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This paper presents a methodology to compute the backwards reachable set from safe on ground to a
trimmed autorotation condition. This backwards reachable set represents the region of the trimmed
autorotation state space from which safe paths to touchdown at a specified point are guaranteed to
exist. The backwards reachable set is found by computing optimal trajectories from candidate initial
states (distance and height above the touchdown point, horizontal speed, descent rate, rotor speed)
to the designated touchdown point. In addition, the set of trimmed autorotation conditions which
are likely to lead to safe trajectories to ground are computed. As an example, the safe landing set is
computed for a generic utility helicopter.

Nomenclature

C Cost Function
cd0 Main Rotor Profile Drag Coefficient
CP Power Coefficient
CT Thrust Coefficient
Cx Horizontal Component of Thrust coefficient
Cz Vertical Component of Thrust coefficient
x Horizontal distance from touchdown point
fe Fuselage Equivalant Flat Plate Area
fg Ground Effect Factor
fI Induced Velocity factor
h Height above touchdown point
HR Rotor Height
IR Main Rotor Polar Moment of Inertia
m mass
R Main Rotor Diameter
u horizontal velocity
v Induced Velocity
vh Hover Induced Velocity
w descent rate
α Main Rotor Tip Path Plane Angle
λ Main Rotor Inflow Ratio
σ Main Rotor solidity Ratio
ρ Air Density
Ω Main Rotor Angular Speed
θ Aircraft Pitch Angle

Introduction

There is considerable interest in the use of autonomous heli-
copters for tasks such as resupply and casualty evacuation.
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Further, sensor packages carried by some autonomous ro-
torcraft (such as the FORESTER radar carried by the A160
Hummingbird) are becoming very complex (and hence ex-
pensive). Loss of a payload (or worse, a loss of patient un-
dergoing transport to a medical facility) is thus becoming
a critical concern, and safe recovery in the event of vehicle
failure is a critical technology. Power loss, in particular, is
a vehicle failure which is known to be recoverable through
autorotation landing.

However, autorotation is an extremely difficult maneu-
ver. Safety of autorotation continues to be a significant con-
cern to the manned rotorcraft community. The final phase
(i.e. flare) of the maneuver is especially difficult, requir-
ing precise control and timing for success, while the con-
sequences of failure include severe damage to the vehicle
and injury or death to the pilot or passenger. Practice au-
torotation thus continues to be a part of the training cur-
riculum for military pilots, but this is a dangerous aspect of
training, since a significant number of accidents occur dur-
ing practice. This is mitigated somewhat in multi-engine
aircraft, however unmanned rotorcraft are typically single-
engine vehicles.

A critical problem is the flare to touchdown. Computing
a safe, feasible flare trajectory in real time is extremely dif-
ficult because of the high dimensionality of the problem, the
limited computational resources likely to be available, and
the likelihood of external disturbances such as gusts. More-
over, if an incorrect steady descent state is chosen there may
not be a safe, feasible flare trajectory to landing.

A significant amount of research has been conducted
on optimal path planning for both powered flight (Ref. 1)
and autorotation (Refs. 2–4). In addition, the use of opti-
mal control for autorotation flight training pilot cueing has
been reported (Refs. 5,6). More recently Abbeel et al. have
demonstrated a machine-learning based approach to autoro-
tation landings (Ref. 7) and a model-predictive control ap-



Fig. 1. Schematic of the guaranteed safe set: the set of
trimmed autorotation states and initial points that are
guaranteed to have a safe, feasible path to landing.

proach is described by Dalamagkidis (Ref. 8).

In (Ref. 5) Aponso et al. note three important points:
first, vehicle parameters such as weight can have a strong
influence on the computed trajectory; second, a critical im-
provement would be the ability to continuously update tra-
jectories to account for performance differences as well as
errors in trajectory following; third, optimal trajectory plan-
ning can be used to expand the V-h envelope. Further, the
previous work on autorotation does not account for distur-
bances (e.g. gusts, or even steady wind fields) or the ef-
fect on non-uniform terrain on autorotation, flare and land-
ing. Thus there is still a need for significant research before
the problem of autonomous autorotation can be completely
solved.

