black line in Figure 5.2a indicates the constant speed schedule
to achieve a desired net energy. Figure 5.2b shows that constant speed flight
is suboptimal. The optimal strategy is to speed up slightly under clouds to
rapidly leave the shadow, then slow down in sunny regions to gain altitude. The
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improvement in cross-country speed is small, about 1%.
Figure 5.3 shows the mean speed achieved using speed to fly and constant speed

schedules as a function of solar insolation and cloud fraction for γ = 0. The speed
curves end at a cloud fraction where sustained flight is not possible on solar power
alone. As cloud fraction increases, the advantage of flying speed to fly increases
although the speed gain is still quite small. The most significant impact of adopting
speed to fly is that the aircraft is capable of sustaining flight with significantly
larger cloud fractions.

While this development uses altitude lost and gained to express the aircraft
total energy, the development holds for any storage medium. If excess solar power
is stored in a battery instead of altitude, the same result holds, provided the
aircraft achieves a “net energy” equal to the energy conversion loss in charging and
discharging the battery.

5.1.2 Joint Optimization of Solar and Updraft Energy

The magnitude of specific solar power is approximately 1 m s−1, similar to the
magnitude of vertical air motion in a convective boundary layer [10]. Solar energy
and vertical air motion may also be correlated depending on the atmospheric
conditions and time of day, making it desirable to have a speed command which
considers both sources of energy. This problem is illustrated in Figure 5.4: the
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Figure 5.4: Problem definition for simultaneous optimization of updraft and solar
energy. A series of segments are defined with stochastic input from solar energy
and vertical air motion on each segment. A constant horizontal wind acts on the
aircraft throughout the flight. Vertical air motion is indicated by color and arrows,
cloud influence by shading. The aircraft is permitted to change airspeed when
transitioning to a new segment.

aircraft transits regions with varying vertical air motion and solar input. The
aircraft also experiences a constant horizontal wind.

Assuming that the aircraft is equipped with onboard energy storage, the require-
ment from Section 5.1.1 that all required energy is harvested from the environment
can be relaxed. This allows the optimal speed to be determined even for cases
where the aircraft cannot sustain flight on solar power alone in full sun, which
causes nonsensical solutions to Equation 5.7 because the condition that the altitude
lost in shadow be regained in sun cannot be satisfied.

The equivalence of specific solar power and vertical motion established in
Section 3.2.1 permits the combining solar and updraft energy into a single value
measuring the power being harvested from the environment.

ph = ppv,aero + wwind (5.8)

The distinction from Section 5.1.1 between energy gaining and energy losing
segments is eliminated by allowing ph to take on negative values. The control
variables are speed and power output from storage, v and pout respectively. The
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flight is approximated as a series of segments of random length with constant
energy harvest rate in each segment, similar to the approach adopted by Arho [37],
but with generalized energy harvest rate. The aircraft is permitted to change the
velocity and power output at the beginning of each segment. It is assumed that
segments are long enough that the transient behavior when changing controls is
negligible. Each variable can then be written:

ph (x) =
∑
n

p̂nRECT (xn,∆xn, x) (5.9)

v (x) =
∑
n

ṽnRECT (xn,∆xn, x) (5.10)

poutput,aero (x) =poutput (x) ηpropeller =
∑
n

p̃nRECT (xn,∆xn, x) (5.11)

Where p̂n represents the energy harvested, ṽn the speed command, and p̃n the
aerodynamic power output from storage in segment n. Segments are defined by a
start xn, interval ∆xn, and the rectangular function RECT(xn,∆xn, x):

RECT (xn,∆xn, x) =

1, x ∈ [xn, xn + ∆x)

0, otherwise
(5.12)

Assuming that the propulsion efficiency is static, then the energy output from
storage can be minimized by minimizing the integrated aerodynamic power output
from storage, eoutput,aero which can be computed:

eoutput,aero =

∫
T

poutput,aero(t)dt

=

∫
X

poutput,aero(x)
dt

dx
dx

=
∑
n

∫ xn+∆xn

xn

p̃n
ṽn + u

RECT (xn,∆xn, x) dx

=
∑
n

p̃n
ṽn + u

∆xn

=
∑
n

p̃n
ln

ṽn + u

(5.13)

Where ln is the length of segment n and u is the constant horizontal wind,
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positive for a tailwind. The aircraft energy state after crossing a sequence of N
segments with known energy harvest rates and length is a function of 2N variables,
{p̃n, ṽn}.

Achieving minimum expenditure of stored energy is thus an optimization problem
to minimize Equation 5.13 while remaining above ground and starting and ending
at the same altitude.

The constraint requiring that the initial and final altitudes be equal prevents
the aircraft from minimizing energy expenditure by descending to arbitrarily low
altitudes. It can be written:

0 =e (T )− e (0)

=

∫
T

(ph (t) + pout (t) + ws (v (t))) dt

=

∫
X

(ph (x) + pout (x) + ws (v (x)))
dt

dx
dx

=
∑
n

∫ xn+∆xn

xn

p̂n + p̃n + ws (ṽn)

ṽn + u
RECT (xn,∆xn, x) dx

=
∑
n

(p̂n + p̃n + ws (ṽn))
ln

ṽn + u

(5.14)

For the moment, the final condition that the aircraft remain above ground at
all times is neglected. The rationale for this will later be evident.

Since the energy constraint can be expressed as an equality, this optimization
problem can be solved through Lagrange multipliers. The Lagrangian can be
written:

L =
∑
n

p̃n
ln

ṽn + u
+ λ1

(∑
n

(p̂n + p̃n + ws (ṽn))
ln

ṽn + u

)
(5.15)

Computing partial derivatives:

∂L
ṽi

=
li

(ṽi + u)2

(
−p̃i − λ1

(
p̂i + p̃i + ws (ṽi)−

∂ws (ṽi)

∂ṽi
(vi + u)

))
= 0 (5.16)

∂L
∂p̃i

=
li

ṽi + u
(1 + λ1) = 0 (5.17)
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∂L
∂λ1

=
∑
n

(p̂n + p̃n + ws (ṽn))
ln

ṽn + u
= 0 (5.18)

From Equation 5.17 it is clear that λ1 = −1. Substituted into Equation 5.16,
this causes p̃i to drop out of the equation entirely. Thus Equations 5.16 and 5.18
are decoupled. This simplifies the optimization to N equations for {ṽi} and a single
equation constraining {p̃i}. Any choice of {p̃i} in the null space of Equation 5.18 is
valid. This justifies relaxing the criteria that the aircraft stays above ground, as
the power output can be specified to do so without altering the optimal speed. The
resulting equations for {ṽi} reduce to the requirement that each segment i satisfy:

p̂i + ws(ṽi)−
∂ws(ṽi)

∂ṽi
(ṽi + u) = 0 (5.19)

This is the classic speed to fly equation [35] with the MacCready value, MC,
set to zero. Equation Equation 5.19 can be further simplified if the speed polar is
represented by a second-order polynomial:

ṽi =

√
au2 − bu+ p̂i + c

a
− u (5.20)

Note that the optimal speed command is dependent only on the instantaneous
value of p̂i so the unified power harvesting value is sufficient to determine the
optimal speed, avoiding complications arising from correlation between solar power
and updrafts.

5.1.3 Speed to Fly for Schedule Keeping

In many applications a waypoint may be specified by an operator or outer loop
planner with a desired time of arrival. Even with schedule keeping requirements, it
is desirable to minimize energy consumption. Section 5.1.2 shows that the speed
and power schedule can be solved separately. It does not however, provide a means
to control the average speed. The optimization framework presented in Section 5.1.2
can be extended to incorporate the arrival time constraint.
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5.1.3.1 Energy Optimization With Speed Constraint

If the desired time of arrival after N segments is T , this can be expressed as an
average speed requirement:

v =
X

T

=

∑
n ln∑

n
ln

ṽn+u

(5.21)

The arrival time constraint can be incorporated into the optimization problem,
Equation 5.15, by augmenting the Lagrangian with another term:

L =
∑
n

p̃n
ln

ṽn + u
+ λ1

(∑
n

(p̂n + p̃n + ws (ṽn))
ln

ṽn + u

)
+ λ2

( ∑
n ln∑

n
ln

ṽn+u

− v

)
(5.22)

Which introduces one more term into the partial derivative with respect to ṽi:

∂L
ṽi

=0

=
li

(ṽi + u)2

−p̃i − λ1

(
p̃i + p̂i + ws (ṽi)−

∂ws (ṽi)

∂ṽi
(ṽi + u)

)
− λ2

∑
k lk(∑

k
lk

ṽk+u

)2


(5.23)

and adds one more equation to solve after taking partial derivatives:

∂L
∂λ2

=

∑
n ln∑

n
ln

ṽn+u

− v = 0 (5.24)

The partial with respect to λ1 is unchanged so again, λ1 = −1 and the speed
and power optimizations are decoupled. Equation 5.23 simplifies to a form similar
(but not identical) to the speed to fly equation:

0 = p̂i + ws (ṽi)−
∂ws (ṽi)

∂ṽi
(ṽi + u)− λ2

∑
k lk(∑

k
lk

ṽk+u

)2 (5.25)

Note that in Equation 5.25 the term involving λ2 is not dependent on any
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individual ṽi. Hence that term can be written as MC = λ′2 = λ2

∑
k lk(∑

k
lk

ṽk+u

)2 , the

MacCready value which will optimize energy consumption while respecting the
speed constraint.

Equation 5.25 can also be simplified if the aircraft performance is assumed to
follow a quadratic polar:

ṽi =

√
au2 − bu+ c+ p̂i −MC

a
− u (5.26)

5.1.3.2 Speed to Fly Inversion

Equation 5.25 specifies a family of speed schedules which minimize energy use, but
it does not provide a means to compute MC = λ′2, which identifies the schedule
that satisfies the arrival time condition. If the input power distribution p̂n is known
then MC can be computed directly. Since p̂ is a stochastic function, it will not be
known a priori so another means to determine MC is required.

One approach is to invert the speed to fly problem. MC can be approximated
by solving Equation 5.25 in the mean sense:

0 = E (p̂i) + E (ws (ṽi))− E
(
∂ws (ṽi)

∂ṽi
(ṽi + u)

)
−MC (5.27)

The arrival time constraint specifies the expected speed, v. Over the operating
envelope of the aircraft, the speed polar is approximately linear in a neighborhood
of any speed so that:

E(ws(v)) ≈ ws(v) (5.28)

and

E
(
∂ws (ṽi)

∂ṽi
(ṽi + u)

)
≈ ∂ws (v)

∂v
(v + u) (5.29)

Equation 5.27 can then be solved for an approximate MC value provided that
E(p̂i) can be estimated:

MC ≈ E (p̂i) + ws(v)− ∂ws (v)

∂v
(v + u) (5.30)

If the aircraft speed polar, ws(v) is assumed to be quadratic then the MacCready
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value can be written:

MC ≈ E(p̂i)− av2 + c− 2avu− bu (5.31)

This is useful as it is reasonable to expect that E(p̂i) could be estimated (for
instance by a weather forecast of cloud cover, or by a running average assuming
that conditions change slowly). The error introduced by this approximation will be
explored numerically in Section 5.2.1.

It is worth noting here that E(p̂i) is a weak function of v. Speed to fly works on
the principle that speed variations allow the aircraft to spend more time in favorable
regions and less time in unfavorable regions, effectively modifying the environment
experienced by the aircraft. When the average speed is low, the aircraft will slow
more when harvesting energy and speed up more when losing energy than when it
must achieve a higher speed so it will achieve a larger effective value for E(p̂i). This
effect is relatively small and is only relevant when E(p̂i) is computed from a spatial
average of p̂i, for example from a weather forecast. If E(p̂i) is estimated from a
time average of p̂ measured on the aircraft then this variation vanishes provided
the nominal speed remains the same.

5.1.3.3 Convergence Analysis

Consider a simplified form of the speed scheduling problem where there is no
stochastic variation in the environment. At each timestep, the MC value is
determined based on the mean speed required to satisfy the arrival time and a
speed command generated. The vehicle is modeled as purely kinematic on the
basis that the flight time is much larger than the aircraft longitudinal dynamics,
tfinal >> Tlongitudinal. This system can be written:

xk+1 = xk + ∆t vcommand (5.32)

The speed command, vcommand is generated so that the aircraft flies the distance
remaining to the goal point in the alotted time remaining. For simplicity in analysis
the final point will be assumed to be x = 0. The controller can then be written
into the system dynamics as:
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xk+1 =xk + ∆t
−xk

tfinal − k∆t

=xk

(
1− ∆t

tfinal − k∆t

) (5.33)

There is a clear concern that as the aircraft reaches the final time and k∆t = tfinal

that there is a singularity in the solution. In UAS navigation it is common to
have a threshold distance around a waypoint which satisfies reaching the point, so
the singularity itself might not be critical, provided that the controller is bounded
sufficiently close to the goal point.

Because this system is time varying, its convergence cannot be analyzed through
the system equation. Instead convergence of this system can be established through
the state transition matrix [90]:

xk+1 = Φ(k + 1, 0)x0 (5.34)

For notational brevity the state transition matrix that maps x0 to xk+1 will be
written as Φk+1, retaining the function notation when the initial state is not x0.
By recursive application of the system matrix xk+1 = A(k)xk the general form for
the state transition matrix can be determined.

xk+1 =A(k)xk = A(k)A(k − 1)xk−1 = A(k)...A(0)x0

=

(
k∏
i=0

A(k)

)
x0

=

(
k∏
i=0

(
1− ∆t

tfinal − k∆t

))
x0

(5.35)

So that the state transition matrix is:

Φk+1 =
k∏
i=0

A(k) =
k∏
i=0

(
1− ∆t

tfinal − k∆t

)
(5.36)

At first glance this does not appear to be an improvement as there is still a
singularity when k =

tfinal

∆t
. However, at step k =

tfinal

∆t
− 1 the system matrix goes

to:
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A

(
tfinal
∆t
− 1

)
=1− ∆t

tfinal − k∆t

=1− ∆t

tfinal −
(
tfinal

∆t
− 1
)

∆t

=1− ∆t

tfinal − tfinal + ∆t

=1− 1

=0

(5.37)

The state transition matrix Φ
(
tfinal

∆t
, 0
)
is thus zero, satisfying arrival at the

goal point and avoiding the singularity. The physical interpretation of this is that
the aircraft reaches the goal point at

(
tfinal

∆t

)
−
, the beginning of the timestep where

the singularity occurs. The goal point is thus controllable from any starting state
and any choice of a threshold for “reaching” the waypoint will avoid the singularity.
Note that while the goal point is controllable from any starting state, there is
no restriction placed on the control effort required in order to do so. As with
any control design problem, it is incumbent on the system designer and aircraft
management system to operate the controller within a physically sensible operating
space.

