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This paper presents a system for autonomous soaring flight by small and micro unin-
habited aerial vehicles. It combines a prediction of wind field with a trajectory planner, a
decision-making block, a low-level flight controller and sensors such as Global Positioning
System and air data sensors to enable exploitation of atmospheric energy using thermals,
wave, and orographic lift or dynamic soaring.

The major focus of this research is on exploiting orographic (i.e. slope or ridge) lift to
enable long duration, long distance flights by a small autonomous uninhabited aerial vehicle
(UAV). This paper presents a methodology to generate optimal trajectories that utilize the
vertical component of wind to enable flights that would otherwise be impossible given the
performance constraints of the UAV. A point mass model is used to model the aircraft and
a polynomial function which includes both horizontal and vertical variations in wind speed
is used to model the wind field. Both vehicle kinematic and minimum altitude constraints
are included. Results for a test case (crossing the Altoona Gap in Pennsylvania’s Bald Eagle
Ridge) are presented for both minimum time and maximum final energy trajectories.

I. Introduction

A major limitation in developing practical small uninhabited aerial vehicles (uav) is the energy required
for long-range, long endurance operations. Large aircraft such as the Global Hawk can remain on-station

for 24 hours and can fly non-stop from the continental United States to Australia. However, small and micro
uavs face severe limits on the fuel that can be carried, greatly reducing both endurance and range. In
addition, the best L/D attainable for small and micro uavs is typically much smaller than for larger aircraft
because of the smaller Reynolds numbers. This further reduces performance.

Significant range and endurance improvements can be realized by obtaining energy (in the form of altitude
or speed) from the surrounding atmosphere. Energy can be obtained from vertical air motion, from velocity
gradients and from gusts. Vertical air motion has three main causes: uneven heating of the ground, which
produces buoyant instabilities known as thermals; long period oscillations of the atmosphere, generally called
wave; and orographic lift, where wind is deflected by the slopes of hills and mountains. Vertical air motion
is a quasi-static phenomenon, and flight which exploits vertical air motion is known as soaring. Large birds
such as eagles, hawks and condors as well as human sailplane and hang glider pilots routinely use soaring
flight to remain aloft for many hours and traverse hundreds of kilometers without flapping wings or the use
of engines.

A second means of extracting energy from the air uses velocity gradients (which can occur near the
ground due to the boundary layer) or shear layers (which often occur on the leeward side of mountains and
ridges). This strategy, called dynamic soaring, was first described by Lord Rayleigh in an analysis of albatross
flight.1,2 Dynamic soaring is again becoming the subject of research both for recreational flight (mainly by
RC flying enthusiasts) and for uav flight. However, this class of dynamic soaring generally requires highly
agile flight in close proximity to the ground: this is a very risky endeavor.

The third means of extracting energy from the air exploits gusts. It has been observed that the flight
performance of large birds is improved by gusts, while it is typically reduced on human-piloted aircraft.3

This suggests that birds are able to extract energy from gusts, and indeed Kiceniuk reports that it is even
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possible to extract energy from a downward gust4! Extracting energy from gusts is complicated by their
typically short duration, hence very fast response (typically exceeding human reaction time) is required.
Control laws have been developed to enable energy extraction from gusts by small uavs.5

These three methods of extracting energy from the environment can be used to enable autonomous long
duration, long distance flight (denoted (LD)2 flight) by unmanned aerial vehicles. For the remainder of this
paper these three modes of energy extraction will be referred to as static soaring, dynamic soaring and gust
soaring, respectively.

The time scales of each of these modes of flight are very different. Static soaring occurs over time ranging
from minutes to hours, dynamic soaring typically consists of a periodic trajectory with a duration of a few
tens of seconds and gusts are very short duration (less than a few seconds). In a system which exploits
all three modes of energy extraction this time scale separation can be used to treat each mode almost
independently. Long-duration planning can be performed to exploit spatial variation in wind speed (both
vertical and horizontal), shorter duration optimal trajectories can be designed for dynamic soaring and a
closed-loop controller can be designed to exploit gusts.

The major focus of this paper is on the problem of static soaring by a small uav specifically on enabling
both long endurance and long range flights using orographic (i.e. slope) lift. It describes a planning algorithm
which uses a point mass model of the vehicle and knowledge of the wind field (this may be obtained from
predictions generated using meteorological forecasting tools such as MM56) to generate trajectories which
optimize a particular cost or reward function (such as maximizing energy gain or minimizing the time required
to reach a goal).