The work presented in this paper focuses on finding the
region of the vehicle’s state space from which a safe, fea-
sible path to landing is guaranteed to exist. This region of
the state space is denoted the safe landing set and includes
flare initiation point (as distance from and height above the
touchdown point), forward speed, descent rate and rotor
speed (see Figure 1). Here the state space is restricted to
the set of trimmed autorotation conditions. An additional
focus is the probably safe landing set, that part of the set
of trimmed autorotation conditions which are likely to end
in safe landing. This is distinct from the safe landing set
because the flare initiation point is not specified.

The safe landing set is thus the backwards reachable
set from safe-on-ground: any vehicle which enters the
safe landing set is guaranteed to have a safe, feasible
path to landing. The use of backwards reachable sets for
safe (powered) landing of fixed wing aircraft has been re-
ported (Refs. 9, 10), but the authors are unaware of back-
wards reachable set computations for rotorcraft landing
(powered or unpowered).

This paper discusses the safe landing set and develops
a methodology for computing the safe landing set (and the
associated probably safe set). This is applied to a model
of a utility helicopter and some of the implications are dis-

Fig. 2. Autorotation scenario.

cussed. Since optimal control is used to find the safe land-
ing set some aspects of the optimal flare trajectories are also
described.

Problem Definition

The problem consists of finding safe, feasible paths from
engine failure to touchdown. Given a desired landing site,
the nominal flight path from engine failure to landing is as-
sumed to consist of three phases: first, engine failure and
entry to a stable steady-state autorotation condition; sec-
ond, steady descent in this autorotation condition, finally
flare and landing (see Figure 2).

The purpose of this paper is to develop a methodology
to enable computation of the set of all steady state autoro-
tation conditions which are likely to result in a safe flare
to landing. Safe and feasible, in this case, mean that all
controls and states stay within predefined allowable limits
throughout the flight and touchdown occurs with descent
rate, forward speed, position, and pitch angle within accept-
able limits. Ultimately this safe landing set will include the
effects of external disturbances such as wind; in this paper
only the deterministic case is considered.

Given the vehicle state

x =
[

xip zip u w Ω
]T (1)

where the subscript ip denotes flare initiation point and
[u w Ω]T are taken from the set of all trimmed autorotation
conditions

A =
{

ai|ai = [u w Ω]T
}

(2)

the safe landing set is defined as

S =
{

si|si = [xip zip u w Ω]T , [u w Ω]T ∈A
}

(3)

Here si ∈ S means that a safe, feasible trajectory to
touchdown exists from si. Thus any trajectory that guides
the helicopter from the moment of engine failure in to S
is guaranteed to end in a safe landing at a particular desired
touchdown point. The safe set is shown schematically in
Figure 1.



A further set, denoted the probably safe landing set,
consists of those autorotation trim conditions ai which are
likely to end in a safe landing. This is denoted as

˜A = {ãi} (4)

This set does not include particular choices of flare initi-
ation position xip and zip, and thus it cannot guarantee safe
landing: a member of ˜A may have safe paths to landing
from some flare initiation points but not others. The set ˜A
is the projection of S onto A . Any trajectory that guides
the helicopter from the moment of engine failure to a point
in ˜A is likely to result in a safe landing somewhere. Note
that the touchdown point cannot be specified here: it will be
dependent on the particular flare initiation point.

Thus this paper has two aims: first, computing the safe
landing set S ; second, computing the probably safe land-
ing set ˜A . The key point is finding members of ˜A which
have safe paths to landing from as large a region of the space
[xip zip]

T as possible.

The safe landing set thus has two purposes: first, it pro-
vides a target region for guidance of the mid-phase of au-
torotation descent; second, it defines conditions where flare
should be initiated to allow touchdown at a specified loca-
tion. The probably safe set defines the autorotation trim
conditions which are most likely to result in safe landing,
and thus provides information to the mid-phase descent tra-
jectory.