The previous analysis does not include the effect of varying speed in response to
the stochastic energy input. As the speed variations are in response to stochastic
atmospheric characteristics, the speed will be modeled as subject to a random
disturbance: vk = vcommand + ζk so that the state transition can be written:

xk+1 =xk + ∆t (vcommand + ζk)

=xk + ∆t
−xk

tfinal − k∆t
+ ∆t ζk

=xk

(
1− ∆t

tfinal − k∆t

)
+ ∆t ζk

(5.38)

The input response must be included in the transition:

xk+1 = Φk+1x0 +
k∑
i=0

Φ(k + 1, i+ 1)∆t ζi (5.39)

Noting that Φ(j, j) ≡ 1 and again recursively applying the dynamics, the state
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transition can be determined:

xk+1 =x0

k∏
i=0

A(k) +
k−1∑
i=0

(
∆t ζi

k∏
j=i+1

A(j)

)
+ ∆t ζk

=x0

k∏
i=0

(
1− ∆t

tfinal − k∆t

)
+

k−1∑
i=0

(
∆t ζi

k∏
j=i+1

(
1− ∆t

tfinal − j∆t

))
+ ∆t ζk

(5.40)
As before, the zero input response goes to 0 when k =

tfinal

∆t
− 1. The zero state

response also goes to zero for every term in the summation in Equation 5.40 as
the product always includes the system matrix A

(
tfinal

∆t
− 1
)

= 0. The only term
remaining in the zero state response is ∆t ζ tfinal

∆t
−1
, the disturbance at the final

step. The desired final state is no longer completely controllable from any state,
but can be achieved up to some final error xerror = ∆t ζ tfinal

∆t
−1
. Assuming that the

controller is shut off at tfinal, the arrival time error can be approximated by the
final error and the nominal speed:

terror =
xerror
v

=
∆t ζ tfinal

∆t
−1

v
(5.41)

It is worth noting that throughout this development, the disturbance was not
assumed to have any particular statistical structure (e.g. normally distributed).
This means that the exact nature of the aircraft response to stochastic energy
inputs is not critical to satisfying the arrival time condition (up to the error term).
Further, the speed error is not restricted to speed commands for energy harvesting,
the analysis applies to any source of error in the aircraft speed.

This result can also be used to determine a minimum arrival threshold to ensure
that the controller is shut off before reaching the singularity. If the maximum speed
error can be estimated, a lower bound for for the threshold can be determined
based on the maximum position error at the final time:

xthreshold < xerror ≈ max(ζ)∆t (5.42)

Assuming a quadratic polar and referencing Equation 5.26, the disturbance in
the speed command can be estimated based on the largest expected disturbance
in p̂i. Assuming that the nominal mean speed is equal to the speed for maximum
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range and that there is no wind, then Equation 5.31 will yield MC = E(p̂). The
velocity disturbance can be computed:

max(ζ) ≈ |max(v)− v| =

∣∣∣∣∣
√
c−MC −max(p̂)

a
−
√
c−MC

a

∣∣∣∣∣
=

∣∣∣∣∣
√
c− E(p̂)−max(p̂)

a
−
√
c− E(p̂)

a

∣∣∣∣∣
(5.43)

Using values of a and c from the SB-XC,MC = 0, and letting max(p̂) ≈ 2 m s−1

(a fairly large vertical updraft), the maximum disturbance is approximately 4 m s−1.
If the controller time step is 1.0 s then this would indicate a threshold of about 4.0
m would be appropriate, larger than differential GPS accuracy, but smaller than is
commonly used on fixed wing UAS for navigation thresholds. Equation 5.42 can
alternatively be viewed as a means to select a required controller time step size
given a navigation performance requirement.

5.2 Simulations

The speed to fly schedule from section Section 5 was studied using two numerical
approaches. In both, the aircraft simulated is the SB-XC, described in Section 3.4.1.
For these simulations, it is assumed that solar cells cover 30% of the SBXC’s wings,
this value is chosen so that it is not capable of sustained flight on solar power alone.

5.2.1 Approximating the MacCready Number

To validate the approximation to MC given by Equation 5.30, a numeric approach
is adopted to finding the speed schedule which satisfies Equations 5.23 and 5.24.
The SciPy minimize routine [91], is used to minimize Equation 5.13 subject to a
mean speed constraint of 16 m s−1 over 50 segments. A candidate schedule was
also computed using equation 5.30. Segment lengths were drawn from a uniform
distribution with a maximum value of 1000.0 m. The energy harvest rate for each
segment, p̂, was drawn from a Gaussian random distribution with mean of 0.3
m s−1 (so that the mean energy harvesting rate is almost enough to remain aloft)
and unit standard deviation (approximately the vertical velocity variance in a
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Figure 5.5: Performance of the approximate unified speed to fly computation with
arrival time constraint. The MacCready value is 2.26 m s−1, computed by solving
Equation 5.31.

moderately convective boundary layer). The results are illustrated in Figure 5.5.
The MacCready value was determined by recursively applying Equation 5.30,

computing E(p̂) for this schedule, then recomputing the MC value. This was
repeated until the MC value converged. This approximates the value for E(p̂)

which could be computed by a running average on the aircraft. Figure 5.5a shows
that the speed to fly schedule lies nearly on top of the numerically optimized speed
schedule, the speed command errors are shown in figure 5.5b and are below 1%,
validating the approximation made in Equation 5.30. The average speed is slower
than the desired speed by 0.056 m s−1, or 0.35%.

5.2.2 Monte Carlo Simulations

The speed to fly algorithm is tested more extensively in a Monte Carlo simulation.
The aircraft is represented as a point mass with states: east position, altitude, and
stored specific energy. The simulation model and state dynamics are described in
Section 3.2.2. Power commands, p̃ are generated by a proportional-integral control
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loop which seeks to keep the aircraft at an altitude of 500 m.
The environment is defined by randomly scattered clouds and thermals. Ther-

mals are modeled as described in Section 3.3.3 Parameters for the thermals are
shown in Table 5.1. The horizontal wind is set to zero.

Table 5.1: Parameters of the thermal model used in the simulations.

number of thermals 100
locations U(0, 200 km)

rscale N (200 m, 10000 m2)

wscale N (0, 1.0 m2s−2)

Clouds are modeled as by sharp-edged reductions in the solar input. For a
clouded segment, the global insolation is multiplied by the “cloud factor” which
represents the fraction of total solar power available. The nominal global insolation
is set to 750 W m−2 to represent the effect of a suboptimal solar angle because of
latitude and time of day. Parameters for the solar model are depicted in Table 5.2.

Table 5.2: Parameters of the cloud model used in the simulations.

number of clouds 50
locations U(0, 200 km)

rscale N (1000 m, 100 m)

cloud factor N (0.3, 0.04) (clipped to [0, 1])
solar insolation 750 W m−2

For each simulation iteration a random cloud and thermal environment is
generated and then two aircraft are simulated through the same environment over
a 200 km flight with a desired mean speed of 16 m s−1 for a nominal time of 12500
seconds (≈ 3.5 hours). The speed command is selected so that the aircraft must
fly faster than the speed for best L

D
, as is common in cruise for small aircraft at

low altitude. One aircraft flies a constant speed while the other flies the speed
schedule developed in section 5.1.3.1. The expected energy harvest rate is initialized
by taking the average of 1000 random samples of the environment and thereafter
determined using a first order lowpass filter with a time constant of 30 minutes.
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Figure 5.6: Ensemble mean energy savings achieved using speed to fly over 100
Monte Carlo simulation iterations. Dotted lines indicated one standard deviation.

Figure 5.6 illustrates the mean savings that can be achieved by flying speed
to fly, computed over 100 Monte Carlo simulation iterations. On average, the
speed to fly schedule will reduce the energy required to fly a mission by about 2%,
illustrated in figure 5.6b which is consistent with the gains seen in section 5.1.1
for optimal response to clouds for a pure solar aircraft, it is also consistent with
the experience of soaring pilots [35]. Figure 5.6a shows the difference in energy
between the speed to fly and constant speed approaches and the uncertainty in
energy state for each aircraft plotted against travel distance. While it is difficult
to read directly from the figure, flying the speed to fly results not only in energy
savings but in a slight reduction in uncertainty of the final energy state (about 3%
reduction in the standard deviation of the final energy state).

Figure 5.7 shows the difference in energy between an aircraft using speed to
fly compared to one in constant speed flight for a randomly selected Monte Carlo
iteration. The figure also illustrates the components of p̂: clouded regions are
shown shaded by 1− α (the fraction of light blocked by the cloud) and the relative
energy line is colored by vertical air motion (red and blue for rising and sinking air
respectively). The aircraft which uses speed to fly speed steadily gains energy over
the constant speed aircraft thought it is difficult to assign energy gains to specific
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Figure 5.7: Difference in total energy (kinetic + potential - expended stored energy)
between an aircraft employing the speed to fly schedule and an aircraft in constant
speed flight for one run from the Monte Carlo set.

phenomena. When crossing a cloud shadow the speed to fly command increases,
also increasing drag but it takes some time for the altitude controller integrators
to unwind and increase power output so the cost to cross the shaded region won’t
be fully realized until later. This effect is especially evident at around 130 km.
Both aircraft are descending as they fly through a clouded region. The speed to fly
aircraft has a higher initial altitude so it turns on its motor after the constant speed
aircraft, causing an apparent spike in the relative energy. The mean trend however
shows that flying the speed to fly leads to consistent gains in energy relative to
constant speed flight.

The distribution of error in mean speed over for the Monte Carlo set is depicted
in Figure 5.8. The mean error is 0.05 m s−1, less than 1% of the commanded
speed. The slowest speed of all iterations was 15.90 m s−1 while the fastest was
15.97 m s−1. This implies a maximum deviation from the desired arrival time of 78
seconds over a flight time of approximately 3.5 hours. The speed error is consistent
with the error demonstrated in the first simulation experiment from section 5.2.1.

5.3 Flight Tests

To provide further validation of the speed control algorithm, it was implemented
on the Vulture, a small powered sailplane described in Section 3.4.2. The aircraft
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Figure 5.8: Distribution of error in the mean speed. In 100 iterations no aircraft
finished with more than 0.1 m s−1 of error. The mean error is 0.05 m s−1, less than
1% of the nominal speed, 16 m s−1.

was commanded to fly several missions which were to arrive at a specified location
at a specified time.

5.3.1 Mission Description

The aircraft is commanded to fly a flight path in the shape of a hypotrochoid
(“spirograph” pattern) 10115 meters in length at an average speed of 14.0 m s−1,
for a nominal flight time of 722.55 seconds (≈ 12 minutes). There was concern
that flying a circle would lead to the aircraft repeatedly re-encountering the same
atmospheric conditions (the characteristic timescale for the lower troposphere is
≈ 600 seconds [10]). The hypotrochoid provides a long path with minimal curvature
that revisits relatively few points and fits within a compact flight area. The test
speed was chosen so that the aircraft must fly faster than its best L/D speed, and
path length chosen so that the test duration left considerable reserve power in the
battery for recovery.

During the test a new MC value is generated every 5.0 seconds. It is assumed
that there is no net energy harvested on average, i.e. that E(p̂) = 0. At first glance,
this assumption appears to be in conflict with our objective of using speed to fly
to reduce the energy consumption. Given that the aircraft is not equipped with
solar cells and that the large-scale average vertical air motion is zero, the energy
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Figure 5.9: Desired flight path for the speed to fly test. The aircraft travels in
an anti-clockwise path starting at the green circle with the “petals” precessing
anti-clockwise as well. The aircraft completes the test at the center point.

harvested should be relatively small so the error introduced should be eliminated
by subsequent computations of the required MC value. The nominal flight path
is depicted in Figure 5.9. The flight path begins at [−250 m, 0 m] and ends at
[0 m, 0 m]. The aircraft proceeds anti-clockwise, the “petals” precess anti-clockwise
as well.

5.3.2 Results

The flight path was flown 6 times. In each test the wind was assumed to be
still when computing the required MacCready number, so the wind appears as an
unmodeled disturbance. Table 5.3 illustrates the schedule keeping performance.

Given a mean wind speed of roughly 3.0 m s−1 and the amount of vertical motion
experienced, errors of up to 1.3 seconds or 0.18% are anticipated by Equation 5.41.
Table 5.3 indicates greater error for all flights, often exceeding the expected error by
several times. The reason for the error can be explored by examining a particular
flight in greater depth. Figure 5.10 shows the aircraft flight path during the third
trial. The aircraft completed the path in 720.37 seconds, an error of -2.18 seconds
or approximately 0.3%.
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Table 5.3: Time of arrival performance for the flight test.

trial nominal time elapsed time error (s) error (%)

1 722.55 717.09 -5.46 -0.76
2 722.55 715.64 -6.91 -0.96
3 722.55 720.37 -2.18 -0.30
4 722.55 719.64 -2.93 -0.40
5 722.55 721.16 -1.39 -0.19
6 722.55 718.72 -3.83 -0.53
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Figure 5.10: Actual flight path during one speed to fly test. The wind is depicted as
vectors along the flight path and was left unmodeled as a disturbance the controller
had to eliminate. The mean north wind component was -2.56 m s−1 and mean
east component was 2.82 m s−1.

Figure 5.11 depicts the time history of the airspeed, commanded airspeed,
vertical air motion, and MacCready number for the third trial. The aircraft varies
its speed substantially in response to vertical air motion, between approximately
10.0 and 20.0 m s−1. The MacCready number is relatively constant for much of the
flight. Late in the flight, the required speed becomes more sensitive to error as the
time remaining decreases, causing more variation in the MacCready number. At
t ≈ 550 seconds and t ≈ 600 seconds the MacCready number can be seen increasing
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Figure 5.11: Command and state histories during the speed to fly test. Late in
the test the MacCready setting begins to vary in response to vertical motion (the
aircraft slows down when flying in rising air, requiring an increased MacCready
number in order to satisfy the time of arrival).

after the aircraft slows as it traverses an area of updraft. At t > 680 seconds
the MacCready number decreases rapidly and the aircraft slows to its minimum
allowable speed.

The error in flight 2 was approximately 60% greater than Equation 5.41 would
expect. The additional error is due to constraints placed on the MacCready value
which are outside the scope of analysis of Section 5.1.3.3. The aircraft began the
last half-petal by flying directly downwind, the strong wind (greater than 20%
of the nominal mean speed) increased the aircraft’s groundspeed by enough to
generate a MC value below the lower saturation limit, set to ensure the aircraft
remained above the stall speed. This accumulated enough error that even after
turning crosswind, there was not enough time remaining in the trajectory to fully
eliminate the error. This effect can be seen in Figure 5.11.