The remainder of this paper is organized as follows. Section II describes previous and related research.
Section III introduces and briefly describes a system which enables exploitation of atmospheric phenomena
by small autonomous aircraft. Section IV discusses the dynamics of soaring using orographic lift and briefly
investigates the variation of energy with respect to altitude for some constant airspeed, constant altitude
trajectories for flight along an infinite cylindrical ridge. Section V describes the planning algorithm and
discusses some cost functions. Section VI presents results of a sample problem: flight along a ridge with a
gap. The gap crossing problem illustrates the effect of cost function on the optimal trajectory and the effect
of aircraft wing loading on the optimal trajectory. Finally Section VII presents concluding remarks.

II. Previous and Related Work

Dynamic soaring has been studied for some time.7 Both required wind strength8,9 and optimal flight
patterns have been studied.10 Heuristics for flight control for autonomous dynamic soaring are described

by Wharington.11 An extensive study of dynamic soaring along with flight test data of human-piloted
dynamic soaring in the lee of a ridge is reported.3 Woolsey12 discusses both dynamic soaring and buoyancy
driven flight for exploration of Venus and Titan. Kiceniuk4,13,14 provides a fairly intuitive discussion of
dynamic soaring: he discusses energy gain from gusts and the information required to exploit gusts, which
indicates the necessary sensing for such flight modes.

In addition, dynamic soaring by birds has been studied extensively. The minimum wind shear strength
required for albatross flight is discussed by Sachs.9 Pennycuick15 proposes an alternate flight mode where
most of the energy gain is obtained from the shear layer which results from the winds flow separation over the
crest of each wave. Successful exploitation of this strategy requires sensing very small changes in dynamic
pressure, and he suggests that only tube-nosed birds such as albatrosses have the necessary sensory capability.

Autonomous static soaring is now becoming the focus of more research. Simulation results of thermal
flight are reported by Allen (2005)16 and flight test results are presented in Allen (2007).17 Energy gain from
orographic lift is not addressed, nor is energy gain from gusts.

A rich and varied literature exists in the field of optimal static soaring trajectories with the application
of human-piloted soaring flight. Various aspects of optimal static soaring have been addressed, including
the optimal speed to fly between thermals of known strength (the MacCready problem,18,19 the final glide
problem,20 and “dolphin” flight along regions of alternating lift and sink.21–23 de Jong24 describes a geometric
approach to trajectory optimization and also discusses the optimal deviation from course to minimize time
to a goal in a given lift field. Much of this research is directly applicable to the problem of trajectory
generation for autonomous soaring flight, but it assumes limited types of known lift distributions (e.g.
sinusoidally varying lift25 or “square wave” lift26) and it assumes that the vertical wind speed does not vary
with altitude. These assumptions are adequate for planning trajectories which exploit thermal lift, but they
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do not generally apply to the problem considered in this paper (i.e. exploiting orographic lift).
Trajectory optimization for uavs is an active area of research. Typical applications include minimal

altitude trajectories for nap of the earth flight27 or flight in urban environments.28 The major difference in
the present research is the use of planning algorithms to enable performance which would not be otherwise
realizable (i.e. (LD)2 flight) given the performance and payload limitations of a small uav.

III. Exploiting Atmospheric Energy

A high-level block diagram of a system capable of autonomous energy extraction is shown in Figure 1.
While this paper is focused on the problem of extracting energy from orographic lift, the block diagram

is applicable to general static soaring flight (i.e. thermal, orographic and wave soaring), dynamic soaring
and gust soaring.
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Figure 1. High-level block diagram of system for autonomous soaring flight.

Mission parameters (such as regions that must be visited or avoided, time constraints) are determined
by the human operator and form the top-level input to the system. The flight director includes high-level
decision making and a trajectory planner. The decision making block is responsible for monitoring flight
progress based on mission parameters and vehicle state, and decides on the flight mode based on mission
parameters, the predicted wind field and vehicle state.

Flight modes may consist of soaring strategies, i.e. thermal soaring, orographic/wave soaring, dynamic
soaring or powered flight. The flight mode would be determined in part by the predicted wind field and
can change based on updates in mission parameters, expected availability of certain types of lift or mission
progress.