Computing the Safe Landing Set

The safe landing set is found by repeatedly solving a trajec-
tory optimization problem from an initial state to a speci-
fied touchdown point. The trajectory optimization problem
is cast as a non-linear parameter optimization problem by
discretizing system dynamics and finding the control inputs
which minimize a cost function (discussed later).

Vehicle Dynamics

Equations of motion are derived by Aponso (Ref. 3) and
repeated without derivation here:

ẋ = u (5)

ḣ =−w (6)

mu̇ = ρ(πR2)(ΩR)2Cx−
1
2

ρ feu
√

u2 +w2 (7)

mẇ = mg−ρ(πR2)(ΩR)2Cz−
1
2

ρ few
√

u2 +w2 (8)

IRΩΩ̇ = Ps−
1
η

ρ(πR2)(ΩR)2CP (9)

Ṗs =
1
τp

(Pres−Ps) (10)

Because the work presented here focuses on the flare
phase of the autorotation trajectory, it is assumed that the
helicopter has been in autorotation long enough for residual
engine power, Pres, to decay away. Equation 7 then simpli-
fies to the identity 0 = 0. Also, the helicopter pitch angle, θ ,
is assumed to be approximately equal to the tip path plane
angle, α , and is replaced in kind.

Coefficients are defined as:

CP =
1
8

σcd0 +CT λ (11)

Cx =CT sin(α) (12)
Cz =CT cos(α) (13)

λ =
usin(α)−wcos(α)+ v

ΩR
(14)

The induced velocity is:

v = Kindvh fI fG (15)

where vh is the reference (hover) induced velocity, fI is the
ratio of actual induced velocity to the reference vh, and fG
accounts for the decrease in induced velocity due to ground
effect:

vh = (ΩR)

√
CT

2
(16)

fI =

{
1/
√

b2 +(a+ fI)2 i f (2a+3)2 +b2 ≥ 1
a(.373a2 + .598b2−1.991) otherwise

(17)

a and b are given as:

a =
usin(α)−wcos(α)

vh
(18)

b =
ucos(α)+wsin(α)

vh
(19)

fG = 1− R2 cos2(θW )

16(h+HR)
(20)

cos2(θW ) =
(−wCT + vCz)

2

(−wCT + vCz)2 +(uCT + vCx)2 (21)

As an additional simplification, ground effect was ig-
nored (i.e. fG = 1). This should increase the conservative-
ness of the solutions since it ignores the improvement in
rotor performance at low altitude (Ref. 11).

Written in compact form, dynamics in autorotation are

ẋ = f (x,u) (22)

where the inputs are u = [CT α]T . Trim states can be found
by setting ẋ = 0 and solving for x given a feasible u.

The problem of computing flare trajectories now con-
sists of finding the input sequence u(t) which results in a



safe landing. One approach is to discretize the problem, as-
suming that the input is constant over some interval. This
will result in a parameter optimization problem. Typically
the problem is discretized in time: for the case considered
here the time required to fly a path depends on the inputs,
and time becomes an additional parameter in the optimiza-
tion problem. It is therefore more convenient to discretize
the problem in height (since the final altitude of the heli-
copter is specified as h f = 0). In this case inputs are as-
sumed to be constant over an interval ∆h (see Figure 3).

This discretization is performed by first integrating the
dynamics one step forward in time using a forward Euler
integration, so that

xk+1 = xk + ẋk∆tk (23)

and then computing ∆tk in terms of the altitude interval ∆hk
and the descent rate ḣk over that interval:

hk+1 = hk + ḣk∆tk = hk +∆hk (24)

Hence

∆tk =
∆hk

ḣk
(25)

The system dynamics can now be written as

xk+1 = xk + ẋ
∆hk

ḣk
(26)

= xk +

(
ẋk

ḣk

)
∆hk (27)

Hence

xk+1 = xk +
dx
dh

∣∣∣
k
∆hk (28)

Recognizing that ḣk = −wk (from vehicle kinematics)
and using Aponso’s equations of motion, the components
of dx

dh

∣∣∣
k

are

dx
dh

=− u
w

(29)

dt
dh

=− 1
w

(30)

du
dh

=− 1
mw

(ρ(πR2)(ΩR)2Cx−
1
2

ρ feu
√

u2 +w2) (31)

dw
dh

=− 1
mw

(mg−ρ(πR2)(ΩR)2Cz−
1
2

ρ few
√

u2 +w2)