The flight test demonstrates that even in the presence of significant unmodeled
dynamics the controller can achieve a desired time of arrival at a point of interest
with an error of less than 1% of the flight time. Further, the controller shows stable
performance even as the time remaining decreases and the command becomes
more sensitive to error. Energy consumption is not examined in the flight test as
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the performance improvement would be difficult to confidently measure without
significant numbers of both experimental and control flights.

5.4 Summary

Soaring speed to fly theory is extended, permitting it to be used to determine
optimal speed response to variations in solar energy. One extension of speed to fly
theory enables determination of a speed command which permits a solar powered
aircraft to minimize the impact of solar interruptions on average speed. A second
extension of speed to fly theory generalizes the energy input to include both solar
input and vertical motion. This approach demonstrates the power of analyzing the
aircraft power budget, including solar energy, as specific aerodynamic power. Using
specific power permits combining multiple sources of energy and gives kinematic
meaning to the power budget.

By permitting the aircraft to expend energy stored onboard, an average speed
constraint can be introduced to allow an arrival time to be satisfied. Computing
this speed schedule requires knowledge of the atmospheric state, an approach to
approximate the required atmospheric knowledge is suggested. The convergence of
the proposed control method to the desired final state is analyzed and a means to
select an appropriate arrival threshold is discussed.

Numerical experiments are used to validate the speed commands. A numerically
optimized solution computed with full knowledge of the environment is used to
validate the speed schedule. The speed command with arrival time condition is
tested in a Monte Carlo simulation against an aircraft which flies at constant speed.
Flying the speed to fly reduces the energy required to fly a given distance by
approximately 2%, reduces the uncertainty in final energy state by approximately
3%, and satisfies the desired arrival time to within 1%.

Finally, the speed command for arrival time algorithm is implemented on a
small UAS and tested in a series of flight experiments. Even in the presence of
unmodeled disturbances the controller achieves an arrival time error of less than
1%. The theoretical development, numerical and simulation validation, and flight
tests describe a control policy which can guide a solar augmented aircraft to arrive
at a designated point at a desired time while saving energy. A modest reduction in
energy is achieved along with improved certainty in the final energy state with no
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design changes to the vehicle.
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Chapter 6 |
Modeling the Environment

Section 5.1.2 demonstrated that speed variations can be used to respond to the
stochastic component of the environmental state. The aircraft should also respond
to the mean atmospheric state in a way that minimizes its use of stored energy.
In order to do so, a model of the atmosphere is required. Reviewing the design
goals laid out in Section 1.2, the atmospheric modeling system should have a few
characteristics:

• It should include environmental properties which influence the aircraft’s
energy budget.

• The model should be constructed from in situ observations.

• It should be possible to incorporate observations from other aircraft or sensors.

Figure 6.1: The aircraft environmental model should be able to be constructed
onboard the aircraft from in situ observations but be able to incorporate observations
from other platforms if available. It should model the atmospheric structure in a
way that permits transformation into other quantities of interest.
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Figure 6.1 illustrates this problem schematically. To simplify implementation
and use of the atmospheric modeling system and to make it robust to a wide variety
of conditions there are a few other desirable features:

• The model should have relatively few parameters to “tune.”

• The model structure should not expect a specific atmospheric structure.

• Updating and evaluating the model should scale efficiently to large numbers
of observations.

• The model should provide information about the confidence in its representa-
tion of the environment.

• It should be possible to combine several model states into a model for some
other parameter, e.g. the cost to loiter or achieve a desired inertial velocity.

Since the aircraft’s awareness of and response to the environment is restricted
to the vertical plane, the model need only represent a single dimension. Wind, solar
insolation, and mean vertical air motion have the largest effect on the aircraft’s
energy budget, so these properties will be included in the model. To simplify
handling celestial dynamics, the solar radiation will be represented by the “cloud
factor” introduced in Section 3.3.1. This permits the expected solar insolation at
any time to be retrieved by multiplying the clear sky insolation by the cloud factor.

A number of approaches are commonly used to represent arbitrary environments.
Perhaps the most common and flexible is Gaussian Process regression [92]. Gaussian
processes have been used in the past to model unknown wind fields for small UAS
planning [93, 94]. However, Gaussian process regression scales poorly with large
numbers of observations as it requires maintaining and inverting a matrix with
dimension equal to the number of observations.

An approach which provides much of the flexibility of Gaussian Process regression
but in a more computationally tractable form is to specify a fixed set of basis
functions a priori and estimate model coefficients on this basis. A commonly used
basis is spline functions.
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6.1 Modeling with Basis Splines

Splines functions are commonly used to interpolation unstructured data. They can
represent arbitrary functions and the degree of continuity in derivatives can be
chosen by the order of the spline [95]. A spline is specified by a series of “knots,”
or control point locations, and the order of derivative which is permitted to have
discontinuities at the knots. For instance, a first-order spline is piecewise linear
function between the knots. Cubic splines are most commonly used and offer C2

continuity.
The exact mathematical representation of a spline can be expressed in several

ways, including as piecewise continuous polynomial functions. For the purposes of
recursively building an environmental model, basis splines are the most convenient.
In basis spline, or B-spline form, a series of spline functions are defined covering
the domain of the model. Each spline has limited support near a particular knot
and the spline functions form a partition of unity at each point in the domain of
the model, that is [95]:

n+k−1∑
i=0

Ni(z) = 1 ∀ x ∈ [zknot,min, zknot,max] (6.1)

Where Ni(z) is the value of basis i at point z, n is the number of knots in the
spline and k is the spline order. At a desired point z, the value of a function can be
represented as a linear combination of the spline functions. Coefficients, ci specify
the influence of each spline basis:

f(z) =
n+k−1∑
i=0

Ni(z)ci = N(z)c (6.2)

Where N(z) is a row vector of spline basis functions evaluated at point z and c is
a column vector of spline coefficients. A spline can thus be thought of as a mapping
from an n+ k− 1 vector to a scalar value f ∈ [zknot,min.zknot,max]. Finding a model
to fit a function requires finding the spline coordinate vector which minimizes the
difference between the spline model and function values.

With four atmospheric parameters to model, four sets of spline coordinates
will have to be estimated, representing the wind vector, cloud factor, and mean
vertical air motion respectively. The four parameters will be modeled with separate

79



0 1 2 3 4 5 6 7 8

Wind Magnitude (m/s)

0

250

500

750

1000

1250

1500

A
lt
it
ud

e
(m

)

True Profile
Spline Fit
Measurements

Figure 6.2: Basis splines can be used to approximate functions by a linear combina-
tion of the bases at each point. The coefficients for this model were determined by a
least square fit of the noisy data. Spline bases are shown scaled by their respective
coefficients.

Kalman filters, implicitly assuming that there is no correlation between the mean
value of each parameter. To simplify calculations, each will use the same order
and basis, although different bases could be used if required to provide additional
model resolution for each parameter in different areas.

Equation 6.2 shows that the value of a spline model evaluated at a point is
determined by a linear combination of the bases. If a process to be modeled is
assumed to be represented by spline coefficients c, then an approximate model can
be constructed from noisy observations yj = N(xj)c + v where v is noise in the
observation [96]. This is a classic linear model fitting problem, it could be solved
for a batch of observations using least-square estimation:

ĉ =
(
NT (z)N(x)

)−1
NT (z)y ≈ c (6.3)

Figure 6.2 shows an example of spline bases and a function approximated by a
linear combination of the bases with the coefficients determined by least square fit
of noisy data.

Alternatively, the environment can be viewed as a dynamic system and the
coefficients c as its states. Since the basis spline is linear, the coefficient vector can
be estimated recursively using a Kalman Filter as observations of the environment
are received. The observation model is just the spline basis evaluated at the
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observation location, Equation 6.2. A form of this model was used to determine
the wind shear value for a dynamic soaring aircraft [97].

6.1.1 Time Update

Predictions of the evolution of the atmospheric state can be used to update the
spline model. Since several splines influence the value of the model at each point,
updating the spline coefficients is not as simple as applying the rate of change of
the atmospheric state at a knot location to the appropriate coefficient. Writing
the state of interest generically, the state derivative is related to the coefficient
derivatives:

∂f(z)

∂t
=
∂N(z)c

∂t
=
∂N(z)

∂t
c + N(z)

∂c

∂t
(6.4)

If the spline knot locations are to remain constant, then ∂N(z)
∂t

= 0. This may
not be the case if the knot locations are permitted to change, which may be used
to provide greater knot density (and thus resolution) at the boundary layer top or
some other region of interest which is not fixed in space. For this work the knot
locations are left constant.

Assuming that the atmospheric state derivatives are available at discrete points
(e.g. at the grid location of a numerical weather prediction model) then the best fit
derivative of the coefficient vector can be computed using the psuedoinverse:

∂c

∂t
=
(
NT (z)N(z)

)−1
NT (z)

∂f(z)

∂t
(6.5)

Note that in order for the psuedoinverse to be nonsingular the derivative must
be known at n + k − 1 points, and also there must be a sample point zn in the
support of every spline basis.

If time derivatives of the atmospheric state are not available, it can be modeled
simply as a random walk. In this work, the High Resolution Rapid Refresh (HRRR)
numerical weather prediction model is used to determine the time derivative of the
expected environmental state [77]. Time derivatives are determined by a central
finite difference of the HRRR state at the observation time with a step size equal
to half the HRRR output time step.
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6.1.2 Process Noise

Since the both the mean and distribution of the environmental state is of interest,
it is important to determine an appropriate value for the process noise. The model
framework chosen and information available will influence the meaning and choice
of process noise. If a prediction of the evolution of the atmospheric state is available
(for example, from a numerical weather model), the Kalman Filter framework
permits it to be incorporated and fused naturally with in situ observation. In this
case the process noise represents the growth of error in the forecast with time. If a
prediction of the state evolution is not available then the process noise should be
chosen to represent the rate of change of the state in a random walk.

To determine an appropriate process noise, the HRRR analysis and forecast
was obtained for 900 forecast periods. In engineering parlance the analysis step of
a weather model is the “measurement update,” observations from weather sensors
are used to update the model and provide a best estimate of the current state of
the atmosphere before beginning a forecast. Figure 6.3 illustrates how the analysis
step of subsequent forecasts is used as “truth” to compute forecast error. Forecast
error is computed by finding the difference between the forecast and the model
analysis at each hour. For instance, given an hourly forecast initialized at 12:00
UTC, the one-hour forecast error is the difference between the forecast for T0+1
hour and the analysis from a run initialized at 13:00 UTC, the two-hour error is
the difference between the forecast for T0+2 hours and the analysis from the 14:00
UTC run, and so on.

The mean forecast error can then be computed by averaging the one-hour,
two-hour, etc error over many forecast periods. Figure 6.4 illustrates the mean
wind error versus forecast hour for several model levels at an example point in
central Pennsylvania.

Figure 6.4 shows that the forecast error has some variation with height. While in
principle the process noise could vary with height, the appropriate scaling parameter
at low altitude is height above ground level so a map of terrain elevation would
have to be carried and referenced when selecting the process noise. For the point
examined in Figure 6.4, the variation in forecast error with height is greatest in the
lowest 100 meters or so, especially for short forecast periods. Since most aircraft
cruise at altitudes above 100 meters and to simplify construction of the filter,
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Figure 6.3: The forecast error at each hour is computed using a triangular scheme
and the analysis from subsequent forecast times as “truth.” For instance the one-
hour forecast error for the 12:00 UTC forecast is the value of the desired fields from
the 12:00 UTC T1 step minus the analysis value from the 13:00 UTC forecast.
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Figure 6.4: Mean absolute error profiles for the HRRR wind forecast at a point in
central Pennsylvania.

this work uses a constant value of 0.9504 m2 s−2 h−1 for process noise, the wind
magnitude variance computed from the mean 1 hour forecast error.

For very large flight areas that cross regions with significantly varying atmo-
spheric dynamics, a process noise map could be constructed which allows the
process noise to vary with position and perhaps with time of day and year. Again,
to simplify the filter in this work, a single static value is used.

For constant values of environmental process noise it can easily be related to the
spline coefficients. Since the spline functions sum to 1 at all points in the domain, a
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uniform increase in uncertainty can be accomplished with a diagonal process noise
matrix.

Q = In+k−1Q (6.6)

If the process noise is permitted to vary with height then the forecast error
growth must be transformed into error growth in the spline coefficients. Since the
spline model is a linear transformation applied to the spline coefficient vector, if
the covariance of this vector is known, then the variance of any point in the spline
model can be computed:

Pf (z) = N(z)Σcf N
T (z) (6.7)

If the growth rate of the variance in the modeled quantity, ∂Pf (z)

∂t
is known, then

the time derivative of the spline coefficients can be computed in a manner analogous
to computing the time derivative of the coefficients described in Equation 6.5:

∂Pf (z)

∂t
=
∂N(z)

∂t
Σcf N

T (z) + N(z)
∂Σcf

∂t
NT (z) + N(z)Σcf

∂NT (z)

∂t
(6.8)

Assuming that the spline bases themselves are stationary, then second term
is the only one which is not trivially zero. Applying the psuedoinverse to the
basis functions in Equation 6.8, the time derivative of the spline coefficients can be
computed:

∂Σcf

∂t
= (NT (z)N(z))−1NT (z)

∂Pf (z)

∂t
N(z)(NT (z)N(z))−1 (6.9)

As in Equation 6.5, the derivative, ∂Pf (z)

∂t
must be known at at least n+ k − 1

points with some points in the support of all spline bases. Given a Kalman Filter
integration step size ∆tkf , the process noise can be approximated:

Q ≈ ∆tkf
∂Σcf

∂t
(6.10)

6.1.3 Observation Models

The observation model for a linear Kalman Filter is defined [96]:

84



ŷ = Cx̂ (6.11)

Which predicts the expected measurement y for state x. The modeled atmo-
spheric state at each point is a linear combination of the basis functions:

f = N(z)cf (6.12)

So the basis function evaluated at the point of interest form the observation
model. They represent the influence that each coefficient has on the model value at
the observation point.

Sometimes multiple observations might be available simultaneously. This could
happen when receiving a wind profiler measurement, a batch of observations from
nearby aircraft, or a model analysis. This observation model can easily be extended
to incorporate multiple simultaneous observations by writing an extended basis
matrix as the observation model:

f = N(z)cf (6.13)

Where N is now anm×(n+k−1) matrix wherem is the number of observations
available.