The trajectory planner selects a trajectory class based on flight mode and plans a trajectory based on
predicted wind field, current vehicle state and the goal. For thermal flight mode the trajectory plan will
likely be reactive (i.e. fly on a heading at an airspeed until a thermal is encountered, then exploit the
thermal) because it is beyond current capabilities to accurately predict thermal formation. The availability
of specialized sensors which can ‘see’ thermals (e.g. forward-looking infrared sensors) would greatly improve
performance in this flight mode. Techniques based on MacCready theory would be used to determine
flight speed and determine whether to exploit or ignore a particular thermal, and Allen’s thermal soaring
controller17 could be used when the decision to exploit a thermal has been made. Trajectory planning for
orographic, wave and dynamic soaring can take advantage of a priori knowledge of the wind field.

The flight controller stabilizes vehicle dynamics and follows commands from the trajectory generator. It
may also include the ability to extract energy from short duration atmospheric phenomena such as gusts.
Gust soaring has the potential to greatly improve flight performance of small uavs29 and is becoming an
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active area of research.5,30

The predicted wind field can be initialized using data from meteorological simulations such as mm56 or
wrf.31 The wind field can be updated in flight using in situ measurements taken by the aircraft. In the
meteorological community this is known as assimilation, and this is an active area of research.32

The remainder of this paper is focused on the problem of trajectory planning for a particular mode of
soaring flight, namely orographic (i.e. ridge) soaring. It discusses the kinematics and dynamics of ridge
soaring, derives a simplified kinematic model suitable for long-range planning and presents a solution for
flight along a ridge with a gap.

IV. Dynamics of Ridge Soaring

This section presents an overview of the dynamics of ridge soaring using a point mass model. Ulti-
mately airspeed is used as the control input, leading to a kinematic model. This is a common approach

in analysis of optimal soaring trajectories, and the critical assumption is that the aircraft is in equilibrium
at all times during the trajectory. This assumption is adequate as long as the periods of transition between
segments of constant airspeed are short compared with the length of the segments.

Figure 2 shows a schematic of a point mass model of an aircraft in steady flight. An inertial coordinate
frame is defined by unit vectors x̂i and ẑi and the flight path angle is denoted γ. Forces acting on the aircraft
are thrust T , drag D, lift L, and gravity mg.

xi^

zi^

L

T

D

mg

γ
α

flight path

Figure 2. Point mass model.

Resolving forces parallel and perpendicular to
the flight path,

mg cos γ = L + T sinα (1)
mg sin γ = D − T cos α (2)

where m is mass of the vehicle and α is the angle of
attack.

It is assumed that the flight path angle γ is small,
hence sin γ ≈ γ and cos γ ≈ 1. A further simplifying
assumption (admittedly less accurate) is that thrust
is always aligned with the flight path angle (i.e. α
is zero). From Equation 1

mg = L =
1
2
ρv2

aSCL (3)

therefore
CL =

2mg

ρv2
aS

(4)

Here CL is lift coefficient, ρ is density of the air, va is airspeed and S is wing area. A second order
approximation is used for the aircraft’s drag polar:

CD = a0 + a1CL + a2C
2
L (5)

Thus the drag force is

D =
1
2
ρv2

aS
(
a0 + a1CL + a2C

2
L

)
(6)

Substituting into Equation 2, the flight path angle for a particular speed and thrust can thus be computed
as

mgγ =
1
2
ρv2

aS
(
a0 + a1CL + a2C

2
L

)
− T (7)

The kinematics of the aircraft can now be defined in terms of the airspeed, flight path angle and wind
speed.

ẋi = va cos γ + wx (8)
żi = va sin γ + wz (9)
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where ẋi and żi are components of velocity in the inertial x and z directions, respectively.
The wind speed is modelled using a polynomial function of position in the inertial frame:

w = f(xi, zi) (10)

The aircraft trajectory defined by Equations 7 through 10 can be completely determined by airspeed va

and thrust T . For an aircraft equipped with flaps it is assumed that the effect of flaps on drag is incorporated
in a low-level controller. A flap setting can then chosen to minimize drag (in cruise flight) or to permit higher
angle of attack (in low speed flight). Note that while the kinematic formulation described can be used to
model static soaring flight (thermal, ridge and wave), it is not adequate to model dynamic soaring.