(32)
dΩ

dh
=− 1

IRΩw
(Ps−

1
η

ρ(πR2)(ΩR)2CP) (33)

The time-index subscript has been dropped for clarity.
Note that height is no longer a part of the state vector: it is

now an independent variable. Time has taken its place. It
will be assumed that the helicopter is always descending, so
ḣ < 0 and ∆hk < 0. Thus

∆t =
dt
dh

∆h > 0 (34)

This approach contains two implicit assumptions: first,
the helicopter is always descending during final approach
(i.e. no “swoops”); second, the time interval ∆tk is short
enough that changes in descent rate can be ignored.

The state vector has now become

x =
[

x t u w Ω
]T (35)

Safe, Feasible Flare Trajectories

The trajectory planning problem is now a parameter opti-
mization problem:

minimize C (x0...K ,u0...K−1) (36)

subject to xk+1 = x+
dx
dh

∣∣∣
k
∆hk (37)

xmin ≤ xk ≤ xmax (38)
g(xk)≤ 0 (39)
umin ≤ uk ≤ umax (40)

where g(xk) represents state-dependent constraints such as
structural load limits and the set of free parameters is the
input sequence u0...K−1.

In the autorotation flare problem the cost is a function of
distance from the desired landing condition, i.e.

Ctd = (xK−xdes)
T Wtd (xK−xdes) (41)

where xdes is the desired touchdown condition and Wtd is a
weight matrix.

The problem is expressed as an interior-point problem
by defining state constraints as an additional cost:

Cstate =
K

∑
k=1

c(xk) (42)

Here c is a barrier function of the form

c(x) =
1

(x− xmin)2 +
1

(xmax− x)2 (43)

The final cost function is

C (x0...K ,u0...K−1) =Ctd + γCstate (44)

where γ is a parameter that can be varied to change the rel-
ative weight of violating state constraints versus the touch-
down cost.
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Fig. 3. Schematic of the discretized flare trajectory optimization problem. The target touchdown point is at the
origin, the shaded region denotes terrain.

A gradient descent approach is used to iteratively solve
this optimization problem for a particular initial state. The
first iteration uses a large value of γ to ensure that a path
which does not violate state constraints is found. If a path
is found then γ is reduced and the optimization is run again
using the previous solution as the initial guess. This is re-
peated until a path which is both feasible and safe (meaning
that touchdown constraints are satisfied) is found. Thus the
question of the existence of a feasible path has been ex-
pressed as an optimization problem: if the optimal path is
not feasible, then a feasible path does not exist.

Solution Methodology

The guaranteed safe landing set is found by repeatedly solv-
ing the trajectory optimization problem defined in Equa-
tions 36 through 40 for candidate initial states

ŝi =
[
xip zip aT

i
]T

, ai ∈A (45)

Figure 4 shows the trim set A for a generic utility heli-
copter with parameters given in Table 1.

To find S , a candidate state ŝ is selected and the feasi-
bility of a safe trajectory to touchdown is computed. If a
safe, feasible trajectory exists then ŝ ∈S . The procedure is
summarized in Algorithm 1.

The Safe Landing Set for a Utility Helicopter

The safe landing set S and the maximum likelihood safe
landing set ˜A are computed for a generic utility helicopter
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Fig. 4. Autorotation trim states for a generic utility he-
licopter.
with parameters given in Table 1 and state and control limits
given in Table 2. Note that many of the limits are quite
conservative, leading to overly conservative computation of
the safe landing set. Here the terrain slope is assumed to be
flat.

A set of evenly spaced flare initiation points ranging
from 75 feet to 1500 feet horizontally and 25 feet to 700
feet vertically from the desired touchdown point was de-
fined. To limit computation time a subset of evenly spaced
autorotation trim conditions was chosen from the set of all
autorotation trim conditions, and these were combined to
define the set of candidate states.