6.1.4 Measurement Noise

Just as a sample from a sensor includes contributions from the mean value to be
measured and a random disturbance due to sensor noise, the atmospheric state
includes a mean and turbulent component [10]. Measurement noise thus arises from
two sources – noise that is a function of error in the sensors and aircraft dynamics,
and noise that is introduced because the point sampled is not representative of the
environment as a whole. To clarify the distinction the first will be referred to as
sensor noise and the second as sample noise.

Sensor noise is relatively straightforward to define. The sensors themselves
can be characterized to determined their measurement variance. In some cases, a
measurement may be synthesized from several sensors (e.g. the wind vector). In
this case each sensor individually can be characterized and the overall error be
determined by propagation of error.
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Sensor noise in the wind vector has been studied by several authors and tech-
niques to compute it are well established [98, 99] For solar fraction, the solar array
power electronics, current and voltage monitoring noise, and aircraft attitude all
influence the energy production. Voltage and current can be measured very ac-
curately, the assumption is made here that sensor error in the solar fraction is
dominated by error in the aircraft’s attitude. The sensitivity of cloud factor to
attitude error can be determined:

∂α

∂Θ
=

∂

∂Θ

Iobserved cos î

Iclear sky cos i
=

Iobserved
Iclear sky cos i

∂ cos î

∂Θ
(6.14)

Where i is the true angle between the aircraft −z axis and the sun, and î is the
expected angle based on the sensed aircraft attitude. Noting that cos i is the dot
product of the aircraft −z axis resolved in inertial axes with a unit vector to the
sun, the aircraft −z axis can be transformed by the body-to-inertial coordinate
rotation [72] and cos i can be written:

cos i =
[
sx sy sz

] sinφ sinψ + cosφ sin θ cosψ

− sinφ cosψ + cosφ sin θ sinψ

cosφ cos θ

 (6.15)

Where sx, sy, and sz are the components of the unit vector to the sun. Abbre-
viating sin · as s· and cos · as c·, the derivative of Equation 6.15 with respect to the
aircraft attitude is:

[
∂
∂φ

∂
∂θ

∂
∂ψ

]
cos i =

[
sx sy sz

] cφsψ − sφsθcψ cφcθcψ sφcψ − cφsθsψ

−cφcψ − sφsθsψ cφcθsψ sφsψ − cφsθcφ

−sψcθ −cφsθ 0


(6.16)

The measurement variance can be approximated σ2
α ≈ ∂α

∂Θ
ΣΘ. Equations

6.14 and 6.16 give ∂α
∂Θ

. Assuming that attitude errors are uncorrelated and that
cos î ≈ cos i, the measurement variance can be written:

σ2
α =

Iobserved

Iclear sky cos î

[
∂
∂φ

cos î ∂
∂θ

cos î ∂
∂ψ

cos î
]σ

2
φ

σ2
θ

σ2
ψ

 (6.17)
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6.1.5 Sample Noise

The other component of noise is the sample noise. This is variance introduced
because a single sample may not be representative of the mean atmospheric state.
For instance, the wind vector is influenced by convective motion, terrain interactions,
and waves propagating through the atmosphere [10]. The effect of sample variance
on solar fraction can be even starker – when flying under scattered clouds the solar
insolation “blinks” between sunny and cloudy, never taking its mean value.

6.1.5.1 Wind Sampling Error

The wind sampling error can be analyzed by separating the wind into a mean and
turbulent component [10]:

u = u+ u′ (6.18)

Where by definition the mean of the turbulent component is 0. The degree to
which any realization of the wind differs from the mean wind will be described by
the statistics of the turbulent component. This then, defines the sampling error
and assuming a Gaussian distribution for u′, the variance of the turbulent wind
motion gives the desired contribution to the measurement noise.

Within the boundary layer there are scaling laws that can be used to approximate
the turbulent wind variance [10]. Turbulence budget equations could also be used
to predict the turbulent wind variance [10]. Using scaling laws requires knowledge
about other boundary layer parameters however, and solving turbulence budget
equations requires running a complex weather model on the aircraft.

From a practical perspective it is simpler to provide the aircraft with a weather
forecast which includes a prediction of the turbulent wind variance. One commonly
forecast parameter than can be used to approximate the turbulent wind variance is
the mean turbulent kinetic energy (TKE) per unit mass of air, defined [10]:

TKE

mair

= tke =
1

2

(
(u′)2 + (v′)2 + (w′)2

)
(6.19)

Where (u′)2, (v′)2, and (w′)2 are the variance of the turbulent east, north, and
up wind components respectively. Note that while the TKE per unit mass is
often written as e, here a lower case tke is used to distinguish it from the aircraft
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energy per unit mass. The u and v components are assumed to have the same
statistics [10]. Depending on where the mean and turbulent scale division is drawn,
the variance of u′ and v′ can be significantly larger than w′ [100, 101]. When tke is
drawn from a weather model it represents the variation in motion that occurs at a
scale below the resolved scale of the model. Large eddy simulations and turbulence
theory indicates that turbulence at scales shorter than approximately one hundred
meters is approximately isotropic [102,103]. While the scale division for this work
is somewhat longer, turbulence is assumed to be near isotropic so that the sampling
error for wind components can be approximated:

Rwind, sampling ≈ tke
2

3
(6.20)

If the aircraft is to be operating with no large-scale planning or prior knowledge
of the atmospheric environment then a larger value for Rwind, sampling should be
specified to include the effect of small mesoscale perturbations in the sampling error.
This additional sampling error could be approximated by computing the variance
of the wind forecast by a numerical weather prediction model over a representative
mission, similar to the analysis done by Glasheen et al. [42] In this work, the wind
sampling error will be determined solely by tke.

Since the objectives of this work are to make the aircraft robust to error
in weather prediction and capable of operating using in situ data, the use of a
weather model to provide estimates of tke seems slightly self-defeating. Error in
the sampling error however, has less effect on the aircraft’s flight plan than errors
in the atmospheric state. Incorrect specification of the sampling error could lead
the Kalman filter to converge too slowly (if the sample error is too large) or provide
a state estimate which is noisy (if the sample error is too small) but the state
estimate will be unbiased. In contrast, reliance on an a priori specified model will
almost certainly introduce a systematic error into the aircraft’s understanding of
the environment, one which cannot be corrected in flight.

6.1.5.2 Solar Sampling Error

Assuming that the clouds are scattered randomly so that a given sample point has
a cloud above it with probability fc, then cloud coverage is defined by a Bernoulli
distribution with parameter fc. The mean cloud coverage is exactly defined by the
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cloud fraction, and the variance in cloud cover can be determined from the variance
of the Bernoulli distribution [104].

Var(f) = fc(1− fc) (6.21)

If all clouds block the same fraction of incident solar energy, α, then sampling
error for the solar fraction is easily defined as a simple scaling of the cloud fraction
variance:

Rsolar, sampling = αfc(1− fc) (6.22)

6.1.5.3 Updraft Sampling Error

The updraft sampling error is the most straightforward to define. Significant
updrafts do not occur on scales larger than approximately 1 kilometer except in
very unusual circumstances. Turbulent kinetic energy is thus a good scaling factor
for estimating the sampling error, so that:

Rupdraft, sampling ≈ tke
2

3
(6.23)

In areas of mountain wave, along fronts, or in the vicinity of thunderstorms
it is possible to have significant updraft velocities on horizontal scales of tens of
kilometers, so that there is a mesoscale component of vertical velocity. These are
unusual circumstances and frequently associated with conditions which present a
hazard to small UAS flight, so energy optimal response to vertical velocity is not a
major concern in these situations.

6.2 Computing Travel Cost

In order to determine the optimal altitude, the aircraft must be able to transform the
atmospheric state into a cost. Since the aircraft range or endurance is constrained
by its onboard energy store, an appropriate cost is the required power output
from storage in order to maintain flight at a specified groundspeed and direction.
Because the atmospheric state is known imperfectly, it is desirable to determine
both the expected cost and its variance.

89



For scalar transformations, a simple scaling factor can be determined to compute
coefficients of a cost spline from coefficients of the spline describing atmospheric
properties. For the updraft velocity the scale factor can be defined:

jw =Tj/wcw = − 1

ηpropeller
cw

=⇒ Tj/w = − 1

ηpropeller

(6.24)

Where cw are the coordinates of the updraft profile spline and Tj/w is the scalar
transformation from updraft to specific energy cost. Since vertical air motion
can directly offset aerodynamic power, the transformation is the inverse of the
propulsion efficiency. The cost is negative to indicate that an updraft reduces
energy consumption.

The solar insolation can be mapped into a cost through a few scaling factors:

jsolar =Tj/solarcsolar = −csolarSpvηpvIclear sky cos i

⇒Tj/solar = −SpvηpvIclear sky cos i
(6.25)

Where csolar are the coordinates of the solar fraction spline and Tj/solar is again
a transformation matrix. The cost is negative indicating that solar energy input is
beneficial.

The effect of wind is the most complicated to include. First, the required
airspeed magnitude must be computed from the wind and desired travel direction
and speed. The aerodynamic power required must then be computed from airspeed.
The airspeed required can be expressed:

v(z) =
√

(v2
n + v2

e) + cTnNT (z)N(z)cn + cTe NT (z)N(z)ce − 2N(z)(cnvn + ceve)

(6.26)
Where ve and vn are the average ground speed required to meet an outer loop

goal resolved into east and north components. This already requires a nonlinear
transformation. Transforming airspeed into power output introduces yet another:

poutput(z) =
ws(v(z))

√
σ

ηpropeller
(6.27)

In order to easily combine the cost due to wind with costs from other sources, a
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set of spline coordinates is desired which describes the cost due to the north and
east wind profile:

poutput(z) = N(z)jwind =
ws(v(z, cn wind, ce wind))

√
σ

ηpropeller
(6.28)

While no general closed-form solution exists, an approximate transformation
from wind to cost can be determined. First, Equation 6.28 and Equation 6.26 are
combined, this will be generically written as g. The spline basis is evaluated at
some altitudes zl ∈ {z0, z1, ..., zL} where L > (n+ k − 1) so that:

N(z)j·wind = g(z, cn wind, ce wind) (6.29)

Which can be solved in the least-square sense to compute wind cost coefficients,
jwind:

jwind =
(
NT (z)N(z)

)−1
NT (z)g(z, cn wind, ce wind) (6.30)

Computation of the covariance of the wind cost coefficients is a little more
challenging. In principle, the Jacobian of Equation 6.28 can be found and used to
compute a linearized transformation of the covariance. The derivatives are laborious
to compute however. If the aerodynamic model, ws(v), is an empirical model then
there may not be analytic derivatives at all. For this reason it is easier to transform
the covariance using the unscented transform [105].

Assuming that all costs are able to be expressed as splines using the same knot
locations, then the total cost can be determined by simply adding the coordinate
vectors together:

j =jw + jsolar + jwind

=Tj/wcw + Tj/solarcsolar +
(
NT (z)N(z)

)−1
NT (z)g(z, cn wind, ce wind)

(6.31)

Where Tj/· is the linear transformation matrix between the cost and profile
coordinates. For the solar and updraft profiles, the transformation matrices can be
used to compute their contribution to the covariance of the cost model.
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Pj,updraft =Tj/wPwTj/w

Pj,solar =Tj/solarPsolarTj/solar
(6.32)

Where Pw is the covariance matrix of the updraft velocity model and Psolar is
the covariance matrix of the solar fraction model.

The components of the cost covariance can then be summed to determined a
total covariance for the output power model.

Pj = Pj,updraft + Pj,updraft + Pj,wind (6.33)

6.3 Flight Test

To test the environmental modeling system it was implemented on the Vulture,
a small UAS described in Section 3.4.2. Because it was simplest to obtain wind
data to validate the model and because wind dominated variations in the aircraft’s
energy budget, the test focused on the wind profile. Numerical weather model
analyses and radiosondes launched during the test provide validation data.

The test was conducted on 6 December 2018 in central Pennsylvania. The
synoptic conditions were in transition, a high pressure system was located to the
south-southwest and a weak cold front was approaching. Passage of the cold front
was approximately 12 hours after the completion of the flight test. Winds were
from the southwest at approximately 7.5 m s−1 as depicted in Figure 6.5.

6.3.1 Test Description

The wind profile was sampled by the aircraft once per hour beginning approximately
one hour after sunrise and continuing until about one half hour before sunset.
Sampling missions were conducted by flying in a circle with a radius of 150 meters.
The mission began at an altitude of 439 meters above sea level, about 30 meters
above ground level. The aircraft climbed at 1.5 m s−1 to an altitude of 674 meters
MSL, about 270 meters above ground, then descended at approximately 0.75 m s−1

(the aircraft’s descent rate in a glide) until reaching the start altitude. Figure 6.6
shows the flight area and nominal aircraft orbit, Figure 6.7 illustrates the aircraft
altitude during the course of the test.
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Figure 6.5: Wind and temperature at 925 mbar (approximately 750 m MSL) at
17:00 UTC, approximately the midpoint of the test. The approaching front can be
seen as a abrupt wind shift along the eastern border of Michigan.

Figure 6.6: Aerial view of the test area showing the balloon trajectories and aircraft
orbit location.

93



07:00 08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00
local time

400

500

600

700

800

al
it
ud

e
(m

,
M
SL

)

aircraft
balloon
surface

Figure 6.7: Time history of aircraft and balloon altitude. The aircraft appears
to be below ground between flights because its state estimator is incorporating
airspeed measurements which are not informative when on the ground. Balloon
launches occur at 08:00, 09:00, 13:00, and 16:00 local time.

Several times throughout the day a Sparv Embedded S1 Windsonde was launched
on a balloon from a site approximately 200 meters north of the orbit point. A GPS
sensor on the radiosonde provided drift information which was used to determine
wind speed, data was telemetered to the ground at 1 Hz. The radiosonde ascent
was terminated by cutting the radiosonde free from the balloon after reaching 680
meters, permitting the radiosonde to be retrieved and reused. Balloon profiles were
taken concurrently with the aircraft profiles at 08:00, 09:00, 13:00, and 16:00 local
time.

The wind profile modeling system was enabled throughout the entire test so
that the model mean and covariance was propagated in between profiling flights.
The time derivative of the wind profiles was obtained by numerically differentiating
the 09:00 UTC (04:00 local) HRRR forecast. When the aircraft’s airspeed was less
than 10 m s−1 measurement updates were disabled to prevent nonsensical wind
measurements from being incorporated while the aircraft was on the ground.

6.3.2 Process and Measurement Noise

At each measurement step a “wind measurement” is synthesized by solving the wind
triangle given inertial speed and airspeed [99]. The wind sensor noise is computed
at each step from the wind measurement dynamics and the measurement noise of
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Figure 6.8: Time-altitude depiction of the profile of aircraft estimated horizontal
wind depicting its evolution throughout the day.

the sensors used in computing the “wind measurement” [99].
Averaged over 900 HRRR runs, the 1 hour forecast error variance at the model

grid point nearest the flight location is 0.95 m2 s−2. The wind process noise is set
so that the spline model state variance increases by this amount after one hour of
time updates.