A. Vehicle Energy

An expression for total energy in terms of airspeed and windspeed can now be obtained. Ignoring stored
energy (i.e. fuel or electrical energy stored in batteries), total energy is

E = mgh +
m(ẋ2

i + ż2
i )

2
(11)

where h is altitude. Substituting vehicle kinematics (Equation 8 and Equation 9) gives

E = mgh +
1
2
m

(
(va cos γ + wx)2 + (va sin γ + wz)2

)
(12)

hence
E = mgh +

1
2
m

(
v2

a + 2wxva cos γ + 2wzva sin γ + w2
x + w2

z

)
(13)

B. Constant Altitude Trajectories

For illustrative purposes an idealized case of soaring along an infinite cylindrical ridge is briefly considered.
A schematic is shown in Figure 3, where an infinitely long semi-cylindrical ridge with radius R is oriented
along the x̂i axis.

z i^
yi^

η

w 8

h

r

R

Figure 3. Soaring along an infinite semi-cylindrical
ridge.

A glider flies at constant airspeed along the
ridge. By flying in a region where the vertical com-
ponent of wind is equal to the sink rate constant
altitude can be maintained. The total energy for a
particular altitude will be computed.

Potential flow is used to generate a wind field:

w = −w∞ŷi − w∞
R2

r2
(cos ηr̂− sin ηη̂) (14)

where w∞ is the wind speed far from the ridge. The
vertical component of wind speed is

wz = −ẑi · w∞
R2

r2
(cos ηr̂− sin ηη̂) (15)

hence

wz = −2w∞
R2

r2
cos η sin η (16)

The vertical component of wind speed is greatest
along the radial at η = 45◦, where wz = −w∞R2/r2. Constant altitude, constant velocity trajectories will
be computed for a glider flying parallel to the ridge on this radial, and the total energy will be computed.

For a constant altitude trajectory ż = 0, hence va sin γ = −wz. From Equation 4 and Equation 6:

− wz =
ρSa0

2mg
v3

a + a1va +
2mga2

ρSva
(17)

where ai are the coefficients of the second-order lift-drag polar (Equation 5).
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Table 1. Glider parameters.

parameter description value
S wing area 1 m2

a CD vs. CL [0.0264 -0.0090 0.0150]

Since the glider is assume to remain on the radial η = 45◦ the vertical component of windspeed for a
particular altitude h can be calculated. The airspeed for constant altitude flight can be obtained by solving

w∞
R2

2h2
=

ρSa0

2mg
v3

a + a1va +
2mga2

ρSva
(18)

The total energy at a particular altitude can then be obtained from

E = mgh +
1
2
m

(
v2

a − w2
z

)
(19)

where wx = 0 and va sin γ = −wz have been substituted into Equation 13.
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Figure 4. Speed polar (sink rate vs. airspeed) for small
autonomous glider at varying wing loadings. For com-
parison a polar for a high-performance sailplane is also
shown.

Constant altitude trajectories were computed for
a small autonomous glider with parameters given
in Table 1 for three different values of mass: 10kg,
20kg and 30kg. For comparison a modern high-
performance glider (Glaser-Dirks DG-808S33 with
wing loading 30kg/m2) is also shown. Figure 4
shows the resulting lift/drag and velocity polar.
Note the effect of wing loading on the glider’s sink
rate: best L/D (and the speed of best L/D) increase
with wing loading, as does minimum sink rate and
the speed of minimum sink. This in turn will affect
the constant altitude speeds that can be flown at a
given altitude.

Results showing variation in total energy with
altitude and variation of airspeed with altitude are
plotted in Figure 5. For all aircraft maximum energy
flight occurs at high altitude. The sailplane shows
a clear minimum in total energy at an intermediate
altitude. At very low altitude (where the vertical
component of wind speed is greatest) very high air
speed can be flown while maintaining constant altitude, so kinetic energy becomes dominant in the total
energy. Note that the high performance sailplane can fly at significantly higher speeds than the small uav
for a similar sink rate, increasing this effect significantly.

V. Trajectory Planning

The remainder of this paper is concerned with planning trajectories which exploit atmospheric lift.
The general trajectory optimization problem can be expressed as

minimize C(x,u) (20)
subject to ẋ = f(x,u,w) (21)

xmin ≤ x ≤ xmax (22)
umin ≤ u ≤ umax (23)

where C is a cost function (discussed below), Equation 21 defines constraints on vehicle dynamics, Equa-
tion 22 defines constraints on the state (for example minimum altitude or minimum/maximum airspeed),
and finally Equation 23 defines constraints on control inputs (for example control surface deflections).

In this work a kinematic model is used for the vehicle and control inputs are airspeed and thrust. State
constraints (such as minimum altitude) can also be incorporated as a barrier function in the cost.
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Figure 5. Constant altitude soaring along an infinite cylindrical ridge. The left figure shows normalized
total energy (energy/mass), the right figure shows airspeed. In both cases results are plotted for varying
wingloading.