For this problem the touchdown limits are given in Ta-
ble 3. The touchdown cost weight matrix is

Wtd = diag(4, 0, 3, 4, 0) (46)

The weight of zero on time reflects the lack of impor-
tance of a particular time of flight and the weight of zero on



Table 1. Parameters for generic utility helicopter
parameter symbol value
blade cord c 1.75 feet

rotor profile drag coefficient Cd0 0.02
equivalent flat plate area fe 27.58 feet2

rotor height Hr 9.417 feet
main rotor polar oment of inertia IR 1512.6 feet4

induced power factor Kind 1.05
number of blades NB 4

rotor diameter R 26.83 feet
gross weight W 16638 lbs

power efficiency factor η 0.97
air density ρ 2.134×10−3 slugs/foot3

Algorithm 1 Compute safe landing set.

1: S = /0, ˜A = /0
2: Select candidate ŝi =

[
xip zip aT

i
]T

3: Compute optimal trajectory from ŝi to goal
4: if trajectory is feasible and safe then
5: S = [S ŝi]
6: A = [A âi]
7: else if Trajectory is feasible but not safe then
8: reduce γ

9: go to 3
10: else if Trajectory is safe but not feasible then
11: increase γ

12: go to 3
13: else
14: discard ŝ
15: end if
16: if No more candidate states then
17: Return S , ˜A
18: else
19: go to 2
20: end if

rotor speed at touchdown indicates that this is also unim-
portant.

Safe Landing Set

The safe landing set is a high dimensional space (5 dimen-
sional), hence visualization is difficult. Several projections
onto 2D planes are presented and discussed.

Table 2. State and control limits for generic utility heli-
copter

state/control symbol upper lower
forward speed u 169 ft/s 0 ft/s
descent rate w 40 ft/s 0 ft/s
rotor speed Ω 360 rpm 225 rpm

blade tip path angle α 10◦ −10◦

thrust coefficient CT 1.5Cw 0

Table 3. Touchdown safe conditions. θterrain is the terrain
slope at the touchdown point (0◦ here).

state upper lower
x position +25 ft -25ft

time – –
forward speed +20 ft/s -25 ft/s
descent rate +15 ft/s -4 ft/s
rotor speed – –

aircraft pitch angle θterrain +10◦ θterrain−10◦

The set of safe flare initiation points is shown in Fig-
ure 5. Matching intuition, results show that higher altitude
means that flare must be initiated farther from the touch-
down point (otherwise the helicopter will overshoot).

The traditional means of determining safety of autoro-
tation is the V-h diagram. The corresponding plot here is
the projection of the safe landing set onto the V-h plane and
at first glance this should be similar to the V-h diagram.
However there are some critical differences. Recall that the
safe landing set comprises trimmed autorotation conditions,
while the V-h diagram is generated for powered straight and
level flight. For the vehicle studied here trimmed autorota-
tion is impossible at horizontal speeds below approximately
80 fps, limiting the lower bound of speeds. The projection
of the safe landing set onto the V-h plane is shown in Fig-
ure 6. Initial points that are too high don’t allow the heli-
copter to lose altitude fast enough, points that are too fast
don’t allow the helicopter to bleed off enough speed.

Figure 7 shows sample flight paths from three flare initi-
ation points for slow, moderate and fast initial speeds, with
the touchdown point at the origin.

A more detailed look at the control and state history of
the paths shown in Figure 7 is given in Figure 8, Figure 9,
and Figure 10. Tip-path-plane angle behaves as expected,
tilting back and pushing up against the allowable limit for
most of the flight time. Then at the end, the helicopter tilts
forward to match the terrain angle, in these cases 0◦.

Equation 46 indicates that the touchdown horizontal po-



sition and sink rate have the largest effect on touchdown
cost, while forward speed has a smaller effect. Thus it
would be expected that the helicopter would sacrifice slow-
ing itsself horizontally in order to slow its descent rate at
touchdown and to ensure that touchdown occurs near the
origin. This is reflected in each of the three examples shown
here. While sink rate and distance from the origin (visible
in Figure 7) are both very near their goal locations, forward
speed is close to its upper limit. Additionally, the forward
speed remains high because the helicopter is tilted back as
far as is allowable and has no more means to slow its for-
ward speed.