6.3.3 Results

Ten profiling flights were conducted by the aircraft, covering a time period of 8.5
hours. The estimated wind profiles can be compared to those gathered by weather
balloons and the analysis values from the HRRR. While the wind profiling system
was running on the aircraft throughout the entire day, an error in the system was
discovered after the test. The results shown here were generated by running the raw
aircraft sensor data through a corrected profile model in real-time as if it was being
flown on the aircraft again. Figure 6.8 illustrates the evolution of the estimated
wind profile throughout the day.

The wind profile initially shows increasing wind, likely a result of the deepening
boundary layer drawing in momentum from the free troposphere above. Around
14:00 local time the wind magnitude decreases before the wind turns more southerly
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and increases in speed as the cold front approaches [59].

6.3.3.1 Comparison with Radiosonde Observations

Coincident with the beginning of the aircraft profiles at 08:00, 09:00, 13:00 and 16:00
local time a balloon carrying a radiosonde was launched. Comparisons between the
radiosonde and aircraft measured winds can be used to determine that the aircraft
is a reliable instrument for sampling the wind field [106,107]. The balloons were
launched about 200 meters from the orbit center point and drifted to the northeast,
sometimes a kilometer or more before completing their profile. As the balloons
ascended the radiosondes were observed swinging on their tethers, this motion
sometimes interrupted GPS lock so the recorded data was quality controlled before
analysis. Data points where the GPS lock or wind velocity was flagged as invalid
were removed.

To simplify comparison to the aircraft measured profiles a basis spline with the
same knot locations and order was fit to the radiosonde measurements. Detailed
sensor specifications were not available for the radiosonde and the motion of the
radiosonde introduces an additional error (i.e. the sensor package swinging on
its tether beneath the balloon), making definition of the measurement variance
difficult. The sample variance was estimated from variance of the error between
radiosonde wind samples and the mean wind profile estimated for each launch.

Because the balloon advects with the the mean wind speed, it violates Taylor’s
simplification for analyzing turbulent wind fields [10]. For the balloon, turbulent
eddies do not appear as measurement noise, but as a bias on the entire profile.
Reflecting this, the balloon wind variance is increased by the 2

3
tke.

Figures 6.9-6.12 compare the aircraft filtered and radiosonde measured profiles
at four times in the day. In each figure the mean profile and 1σ bounds are depicted
for both the aircraft and radiosonde. Error bounds on the aircraft’s profile are
determined by the filtering algorithm. Note that these bounds do not reflect the
variance of the wind observations, rather they reflect the variance in the mean profile.
The observations are not expected fall within the 1σ bounds 37% of the time, rather
the mean profile will lie within the error bounds 37% of the time. The bounds
are illustrated as an evaluation of the likelihood that the two techniques reflect
observations of the same process, and implicitly that the process and measurement
noise for the Kalman Filter modeled profile is correct.
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Figure 6.9: Aircraft and radiosonde profiles from 08:00 local time.

Figure 6.9 shows that the mean profiles measured by the radiosonde and aircraft
agree well, generally within their mutual 1σ error bounds. The raw radiosonde
data are conspicuously sparse. As the balloon rises at approximately 3 m s−1, the
radiosondes provide data at 1 Hz so they only take about 100 samples before rising
above the test area. Conditionally sampling for valid GPS lock reduces this data
set by about 15%. The aircraft samples in contrast are taken at approximately 10
Hz and include the descending leg of the sampling mission

Figure 6.10 compares radiosonde and aircraft measured profiles at 09:00 local
time. Good agreement between the two is seen at altitudes above 450 meters (80
meters above ground).

Figure 6.11 shows good agreement between the radiosonde and aircraft profiles
throughout most of the profile.

Figure 6.12 shows an unusual arched pattern in the radiosonde data, particularly
in the north wind component. This late in the day, approximately 1 hour before
sunset, the buoyantly generated tke is diminishing (as seen in the closer error
profiles for the radiosonde) [10]. This perturbation is likely the result of the balloon
advecting along with a particularly large eddy. Similar magnitude perturbations
can be seen in the raw aircraft observations in Figures 6.11 and 6.12. The aircraft
can fly out of the eddy however, and the eddy is advected away from the flight area
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Figure 6.10: Aircraft and radiosonde profiles from 09:00 local time.
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Figure 6.11: Aircraft and radiosonde profiles from 13:00 local time.

by the mean wind while the balloon drifts with these perturbations.
Nominally, this should be reflected by the magnitude of tke, but there is a

source of turbulence that is not fully captured by the HRRR. A mountain ridge
approximately 250 meters tall is located about 1 kilometer south and west of the
test site, the ridge can be seen in Figure 6.6 running from southwest to northeast.
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Figure 6.12: Aircraft and radiosonde profiles from 16:00 local time.

As winds shifted around to the south, there would be a significant cross-mountain
component resulting in shear-generated turbulent eddies shed off of the mountain.
The scale of this mountain system is of the same order as the grid resolution of the
HRRR forecast model, so the effects of the mountains on the mean wind profile
and tke is not fully resolved.

6.3.3.2 Comparison with Numerical Weather Model

The aircraft profiles were begun approximately on each hour to permit easy com-
parison with hourly weather model analyses, with the exception of the final profile
which was constrained by the sunset time as regulation prohibits UAS flights after
sunset. Figures 6.13-6.16 compare the evolution of the aircraft and HRRR wind
profiles at the hours nearest radiosonde observations. The 1σ bounds are depicted
on both the aircraft and HRRR profiles.

It is worth noting here that the comparisons are made against the HRRR
analyses obtained post-flight. The HRRR profiles then are not forecasts, but the
best estimate of the atmospheric state that can be made by the model. Using
analysis data in flight would require considerable processing power on the ground be
dedicated to providing very frequent analyses, and a constant high bandwidth link
to the aircraft to update its data. This comparison then, represents the best-case for

99



0.0 2.5 5.0 7.5 10.0

north wind component (m s−1)

350

400

450

500

550

600

650

700

750
al
ti
tu
de

(m
,
M
SL

)
HRRR
aircraft
surface
aircraft

0.0 2.5 5.0 7.5 10.0

east wind component (m s−1)

350

400

450

500

550

600

650

700

750

HRRR
aircraft
surface
aircraft

Figure 6.13: Aircraft measured and HRRR predicted wind profiles at 08:00 local
time.

using offboard numerical weather prediction, less frequent updates from a forecast
would perform worse.

The HRRR model error cannot be readily assessed from the either a single model
output or a series of model runs. It is necessary to know the model’s analysis skill,
the average error between the expected conditions and those observed. Benjamin et
al. and Pichugina et al. indicate that the HRRR wind analysis skill is approximately
2.5 m s−1 [87, 88].

Figure 6.13 compares the aircraft measured profile after the 08:00 flight with
the HRRR analysis at that time. The profiles show similar shapes but the HRRR
profiles are 2−3 m s−1 greater in both components. The undulation in the aircraft
modeled east wind component observed by the aircraft between 500 and 600 meters
is likely the result of an eddy generated by either buoyantly rising air parcels or by
the influence of surrounding terrain.

The effect of small eddies appear as random noise in the aircraft observed winds
and are accounted for by increasing the measurement noise by the 2

3
tke. In order for

this noise to be random and uncorrelated however, the aircraft must be traversing
the wind field fast enough that the measurements are not correlated. The largest
turbulent eddies int the boundary layer have a characteristic scale of roughly 1
kilometer [108]. An aircraft which is circling in the same location is traversing
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Figure 6.14: Aircraft measured and HRRR predicted wind profiles at 09:00 local
time.

the wind field on average at the wind speed. Given the wind magnitude during
this test, measurements could be correlated for up to two minutes, so some of the
eddies can appear as biases in the estimated wind field rather than noise, as seen
in Figure 6.13. Aircraft traveling to a destination will traverse the wind field much
faster, so sample to sample correlation is decreased and these perturbations should
be eliminated. Alternatively, Bryson and Henrikson’s approach to estimation with
correlated measurement noise could be applied, preventing the bias but increasing
the measurement variance.

Figure 6.14 clearly demonstrates the need to incorporate in situ information for
flight planning. The HRRR and aircraft measured profiles agree well on shape, but
the HRRR over predicts both wind components by approximately its analysis skill.
At an altitude of 500 meters, HRRR anticipated wind magnitude is about 2 m s−1

greater than the measured profile, more than 10% of the aircraft’s nominal cruise
speed.

Figure 6.15 again shows the limitations of relying solely on numerical weather
prediction models for understanding the aircraft’s environment. The east wind
component shows the HRRR to be in error by 2-3 m s−1, but this time under
predicting the wind magnitude. This demonstrates that even if some validation
data is available to develop a correction to the output of a numerical weather
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Figure 6.15: Aircraft measured and HRRR predicted wind profiles at 13:00 local
time.

prediction system, it must be fairly available fairly frequently and at high resolution.
In practice, it is simpler to estimate the atmospheric state onboard the aircraft.

Figure 6.16 shows the wind profile at 16:00 local, the second-to-last aircraft
observed profile and last profile sampled on a hour. The wind is more southerly
than anticipated by the HRRR, indicating that the prefrontal southerly winds are
developing sooner than expected.

6.3.4 Travel Cost

While knowledge of the atmospheric structure may be useful in itself, the objective
here is for the aircraft to have knowledge of the cost to travel to a desired location.
The transformations developed in Section 6.2 can be applied to the profiles expected
by the HRRR, measured by the balloon, and constructed in situ by the aircraft to
determine the cost to accomplish a mission.

Figure 6.17 shows the cost, expressed as specific power, and its 1σ bounds for
the vulture to travel in any direction at a groundspeed of 15 m s−1 at 13:00 local
time. Two altitudes are displayed, 500 and 650 meters MSL. The figure illustrates
how using only a priori information can lead to poor decisions. If the aircraft is
traveling south-southeast the HRRR profiles expect the cost to be similar at both
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Figure 6.16: Aircraft measured and HRRR predicted wind profiles at 16:00 local
time.

altitudes, so it may be desirable to fly aircraft higher in order to improve sensor
coverage. The profile determined by the aircraft shows a different picture – the
cost of traveling at 650 meters is approximately 1 m s−1 greater, or a 30% increase
in energy consumption.

6.4 Summary

Basis splines provide a nonparametric way to model the atmospheric environment
in a computationally efficient way. Since they are linear models, they can easily be
implemented in a Kalman Filter, allowing simple and efficient updates to the model.
This also permits observations and entire profiles to be combined if information is
available from multiple sources.

To accurately determine the covariance of the mean atmospheric structure, filter
noise must include more than just the sensor characteristics. This additional error
captures the sample variation from the mean state due to random fluctuations in
the atmospheric state. The sample variance can be estimated from scaling laws or
from the output of numerical weather prediction models.

Modeling the environment using basis splines permits the atmospheric state to
be easily transformed into a cost for use in flight planning. The use of a Kalman
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Figure 6.17: Cost for the vulture to travel in any direction at an average groundspeed
of 15 m s−1. Cost is expressed in specific power and evaluated at 13:00 local time.

Filter to model the environment allows the environmental state covariance and
thus cost covariance to be determined. The Kalman Filter also permits fusing
weather forecasts with in situ observations from the aircraft, a distributed flock of
aircraft, or remote sensing systems. For linear transformations between atmospheric
properties and cost, the cost profile and covariance is easily determined. Nonlinear
transformations pose some additional difficulty but the mean and covariance of the
cost can be approximated using best-fit and nonlinear covariance transformation
techniques.

The wind profile filter was implemented on a small UAS and ten wind profile
sampling missions conducted over the course of a day to track the evolution of
the wind profile. The estimated wind profile is compared to numerical weather
model analyses and to observations made with balloon-borne radiosondes. The
aircraft-estimated and radiosonde observed profiles generally agree up to their re-
spective model covariances. The analysis profiles show greater deviation, frequently
exceeding even the analyses’ greater profile variance.

Propagating the wind model obtained by the aircraft through a cost function
allows the aircraft to determine the mean cost to travel in a desired direction and
the confidence in that cost. This improves the aircraft’s situational awareness and
can enable a human operator or automated scheduler to weigh the cost of an action.
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In one example from the flight test, the onboard modeling system identifies a 30%
difference in cost over only 150 meters of altitude change, a change in cost which is
not anticipated a priori by the numerical weather prediction model.

Fusing a priori information available from numerical weather prediction models
with observations made in situ by an aircraft provides a method to improve the
quality of atmospheric state information available to the aircraft without requiring
significant ground computation resources or constant communications links to the
aircraft.

105



Chapter 7 |
Altitude Optimization

Section 5 demonstrated that power output can be scheduled separately from the
velocity command without affecting the optimal velocity or power schedule. The
only constraint provided was that the power output from the aircraft’s onboard
storage must supply whatever portion of the energy budget is not harvested from
the environment. Since the velocity varies in response to the stochastic component
of the environment, it makes sense to use the power output to respond to the mean
atmospheric state.

Section 6 developed a means to model the mean atmospheric state and its impact
on the aircraft’s energy budget. To complete an operational system, a method is
needed to employ this model in a way that minimizes energy consumption. Since a
profile of travel cost can be computed from the profile of the atmospheric state,
the altitude with minimum expected energy can be found directly from this profile.
Computing the derivative of a basis spline is straightforward [95] so the extrema of
the cost profile can be easily determined.

This greedy approach is risky however; since the environmental model is uncer-
tain, the altitude with the lowest expected value may not truly be best. If the only
source of information about the atmospheric state comes from the aircraft’s own in
situ observations then this problem only worsens with time as the model uncertainty
grows everywhere but where the aircraft is flying. All of this is compounded further
since the environment is not stationary. The optimal altitude can change with time
and even if a prediction of the evolution of the environmental state is available,
uncertainty in the model evolution degrades confidence that the greedily chosen
altitude is best.

Figure 7.1 schematically shows the problem: the aircraft must make a series of
decisions about altitudes to visit in order to minimize its energy expenditure. In
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Figure 7.1: In order to choose the altitude with the smallest travel cost, the aircraft
must decide when to visit possibly suboptimal altitudes in order to gain information
about its environment.

order to know the best altitude to fly at, the aircraft must periodically visit possible
suboptimal altitudes in order to gather information about the environment.

Section 2.3 discusses several approaches to balancing exploration and exploita-
tion. The most directly applicable problem format is the multi-armed bandit. The
problem addressed in this thesis is a particularly challenging form of a bandit
problem. The search space is a continuum, the reward distribution is nonstationary,
and the number of “pulls” is relatively small, giving little time for exploration.
These problems are often examined singly in the bandit literature but not together,
this section develops a pricing approach that uses a probabilistic model of the
environment to identify regions that should be explored based on their likelihood
of having low travel costs.

To clarify discussion throughout this section a few definitions need to be made.
The energetic cost (specific power output from storage) for the aircraft to achieve a
desired inertial velocity (specified by an operator or outer-loop planner) is referred
to as the “travel cost.” The energy required to change altitude is the “transition
energy” while the net energy required to gather information then return to the
initial altitude is referred to as the “investigation energy.” Finally, the energetic
cost of changing altitudes to gather information, then continuing travel (with no
restriction on the altitude for subsequent travel) is termed the “exploration cost.”

The use of “energy” rather than cost for some terms is to make clear that they
have units of energy where the “costs” have units of energy rate. Specific power
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is the objective function here because in a nonstationary environment without
knowledge of the future evolution of the atmospheric state, the aircraft cannot
compute an integral cost (such as total expended energy). It must rely instead on
consistent minimization of the instantaneous derivative of the stored energy.

7.1 Travel Cost

Section 6.3.4 describes how to transform a model of the atmospheric state into a
profile of the cost to travel at a specified inertial velocity. A naive approach to
altitude selection would be to choose the altitude which has the minimum expected
travel cost.

This strategy carries risk, especially when the cost profile is uncertain. The
aircraft might expend energy, changing altitude only to find that traveling at the
new altitude is more costly than where it was initially. This is especially a risk if
the aircraft makes a significant altitude change to reach a region with low certainty.
Upon arriving at a new altitude and finding it not as favorable as expected the
aircraft faces a choice – expend additional energy to investigate a new altitude or
continue with the higher travel cost.

Using a model which provides estimates of the confidence in the profile helps
resolve this problem. A low-cost high-confidence region is certainly worth pursuing
while a low-cost, low-confidence region may not be. The converse – a high-cost,
low-confidence region may be worth exploring to see if conditions have changed
reducing its cost. Heuristics weights have frequently been used to assist in making
this tradeoff [39, 109]. These weights significantly affect the performance of the
guidance system, so selecting them is a significant design choice. In practice there
is often considerable “tuning” of the weights which must be done in order to achieve
good performance, this process is difficult to scale to large numbers of systems and
does not work well if the aircraft is operating in a new environment.

Assuming that the time required to transition to a new region is small so that
the only relevant travel costs are at the initial and final altitudes, the maximum
change in energy required to visit a region is the difference between the current and
candidate altitude. If a period over which this energy change is averaged can be
defined then the transition energy (specific energy) and travel cost (specific energy
rate) can be combined to define the exploration cost:
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jexploration = jtravel +
etransition
Tpayback

(7.1)

If the cost profile is represented by the spline model developed in Section 6 then
the profile of exploration cost including transition energy and travel cost can then
be computed:

cj,exploration = cj +
c∆h

ηpropellerTpayback
(7.2)

Where j is the spline coordinates of the travel cost profile determined in equation
6.31, Tpayback is the payback period, and c∆h is a vector of spline coefficients
representing the difference between the current and candidate altitudes. The
expression ∆h

ηpropellerTpayback
represents the cost of transition, or the degree to which a

candidate altitude must be superior to the current altitude in order to be worth
changing.

Note that the transition energy could be made more detailed if a better estimate
is available The model structure in Equation 7.1 admits any form for the transition
energy provided it can be represented in the same model form as the travel cost.
If the spline model is adopted, then uncertainty in the transition energy could be
included in the exploration cost profile as well:

Pexploration = Ptravel + Ptransition (7.3)

In this formulation the payback period, Tpayback determines the amount of time
which is alloted to recoup the cost of changing altitude by flying in a more favorable
region. A natural value for Tpayback would be a time scale based on either mission
duration or how quickly information degrades as this limits how long a favorable
region can be exploited. Shorter values for Tpayback tend to discourage exploration
– a candidate altitude must be very favorable in order to pay back the transition
cost in time, large values promote changes to exploit even small differences. In
the extreme case as Tpayback →∞ the transition cost is ignored. Note also that as
Tpayback → 0 that altitudes below the aircraft are preferred as gliding down to these
altitudes enables a small power output. This effect will be explored more later.

In the absence of a mission duration, Tpayback could be selected from the shape
of the atmospheric energy spectrum. Energy input to the atmosphere occurs largely
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Figure 7.2: The spectrum of atmospheric energy has long-term (diurnal and weekly)
and short-term (minutes) peaks. At intermediate scales there is relatively little
energy, so observations of departures from forecast conditions are valid for several
hours. Reproduced from Van der Hoven (1957) “Power Spectrum of Horizontal
Wind Speed in the Frequency Range from 0.0007 to 900 Cycles per Hour” [108].

on the small scales (convective turbulence) and large scales (synoptic weather
systems) [108,110], depicted in Figure 7.2. At intermediate scales, around 1 hour,
there is comparatively little variation in atmospheric conditions. Note that the
relatively small atmospheric variability on this timescale does not mean that it
is well forecast. In fact, forecasts shorter than three hours are less skillful than
forecasts between 3 and 30 hours due to position and timing errors [11]. This makes
the low-frequency end of the spectral gap a natural payback period in the absence
of other information.

Indeed, the existence of this spectral gap is at the heart of the in situ planner –
error between the forecast and realized conditions should be correlated over this
scale, which is of a similar order to the mission duration of small UAS. Over larger
scales in situ observations are less informative and a priori planner using forecasts
can provide quality guidance. At smaller scales a more reactive approach (such
as that described in Section 5) is required because perturbations decorrelate very
rapidly. Within this gap conditions are consistent enough that in situ observations
have validity for a long enough time frame to permit the aircraft to respond but
error in the forecast conditions can make a priori flight plans suboptimal.
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7.2 Mission Constraints

Mission constraints and operational objectives may put limits on the desired altitude
of the aircraft. Sometimes these restrictions may not be “hard,” that is the mission
performance measure which motivates a constraint smoothly degrades as the aircraft
departs from some nominal altitude. For example, imaging resolution smoothly
decreases as altitude increases so a hard altitude limit might not be an appropriate
constraint provided a reduction in resolution can be tolerated in exchange for
greater range or endurance.

This system can provide an estimate of the cost to comply with a mission
constraint. The difference between the expected travel cost at the desired altitude
and the cost at the constraint limit provides information about the effect of the
constraint. For “soft” constraints, if a cost tolerance can be defined to represent
the additional specific power which can be tolerated in order to improve mission
performance, then it can be included naturally by addition to Equation 7.2. In
some cases this may be simple to define – a mapping task that is not resolution
limited can survey more area by flying higher and the speed required to survey the
same area per unit time can be defined:

v2 =
δ1v1

δ2

(7.4)

Where δ1 is the camera field of view projected onto the ground at the nominal
altitude (the scan width in meters), v1 is the nominal speed, δ2 is the camera field
of view at a candidate altitude, and v2 is the speed required to survey the same
area per unit time at the candidate altitude. The speed change can be related to a
cost via the method described in Section 6.2 to build a profile of the energetic cost
of achieving a specified utility. This cost could then be included in Equation 7.1.

Even if a hard constraint is specified the travel cost profile is valuable as it can
define to an operator or supervisory system the energetic cost of compliance with
the mission constraint. This can be used to help determine if the mission constraint
is really warranted or if the aircraft has enough energy to complete the mission.

An alternate approach can be taken if the aircraft’s primary mission is to reach
a desired location but it has a secondary mission to perform along the way and
an energy budget for performing this mission. The travel cost profile can be used
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to determine the acceptable departure from the optimal altitude which can be
tolerated while satisfying this budget.

7.3 Selecting an Altitude to Explore

7.3.1 Expected Cost of Exploration

The estimate of exploration costs is based on a transformation of the distribution of
the environmental properties. The proposed model structure produces a Gaussian
distribution of the environmental state and thus exploration cost distribution.
This means that even an altitude expected to be favorable has a tail admitting
unfavorable conditions and vice-versa.

If the aircraft explores an altitude and finds it unfavorable then it can return to
its previous altitude. The aircraft will have high confidence in the conditions at the
initial altitude and the spectral structure of the atmosphere means that information
about the initial altitude will remain relevant provided that the exploration is
relatively fast. A large transition might cover 1000 meters of altitude, and vertical
rates of 1.0 m s−1 are common for small UAS so only half an hour would be
required to explore and return to the initial altitude, considerably faster than the
large-scale period of the atmosphere.

Assuming that the transition to a candidate altitude and back to the initial
altitude happen rapidly then there is no net cost to investigating a candidate
altitude (the energy expended climbing is recovered when gliding). The maximum
cost incurred by investigating an altitude and then either continuing at that altitude
or returning to the initial altitude is thus the initial travel cost plus an investigation
cost.

jlimit(z) = jexploration(zinitial) +
einvestigation(z, zinitial)

Tpayback
= j(zinitial) (7.5)

In this work, the investigation cost will be assumed to be zero, that is the
aircraft recovers all the energy spent climbing in a glide (or expends energy saved
in a glide down to an exploration altitude climbing back to its start point). If an
investigation energy can be defined then it can easily be included in the cost limit.

112



Since there is a limit to the cost incurred by selecting a candidate altitude
Equation 7.2 is not enough to evaluate the expected exploration cost by itself. For
each altitude under consideration the full probability distribution p(j(z)) is required.
The portion of the distribution with cost greater than jlimit can be reassigned to
the cost limit, so the expected exploration cost can be computed:

E(jexploration(z)) =∫ jlimit

−∞
jexploration(z)p(jexploration(z))dj(z)

+jlimit

∫ ∞
jlimit

p(jexploration(z))dj(z)

(7.6)

Since the cost of exploring a region is capped by the travel cost at the initial
altitude, the distribution of exploration cost is heavily skewed. If information about
an altitude has sufficiently degraded then it is possible for the expected exploration
cost to be less than the travel cost at the initial altitude, even if the mean travel
cost at the candidate altitude is greater than the mean travel cost at the initial
altitude.

This is illustrated in figure 7.3 for an initial travel cost of 0.75 m s−1, cost at
the candidate altitude described by N (1.25 m s−1, 1.0 m2 s−2), altitude difference
(z − zinitial) of -750 meters, and payback time of one hour. The cost limit is
depicted as a Dirac delta function with length equal to the cumulative probability
of exceeding the limit.

While the resulting pdf is clearly non Gaussian, a semi-analytic solution for the
expected value is be possible. For costs less than the jlimit, the distribution is a
truncated Gaussian which can be evaluated analytically (up to the error function).
The probability of realizing the limit cost is equal to the area under the truncated
Gaussian to the right of the maximum cost. With this knowledge, a piecewise
integration to obtain the expected value is possible.

This provides an explicit way to evaluate altitudes that is almost free from
hyperparameters. The only value which must be chosen in designing the system is
the time period over which the transition cost is discounted. Principled ways to
choose Tpayback are discussed in Section 7.1. This also provides an implicit value for
information: the difference between the expected value of the unrestricted and the
limited distribution of jexploration.
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Figure 7.3: Because the aircraft can return to the initial altitude, the distribution
of the cost to explore a new altitude is heavily skewed and the expected cost of
exploration can be below the travel cost at the initial altitude.

jinformation =

jlimit

∫ ∞
jlimit

p(jexploration(z))dj(z)

−
∫ ∞
jlimit

jexploration(z)p(jexploration(z))dj(z)

(7.7)

Note that the algorithm described here requires the aircraft have a representation
of the environment which describes the distribution of travel cost at each altitude,
but no other requirements are placed on the environmental model. In this work
a Kalman filter is used to build a model of the environmental state so the cost
distribution is a Gaussian, but this is not required.

This approach is conceptually similar to the lever pricing approach employed
by Vermorel and Mohri in the POKER algorithm [51]. There are two significant
distinctions between POKER and this algorithm. First, the algorithm described
here can explicitly compute the value of the information gained rather than using
a heuristic value. Second, coupling the altitude selection algorithm with a model
of the underlying environment permits the algorithm to operate on continuous
domains (using the altitude selection algorithm described in Section 7.3.2) that
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Figure 7.4: The exploration cost profile can be non-convex even if the underlying
travel cost profile is.

are nonstationary (by virtue of the including time updates to propagate the belief
distribution of the environmental model).

7.3.2 Finding the Lowest Cost Altitude

The algorithm described in Section 7.3.1 gives a semi-analytical form for the
exploration cost profile. If the underlying travel cost profile and its variance is a
smooth, continuous function then the exploration cost profile will also be smooth
and continuous. The exploration cost will not necessarily be convex however,
Figure 7.4 illustrates this effect.

Non-convexity in the travel cost profile variance can create non-convexity in the
exploration cost profile, even if the travel cost profile mean itself is convex. In this
case the the non-convex nature of the travel cost profile variance is driven by the
structure of the spline model. The value of the function at each knot is dominated
by the spline associated with that knot, so the function uncertainty is greater near
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knots where the function value is influenced by fewer coefficients.
This issue is not unique to the spline model structure used here however. Non-

convexity in the travel cost variance can arise in a number of ways: contemporaneous
observation of several altitudes, nonuniform sampling of the profile, or process noise
varying with height can all create this situation. There is also no guarantee that
the underlying travel profile is itself convex.

Use of the spline model provides a means to address this issue. A basis spline of
order 3 can be represented as a third-order polynomial that is piecewise continuous
at the knots up to the second derivative. This means that there is at most one
local minima and one local maxima of the function between two knots, so function
minima between two knots can be found by a gradient descent begun at each knot
point.

While the mean profile of the travel cost can have at most one local minima
between each knot, when the expected value of the limited exploration cost distribu-
tion from Section 7.3.1 is computed, it is possible to for two additional local minima
to be introduced by the profile variance. This makes it impossible to guarantee
convergence of a gradient-based optimization to the global minimum exploration
cost. While convergence cannot be guaranteed for any individual computation of the
minimum exploration cost, this effect is reduced as the the travel cost uncertainty
shrinks. This means that if the aircraft is drawn to a region in the support of a
spline, the travel cost distribution will become more certain and the additional local
minima will eventually be eliminated, allowing the true minimum to be determined.

A reasonable approach to determining the optimal altitude is then to numeri-
cally optimize Equation 7.6 using each knot point in the travel cost spline as an
initialization value and choosing the altitude corresponding to the optimization
result with the lowest cost. If the travel cost profile is very uncertain then this
approach may converge to a local minimum, but exploration of this point will
reduce the travel cost uncertainty and eliminate the local minima. The effect of
local minima can thus be thought of in the same way as error in the travel cost
profile – an error which may cause suboptimal guidance commands but which will
be eliminated as the aircraft explores.