The probably safe set

A desirable trim state is one that gives the largest number
of available safe flare initiation points which still result in
safe, feasible trajectories to landing, leaving room for small
errors between predicted and actual flight path.

Figure 11 shows the number of safe initiation points
found at each trim state normalized by the total number of
safe initiation points. A high number means that a partic-
ular trim state is more likely to lead to safe landing, since
there are many flare initiation points from which safe paths
to ground result. This is a measure of the volume fraction
of the region of flare initiation points which can result in
safe landing for a particular trimmed autorotation condition.
This plot shows that trim points with low horizontal veloc-
ity are more likely to result in safe paths to ground. From
this plot, the trim state with the largest number of safe initial
points is

ã = [83.1 39.9 229.2]T (47)

Note that this will be sensitive to the spacing of flare
initiation points: too wide a spacing will result in missing
potential safe initiation points, skewing the results.

Figure 12 gives the safe flare initiation point set for the
trim state with the most safe flare initiation points. Note the
gap in safe initial points near x =−1000: this is likely due
to the path optimizer failing to find a solution within the
allowed number of iterations. Intuition suggests that these
points should also be safe, since they are surrounded by safe
initial points.

Uses and Limitations

In addition to defining safe autorotation conditions, the safe
landing set can be used as a goal space for mid-phase trajec-
tory planners. A particularly sophisticated mid-phase plan-
ner may choose to send the vehicle through the “thickest”
portion of the safe landing set, thus providing maximum ro-
bustness for flare initiation and errors or disturbances in the
final flare trajectory.

The probably safe set defines the autorotation trim con-
ditions which are more likely to lead to safe landing. The
choice an autorotation trim state for the mid-phase descent
should include this as a consideration as part of the transi-
tion from the point of engine failure to the steady autorota-
tion condition.

It is expected that the optimal paths used in computing
the safe set can also be used for fast trajectory generation.
As a helicopter in steady autorotation enters the safe land-
ing set, a trajectory to the desired touchdown point can be
selected based on the nearest points for which trajectories
have been computed. A trajectory following algorithm can
then guide the helicopter along this path.

The major limitation of the results presented here is the
sparsity of points tested. Current work focuses on expand-
ing the search space and increasing the point density of can-
didate safe states, with an emphasis on the boundaries of the
safe set. Further, incorporating ground effect and expand-
ing the allowable vehicle state envelope is likely to increase
the size of the safe set.

Conclusions

A methodology for computing the set of points for which
a safe, feasible autorotation trajectory to safe on ground is
guaranteed to exist has been presented. This is the back-
wards reachable set from safe-on-ground to a trimmed au-
torotation condition.

The set is found using optimal trajectory planning from
a candidate trimmed autorotation initial state to a specified
touchdown location. In addition to the safe set (which in-
cludes a specified initial height and distance from touch-
down), the probably safe landing set is defined as the set of
trimmed autorotation conditions from which a safe path to
landing at a specified touchdown point is likely to exist.

Results are presented for a limited number of initial
states for a utility helicopter in steady state autorotation.
These results show that there are clear regions of the au-
torotation trim space which are more likely to lead to a safe
landing. In addition the state and control histories of some
sample paths computed using the trajectory optimizer are
discussed.
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Fig. 5. Safe flare initiation locations for a generic utility helicopter
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Fig. 7. Sample flare flight paths from three safe start locations
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Fig. 8. State and control history for path denoted slow u0 in Figure 7.
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Fig. 9. State and control history for path denoted moderate u0 in Figure 7.
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Fig. 10. State and control history for path denoted fast u0 in Figure 7.
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Fig. 11. Number of safe flare initiation positions reachable from each autorotation trim state. The “patchiness” in
these results is in part due to choosing a fairly sparse set of initial trim conditions.
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Fig. 12. Safe flare initiation points for the trim state with the higest number of safe initiation points.