Because the optimization is over a single variable and the exploration cost is
computationally inexpensive to evaluate, even a brute force solution is computa-
tionally tractable. Solving for the exploration cost at 5 meter altitude increments
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(characteristic of the altitude holding performance of a small UAS) over a 1000
meter altitude band requires less than one second to compute. To isolate the
performance of the exploration cost from the technique used to find the optimal
altitude, the brute force solution is used in the results presented here.

7.4 Monte Carlo Simulations

To test the altitude selection algorithm, it is implemented in a numerical simulation
of the SB-XC aircraft described in Section 3.2. The aircraft is simulated with 38.6%
of the wing covered in solar cells which permits the aircraft fly under pure solar
power but only near noon with no obstructions to solar energy. This wing coverage
fraction represents the area of the inboard wing panel forward of the flap as this
portion of the wing would be simplest to fit with a solar array.

Six-hundred fifty two simulations covering a period from 2018-11-04 to 2019-12-
15, Figure 7.5 shows the start hour for each simulation. Not all hours in the time
period are represented due to errors in the script which downloaded and processed
the data files as they were made available. Section 4 demonstrated that the aircraft
energy budget is most sensitive to wind, so simulations were run for both day and
night conditions to provide more simulation iterations.

7.4.1 Simulation Tests

The aircraft is commanded to fly a 200 kilometer mission beginning near Eastern
West Virgina Regional Airport (39.3977◦N, 77.9978◦W) and ending near William
T Piper Memorial Airport (41.1466◦N, 77.4166◦W). The mission length is chosen
for a nominal flight time of approximately 3.5 hours. This is characteristic of the
endurance of many small aircraft [111]. The four hour forecast is also approximately
when the wind forecast root mean square error reaches a steady-state value [112].
Atmospheric features with scales larger than four hours should be resolved fairly
well then and can be handled by a priori planners which can provide outer-loop
guidance targets, but in situ planning is needed to account for position and timing
errors in forecasting smaller features.

Two types of planners were employed for comparison. The first baseline planner
generated a nominal altitude trajectory before flight which was then tracked open-
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Figure 7.5: Six-hundred fifty two runs were conducted between early November and
mid December 2019. The download script used to collect model data occasionally
failed so not every hour in the range was simulated.

Figure 7.6: The aircraft is commanded to fly a 200 kilometer straight-line flight
from West Virginia to central Pennsylvania. The permissible altitude band keeps
the aircraft at least 100 meters above terrain throughout the flight.
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loop. The nominal flight path was generated using the SciPy minimize routine [91]
with the total energy expended from onboard storage as the objective function.
The solver was used to find the optimal altitude at ten evenly spaced collocation
points. At each collocation point the environmental conditions were interpolated
from the gridded output of a numerical weather model and the required power
output from storage to achieve the desired climb rate and speed was then computed.
The total energetic cost to complete the mission was then computed using a fourth
order Runge-Kutta integration. This approach will be referred to as the a priori
planner in the simulation results.

The altitude selection algorithm described in Section 7.3 was also implemented
in the simulation. The environmental model described in Section 6 is used to learn
a model of the environment for use by this algorithm. In the simulation results this
approach is called the in situ planner.

To characterize the value of information and the effect of model error on the
performance of each planner, the availability and age of the information provided
is varied. One in situ planner was provided with no a priori knowledge of the
environment at all. Its wind model was initialized to zero, solar profile to a cloud
factor of 0.5, and the model covariances to the climatological variance. For this
planner time updates merely propagate the model covariance, increasing it by the
mean drift rate of the environmental state.

Other in situ planners are provided with a HRRR forecast or analysis grid which
is used to initialize the profiles and provide the total derivative of the environmental
state during the mission. The initial covariance for these planners is initialized to the
HRRR skill in the wind and cloud factor, 6.25 m2 s−2 and 0.096 (squared irradiance
fraction) respectively [88,113]. The wind component and cloud factor process noise
is set to the mean growth rate in forecast error computed in Section 6.1.2 (0.95
m2 s−2 h−1 and 0.0914 h−1). The a priori planners are all provided with a HRRR
grid for use in computing the nominal trajectory.

For each class of planner the HRRR grid provided is drawn from the analysis, 1,
2, or 3 hour forecast. This introduces error into the aircraft’s a priori environmental
knowledge that reflects regions, features, and properties where the forecast changes
most. This should represent the most uncertain components of the environmental
state. Reference to Figure 6.4 shows that the mean squared difference in the HRRR
wind vector between the three hour forecast and analysis is only about 3 m2 s−2,
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about half of the analysis error, so the simulations will understate the error in the
forecast (forecasts made three hours apart are more consistent with each other
than they are with the true atmospheric state). All simulation cases use the HRRR
analysis as the realization of the environmental state, so the aircraft provided with
the analysis have perfect information as from an “oracle,” and represent a bounding
case on performance.

The nominal flight time (tracked by each aircraft using the method described in
Section 5) is determined from the flight time required for the a priori planned flight
path with perfect information to reach the goal point with a constant airspeed of 16
m s−1, this is slightly faster than the aircraft’s best range speed, which is typical
for cruise speeds of light aircraft and small UAS. A constant nominal airspeed is
specified instead of a groundspeed because the standard deviation of wind speed
is greater than 8 m s−1 (computed from the HRRR grids used to compute the
process noise in Section 6.1.2). This is more than half of the aircraft’s speed for
best range, so specifying a constant inertial speed at a speed near the best glide
speed is not possible (for example with a tailwind equal to the flight speed) or
unreasonable (when facing a strong tailwind). Permitting the inertial speed to vary
in response to environmental conditions is also consistent with typical operating
practice for aircraft.

7.4.2 Mean Performance

The performance of each planner is analyzed through its regret relative to the
perfectly informed a priori planner. The final regret after 652 simulations was
averaged to compute the mean final regret. Regret for the in situ and lagged optimal
planners is summarized in Table 7.1. Regardless of the age of information provided,
the in situ planner actually outperforms the a priori optimal control-collocation
planner. When the in situ planner is provided with a priori information to initialize
its profiles and provide time updates, its mean energy consumption is 3-4% less
than the perfectly informed a priori planner. With no prior information the in situ
planner has a mean energy consumption 2% less than the a priori planner.

Figure 7.7 illustrates the mean regret as a function of the aircraft position
(because of differences in the time to complete the mission, the mean computed
for fixed locations is more informative than the mean at fixed times). The jumps
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Table 7.1: Mean final regret averaged over 652 simulations.

strategy regret (m) regret (%)

in situ, no forecast -233 -2.0
in situ, perfect information t -466 -4.0
in situ, 1 hour forecast -432 -3.7
in situ, 2 hour forecast -383 -3.3
in situ, 3 hour forecast -378 -3.2
a priori, 1 hour forecast 216 1.8
a priori, 2 hour forecast 319 2.7
a priori, 3 hour forecast 316 2.7
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Figure 7.7: Mean regret averaged over 652 simulation runs.

in regret at the beginning and end of the mission stand out. The initial jump in
regret occurs because in many simulations the a priori planner immediately climbs
at the maximum permitted rate to explore or reach a desired altitude. The climb
rate of the a priori is constrained by the resolution of the collocation points used
for planning. The final jump in regret occurs because the a priori planner reduces
altitude near the end of the mission, gliding to reduce its energy consumption.
These two effects are explored further in Section 7.4.4.
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Figure 7.8: Empirical cumulative distribution of the energy required to complete the
mission. Vertical dashed lines indicate the 95th percentile of energy consumption.

7.4.3 Energy Budget for Likely Mission Completion

Section 7.4.2 illustrates the mean performance of the various strategies relative
to a perfectly informed optimal control approach. The mean energy required to
accomplish a mission is not a good metric of performance however, it is likely that
in many cases more than the mean energy will be required. A better measure is
the energy required to complete a mission with a specified likelihood. Figure 7.8
illustrates the empirical cumulative distribution of the energy required to complete
the mission.

Figure 7.8a shows the distribution of final specific energy expended (consumed
from storage minus remaining altitude) when the planners are provided with
perfect information. The vertical dashed lines indicate the 95th percentile energy
expenditure. The distributions are very similar, though the in situ planner achieves
slightly better performance using the 95th percentile energy consumption as a
criterion. This is likely due to the higher effective planning resolution, which is
discussed further in Section 7.4.4.
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Figure 7.8b shows the same comparison of distributions when the planners
are provided with a four hour forecast. Recall from Section 7.4.1 that the lagged
forecasts are actually introducing less error than the analysis skill of current
weather models, so the effect of forecast error is understated by this simulation.
The difference in the 95th percentile energy is greater with the longer-range forecast,
approximately 1500 m or 9% of the 95th percentile energy for the in situ planer.
This indicates that the in situ environmental modeling and planning is mitigating
some of the cost incurred by error in the weather forecast.

7.4.4 Comparison of Trajectories

Figure 7.9 compares the flight path and energy state for the two planners with
perfect information during the run beginning 2018-11-15 at 22:00 UTC. The figure
also depicts the true travel cost profile (scaled by a factor of 10 for visibility) every 50
kilometers. During this run the in situ planner used 800 m less energy, a reduction
of approximately 6% relative to the a priori planner. Examining the trajectories in
detail highlights some differences between the two planning approaches.

Early in the flight the in situ planner can be seen to command an immediate
change in altitude. Because the resolution of the a priori planner is limited by the
number of collocation points it cannot reach the optimal altitude until the second
collocation point at the earliest (the first collocation point defines the mission start
location). In contrast, the in situ planner has a resolution equal to the rate at which
the guidance algorithm is run so it commands an immediate change to the altitude
it identifies as favorable for exploration. Greater resolution could be achieved
in the a priori planner by adding collocation points or including the collocation
point locations in the optimization. These approaches would require expanding the
optimization state vector which significantly increases the computation time. An
experiment with doubling the number of collocation points increased the convergence
time by an order of magnitude, from approximately 600 seconds to approximately
7000 seconds, making it unsuitable for use onboard an aircraft.

Late in the flight both planners command a descent, using their gravitational
potential energy to avoid using stored energy in a maneuver analogous to the
“final glide” employed by sailplanes [35]. The a priori planner shows itself more
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(a) Flight path for the perfectly informed planners. The in situ planner can be seen
exploring a nearly-constant wind band in order to fine-tune its altitude.
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(b) Expended stored energy trajectory. Not having a resolution limit, the in situ planner
can rapidly climb to the most favorable region and achieve lower cost travel very rapidly.

Figure 7.9: State trajectories and travel cost profiles for perfectly informed in situ
and a priori planners for the mission beginning at 2018-11-15 22:00 UTC. Both
planners reached the optimal altitude, but the in situ planner is able to do so
sooner. Near the end of the flight, the growing model covariance and shrinking
payback period induce the in situ planner to explore lower. It finds the winds are
still strong and retreats back to a higher altitude before beginning a “final glide.”
This maneuver lowers its energy consumption, but the a priori planner achieves a
lower-cost “final glide.”
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adept at planning the final glide. This makes sense, after all the a priori planner
is explicitly attempting to find the altitude trajectory which minimizes the total
energy consumption.

In contrast, the in situ planner merely determines that the chance that favorable
conditions exist at a lower altitude is high enough that the significant (albeit
temporary) reduction in power output justifies the risk of exploring. In this case,
the covariance has grown enough that the in situ planner commands an “early”
final glide, one which it initially reverses upon observing that the winds are still
strong. Eventually, the mission end is near enough that the reduction in power
consumption is worth starting another glide even in the face of strong wings. While
the a priori planner produces better final glide plans, the fact that the final glide
behavior emerges naturally from the exploration / exploitation balance is striking.

7.4.5 Effect of Information Age

The atmosphere often exhibits relatively consistent conditions for a period of hours
to days until a sudden transition occurs to a new state [59]. The exact timing
and location of these transitions is often difficult to forecast in advance, so during
these transitions longer-range forecasts are likely to introduce additional error
into the expected atmospheric state and thus flight plan. During the quiescent
periods performance of both the in situ and a priori planners should be nearly
independent of the forecast length. During the simulation depicted in Figure 7.10,
initialized 2018-11-05 at 02:00 UTC, a strong tailwind was present that increased
with altitude. This drove all of the controllers to command an altitude near the
maximum permitted, small errors in the forecast atmospheric state did not change
the optimal flight path significantly.

When the weather is changing, longer-range forecasts have difficulty exactly
placing the location or timing of changes. This is depicted in Figure 7.11 which
shows state trajectories for the simulation run initialized on 2018-11-14 at 20:00
UTC.

The flight path was under a building high pressure system that was preceded
by strong northwest winds. Early forecasts expected the high pressure to build
in rapidly, bringing weaker winds with it and shifting the optimal altitude from
low to high. The high pressure did not build in as rapidly as the initial forecasts
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(a) Regardless of the forecast age, all travel cost profiles favor a high altitude so the
planners all command a flight path near the maximum permitted altitude.
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(b) The in situ planner achieves slightly lower energy expenditure because it immediately
climbs to the maximum altitude, but otherwise both planners cluster around similar
energy costs.

Figure 7.10: State trajectories from the run beginning 2018-11-05 at 02:00 UTC. A
consistent tailwind was present the entire flight, which increased with height. Error
in the forecast atmospheric state does not significantly impact the commanded
flight path.
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(a) The trajectories computed using longer range forecasts expect the optimal altitude to
shift from the minimum to maximum altitude. The a priori planners using this data are
unable to determine that the shift does not occur. The in situ planners explore and find
that the travel cost is greater than expected so they return to a low altitude.
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(b) Acting on the incorrect information, the a priori planners using longer-range forecasts
have considerably higher total mission energy requirements. The in situ planners using
this incorrect information are able to correct it and pay a smaller price.

Figure 7.11: State trajectories from the run beginning 2018-11-14 at 20:00 UTC.
When the atmosphere is evolving rapidly the forecast error can be quite large and
following an altitude profile computed using old information can be very costly.
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anticipated which can be inferred by the altitude traces – shorter-term forecasts
push the climb from low to high altitudes later in the flight. In the end, the weaker
winds did not occur until after the flight so the planner with perfect information
remains at the minimum altitude throughout the flight. The in situ planner shows
a similar pattern – the in situ planners provided with longer-range forecasts find it
likely that there is a favorable region at high altitude and begin climbing between
75 and 100 kilometers into the mission. Observations quickly show the anticipated
weaker headwinds not to exist and the in situ planners then command a descent to
the minimum altitude.

Examining the energy expended, it is clear that the in situ planners which have
this “bad information” pay a price, their total energetic cost is increased by about
500 m, but this is a considerable advantage over the a priori planners whose cost
is increased by more than 4000 m.

7.4.6 Robustness to Local Minima

The collocation based planner uses a gradient descent algorithm to find the trajectory
which minimizes energy. The initial guess for the trajectory is one which climbs
to the maximum altitude then descends to the minimum at the end of the flight,
exposing the optimization algorithm to the atmospheric conditions at all altitudes.
Most of the time this approach converges to the best trajectory, but occasionally
there are local minima in the travel cost which the gradient descent cannot climb
out of. One such situation is shown in Figure 7.12.

This could be ameliorated to some extent by multiple restarts of the a priori
planner with various initial conditions, but at the cost of additional planning time.
Each solution of the a priori planner takes between 10 and 20 minutes, so multiple
restarts could be a very costly way to compute the optimal trajectory. In contrast
each altitude selection by the in situ planner takes only a fraction of a second to
compute, permitting it to run continuously onboard a small UAS.

7.4.7 Value of a priori Information

Table 7.1 gives a rough indication of the value of having prior information – the mean
regret relative to the fully informed case tends to grow as the age of information
increases. In the extreme case, the in situ planner which is provided with no a
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(a) The a priori planner does not converge to the global minimum energy trajectory
because it requires the optimization to traverse a region where cost increases with altitude.
In contrast the in situ planner considers the probability of the global minima occurring
at a given altitude and explores regions that are likely to have minimum cost.
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(b) Identification of the global minima permits the in situ planner to achieve a modest
decrease in energy relative to the a priori planner.

Figure 7.12: State trajectories from the run beginning 2018-11-12 at 04:00 UTC.
Because the in situ planner considers the entire profile when selecting an altitude
and considers the exploration cost probabilistically it is less susceptible to being
trapped in local minima than the a priori planner which uses a gradient descent to
find the minimum cost trajectory.
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Figure 7.13: Empirical cumulative distribution of final energy state for the in situ
and a priori planners with a four hour forecast and for the in situ planner with no
prior information.

priori information has a regret approximately 2 percentage points greater than the
informed case. As discussed in Section 7.4.3 mean regret is an imprecise way to
evaluate the effect that a priori information can have.

Error in the aircraft’s knowledge of the environment does not in itself incur
additional energy expenditure. If the environmental model is in error but the error
is structured such that the optimal altitude is unchanged (e.g. off by a scale factor
throughout the profile), then either planner will still drive the aircraft to the optimal
altitude. Environmental error can only drive the aircraft to suboptimal decisions
when the error magnitude or structure is such that it identifies an incorrect altitude
as the optimal.

With this in mind, examination of Figure 7.13 illustrates the empirical cumula-
tive distribution for the a priori and in situ planners with four hour old information
as well as for the in situ planner which was provided with no prior information.

The similarity of the distributions and 95th percentile energy required for the in
situ planner with and without energy indicate two things. First, that uncertainty
in the forecast makes time updates to the observed profile of limited utility in
making decisions. Second, that the environmental model constructed from in situ
observations is capable of representing the environment over the moderate term
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with enough fidelity to enable the aircraft to manage its energy and risk state.
Once the forecast becomes unreliable there will occasionally be circumstances that
significantly degrade the performance of any planner relying on a priori information.
This is probably the reason why the 95th percentile performance between the in
situ planner with and with a priori information is much smaller than the mean
performance difference. When a forecast is good, environmental conditions tend to
be consistent and the “persistence forecast” of the uninformed atmospheric model
is not a bad approach. When environmental conditions experience a significant
change (e.g. frontal passage) over the course of a flight, the error in the exact
timing and location of the change can have enough error that time updates from the
forecast will misinform the aircraft. In this case the greater process noise associated
with the in situ planner without a priori information enables this planner to admit
this large change and respond as well as the planner receiving time updates.

7.5 Summary

Determining the flight profile to minimize energy consumption can be considered
as a continuous, non-stationary multi-armed bandit problem. While this is a
particularly challenging form of multi-armed bandit, it captures the explore/exploit
tradeoff better than sensor placement or information maximization approaches
which require heuristic functions to provide value to the gain of information.

An algorithm is proposed which uses the option to retreat to the initial altitude
to limit the exploration cost and provide an explicit energetic value for gaining
information. This approach integrates well with the atmospheric structure modeling
system described in Section 6 and is able to select an altitude near enough the global
minimum that the decision can converge to the global minimum as information
is gathered. This algorithm has the interesting ability to suggest remaining at
the current altitude in order to gain additional information because the aircraft’s
current environmental model could admit a more favorable profile than the current
mean value.

The altitude optimization algorithm is able to incorporate mission constraints
by penalties in the cost profile. For some constraints it may be possible to construct
a penalty which actually represents the additional energy required to complete a
mission at a given altitude, in other cases a utility function will be required. The
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constraint problem can also be inverted – given a desired altitude and a specific
power budget, the aircraft can identify an altitude nearest the desired which falls
within the budget.

The altitude selection algorithm is tested in Monte Carlo simulations against a
collocation based planner which tries to minimize the total mission cost using a
gradient descent minimization algorithm. On average the in situ planner is able
to achieve performance superior to the collocation based planner. The in situ
planner also exhibits greater robustness to the existence of local optima. The
planner considers the entire profile and the distribution of travel cost rather than
the expected value. This enables it to identify multiple altitudes which are likely to
be the optimum and prioritize these altitudes for exploration to determine which is
truly optimal.

With perfect information and no restriction on the computational resources
available, the collocation planner can achieve higher resolution and handle local
optima via multiple initializations. It should converge on the optimal trajectory,
bounding the performance of any planner, so the fact that the in situ planner
outperforms the perfectly informed collocation planner here is a result of the
restricted computational time allowed. Improved optimization algorithms and
computers would erode the advantage displayed by the in situ planner in the
perfectly informed case.

In practice, the aircraft will never have perfect knowledge of the environment,
the combination of a planner and environmental modeling system that both run
in situ allows for correction of error in the environmental state propagation. This
makes the planner much more robust to situations where the environment changes
in a way which is not resolved well by forecast information provided a priori. The in
situ planner has this advantage regardless of the computational resources available
to plan a trajectory a priori.

Finally, the algorithm is capable of finding energy efficient trajectories even
when started up with nothing more than knowledge of the climatological variance in
the environment and provided with no forward propagation of the atmospheric state.
On average the in situ planner provided with no a priori information outperforms
the a priori collocation based planners. In some cases it is actually an advantage
not to have prior information – when there is significant forecast error then the
time updates can try to lead the in situ planner astray.
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Overall the multi-armed bandit approach to in situ trajectory optimization
appears to be a promising way to manage uncertainty and energy conservation for
small UAS. It permits the energetic value of information to be determined and
exploration decisions to be made on the likelihood of finding more favorable regions.
In simulations the in situ approach demonstrates lower mean cost and greater
confidence in the energy required to complete a mission when compared with an a
priori optimization.
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Chapter 8 |
Conclusion

While considerable progress has been made in the capability and sophistication of
robotic aircraft, must current UAS fall into one of two categories – large aircraft
best described as “conventional aircraft with no one in it” and small aircraft
and multirotors resembling or adapted from “toy aircraft.” In order to provide
the benefits of an aerial platform with reduced acquisition, maintenance, and
operation costs an intermediate space is needed for small UAS which have the
range, endurance, and autonomy to conduct lengthy missions without constant
monitoring and intervention. Until now the development of this class of aircraft
has largely been constrained by regulation, but as this thesis was written UAS were
given air carrier designation for the first time, opening the possibility of extended
commercial flights [114].

The impressive stabilization and control of small UAS often gives the impression
of greater capability and autonomy than currently exists. As the number of high
performance sailplane pilots that land in fields would attest, poor decision making
can overcome the inherent performance of any aircraft. The capability of small UAS
to handle adverse weather conditions resembles general aviation aircraft more than
transport aircraft. In the case of unexpected winds especially, small UAS are more
sensitive even than light airplanes and helicopters. This does not make it impossible
to operate small UAS safely and effectively – after all small aircraft regularly
fly in challenging conditions – but requires an awareness of the environment and
sophisticated decision-making that is usually provided by an expert pilot.

Proponents of drone deliveries, agricultural monitoring, and urban air mobility
envision a future where relatively small aerial robots are ubiquitous. This thesis
attempts to move the state of the art in environmental awareness for small UAS
forward to help enable this vision and perhaps keep the count of YouTube videos
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featuring “drone runs out of battery” in the title from growing beyond the current
count: 85,000. In particular, this thesis addresses the needs and capabilities of
small solar augmented UAS, but many of the innovations developed are applicable
to UAS in general and the insights can inform autonomous decision-making more
generally.

8.1 Summary of Contributions

8.1.1 Separation of Scales of Response to Atmospheric Un-

certainty

The separation of scales of atmospheric variation and uncertainty can be exploited
to layer guidance techniques. Traditional optimization-based long-range planning
can respond to atmospheric variation at scales exceeding the atmospheric energy
spectral gap, providing outer-loop guidance to lower-level systems. Within the
spectral gap, in situ observation and planners can be used to find flight paths to
minimize the effect of error in the expected atmospheric state. High frequency
variations in the environment appear as random disturbances to the aircraft and
controllers can be designed to react to the immediate atmospheric state to efficiently
respond to these disturbances.

8.1.2 Speed Control to Manage Stochasticity

Separability of the speed and power control is shown. Speed commands can be
used to respond to stochastic variations in the environment in a way that makes
the environment more favorable to the aircraft. A speed control is derived which
permits harvesting energy while meeting an arrival time condition. This control is
evaluated in simulation and shown to reduce energy expenditure and uncertainty
in the final energy state. In flight tests it is able to meet arrival time specifications
within 1% even under the influence of considerable unmodeled dynamics.

8.1.3 Environmental and Travel Cost Modeling

An approach to modeling the environment in flight is developed which uses a
Kalman filter to estimate the coordinates on a basis of a priori specified functions
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which best describe the mean atmospheric state. This approach permits many
observations to be fused with no performance penalty as the number of observations
grows, and for observations from other aircraft and sensors to be assimilated into
the model. The Kalman filter framework also permits updating the environmental
state with derivative information if available, and provides an estimate of not only
the atmospheric state, but confidence in the state estimate.

A transformation is defined which permits converting the environmental state
into a travel cost, permitting the aircraft to assess the cost of travel in any direction
at a desired speed from information gathered in flight. The filter is tested onboard a
small UAS and compared to numerical weather model analyses and to observations
collected by balloon-borne radiosondes. The results demonstrate that aircraft
observations are able to describe the environmental state, and show significant
differences between observed and model predicted conditions. This demonstrates
the need for in situ observations and planning to enable efficient autonomous flight
by small UAS.

8.1.4 in situ Flight Planning

Amulti-armed bandit approach to flight planning is developed to balance exploration
of the environment with minimizing travel costs. By exploiting the ability to retreat
to a previous state, the cost of exploration can be limited and regions can be
identified where exploration is likely to pay off. This framework also allows the
value of information to be defined.

The in situ planner is evaluated in Monte Carlo simulations covering 652 initial
times in November and December 2018. In comparison with a collocation-based
optimal control planner, the in situ planner can provide higher resolution guidance
at low computational cost. It also demonstrates the ability to reduce the impact of
forecast uncertainty on the cost required to complete a mission and robustness to
local minima in the cost profile.
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8.2 Recommendations for Future Research

8.2.1 Managing Stochasticity in Other Domains

The speed control algorithm developed to manage stochasticity in the environment
is able to make the effective environment more favorable by preferentially spending
more time in favorable regions. This approach can be applied to other domains and
objective functions. For example, an autonomous car on a highway may identify
certain regions with higher probability of hazards (either globally or relative to
other vehicles) and vary its speed to minimize the cumulative risk of an accident.

8.2.2 Identification of and Response to Weather Hazards

This thesis focuses largely on improving UAS capability. Assuring sufficient energy
is available to complete a mission enhances safety, but safe flight in response to
environmental conditions embodies a much larger field of research. The modeling
and exploration techniques developed here could be applied to the identification
of some hazards, such as in-flight icing. The response to weather hazards needs
to be different than the approach adopted for energy efficiency in this thesis
however. Iteratively re-exploring previously visited regions to maintain a model
of the environment is not appropriate when every encounter with a hazardous
condition carries the risk of damage to the vehicle or loss of control.

8.2.3 Multi-Armed Bandit Planning

The multi-armed bandit approach to planning under uncertainty shows considerable
promise. The problem examined in this thesis is well suited to solution by this
approach, but it may be applicable to other aircraft planning problems and for
robotics in general. For aircraft guidance the same approach could be used to
identify lateral offsets from a nominal flight path which reduce energy consumption
(for example because strong winds create bands of clouds aligned with the flight
path).

In principle, the multi-armed bandit planner is a good candidate for distributed
systems. Information shared between multiple agents should permit actions with
low cost to be rapidly identified and the team would be able to maintain a shared
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understanding of the environment at little individual cost. Since the planner is
computationally inexpensive to run, it should scale well across many systems with
limited processing resources.

8.2.4 Exploration Cost

While the structure of the optimization problem allows any exploration cost that
can be represented as an energy rate the exploration cost employed in this work is
relatively simple, representing just the altitude change required to gather informa-
tion. This is constructed under the assumptions that the aircraft power system is
equally efficient at all power outputs and that the time required to explore is small
relative to the mission length.

Even under these assumptions the system performs well, but it would be worth
exploring the effect of higher fidelity costs. When changing altitudes the aircraft
power system must be run at a higher output, the efficiency of most power systems
varies with output so this effect could be included. Additionally, unless the time
required to explore is truly infinitesimal there is an “opportunity cost” to gathering
information. During exploration the aircraft is likely to traverse areas where its
travel cost is higher than at the initial altitude. The additional energy expended
when traversing this region could be included in the transition energy and thus
exploration cost.

Finally, the algorithm as described here makes exploration decisions based on the
information to be gathered at the location it decides to visit. During exploration the
aircraft gains information about all of the intermediate locations. This information
is not currently accounted for when selecting an altitude to explore, pricing the
information gained while in transition would be worthwhile as well.

8.2.5 Forward Looking Sensors

All of the sensing technologies examined in this thesis can only detect the environ-
mental state at the vehicle position. As LIDAR, computer vision, and processing
power improves it may be possible to gather information about the environment
ahead of the vehicle. Incorporating this information into the aircraft’s guidance
should permit more proactive decision-making, further reducing travel costs, and
allowing the aircraft to avoid unfavorable and hazardous regions.
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