A. Discretization

The continuous time optimization problem is discretized in x to generate a vector optimization problem.
This is shown in Figure 6.

wk

∆xk

x1 x2

tkzk

xk xk+1x3 xK+1

tk+1zk+1

. . . . . .

Figure 6. Discretized trajectory optimization problem.
The heavy black line denotes terrain, wind vectors are
shown as grey arrows.

Note that each segment ∆xk is not necessarily of
equal length: this allows tighter discretization in ar-
eas where the wind speed is changing rapidly. The
total number of segments used to discretize a tra-
jectory can be chosen depending in part on compu-
tational considerations, but overly coarse discretiza-
tion will reduce the quality of the solution. On the
other hand, if the discretization is too fine then the
earlier assumption that kinematics are an adequate
model of the glider becomes suspect.

Wind speed is modelled using a polynomial func-
tion of altitude. Within a particular segment this
polynomial is assumed to be constant.

w(k)
x = c

(k)
x,0 + c

(k)
x,1h̃ + c

(k)
x,2h̃

2 + · · · (24)

w(k)
z = c

(k)
z,0 + c

(k)
z,1h̃ + c

(k)
z,2h̃

2 + · · · (25)

where h̃ = h/Hwind is a normalized height above
terrain and the superscript (k) denotes a particular
segment. Within the limits of discretization and the polynomial function arbitrary wind distributions can
thus be modelled. The variable Hwind is a scale height which defines the maximum height of validity for the
polynomial wind field.

The time required to fly a segment is computed using vehicle kinematics (Equation 8):

∆tk =
∆xk

ẋk
(26)
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and time and altitude are computed as

tk+1 = tk + ∆tk (27)
zk+1 = zk + żk∆tk + ∆zk (28)

where żk is given in Equation 9.
Recall that a kinematic model is used for the vehicle. The kinematic model does not include the dynamics

relating changes in airspeed and altitude. This exchange is reflected in the quantity ∆zk in Equation 28.
Assuming that the duration of the speed change is short compared with the time required to fly a segment
and that total energy is constant during a speed change, the change in altitude due to a change in speed is

∆zk =
v2

a,k − v2
a,k+1

2g
(29)

To summarize, the discretized trajectory optimization problem is

minimize C(va,T) (30)
subject to vmin ≤ va,k ≤ vmax (31)

γk =
ρSv2

a,k

2gm

(
a0 + a1CL + a2C

2
L

)
− Tk

mg
(32)

ẋk = va,k cos γk + wk
x (33)

żk = va,k sin γk + wk
z (34)

∆tk =
∆xk

ẋk
(35)

tk+1 = tk + ∆tk (36)

zk+1 = zk + żk∆tk +
v2

a,k − v2
a,k+1

2g
(37)

The optimization occurs over the vectors va (airspeed in each segment) and T (thrust in each segment).
The cost function C also includes constraints such as height above terrain as an exponential barrier function.

Note that for an electric vehicle a generator can be used to recharge batteries. This energy harvesting
can be incorporated by allowing negative values of thrust and including a term reflecting stored electrical
energy in the cost function C. The remainder of this paper is focused on pure gliding flight

B. Choice of Cost/Reward Functions

The choice of a cost (or equivalently, reward) function depends on the desired outcome of the flight. For
gliders the goal is typically minimizing the time required to reach a goal or maximizing range. Two cost
functions will therefore be considered: minimum time trajectories and trajectories which maximize total
energy.

For minimum time trajectories the cost function is

C =
k=K∑
k=1

(
tk + e−2(hk−hmin,k)

)
(38)

The exponential term is a barrier function to maintain separation from the ground. Here hk is altitude
(i.e. hk = −zk) and hmin,k is the minimum desired altitude for that segment, which includes height of terrain
and a safety zone.

For maximum energy flight the total energy at the end of the trajectory is considered:

C = ghK +
1
2
(ẋ2

K + ż2
K) +

k=K∑
k=1

e−2(hk−hmin,k) (39)

where the subscript K denotes the end of the last segment.
Other cost functions may emphasis minimizing deviation from some desired altitude or reaching the goal

at a desired time. Ultimately the choice of cost function is mission dependent.
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VI. Simulation

One of the critical phases of ridge soaring is crossing a gap in the ridge (where the vertical component
of wind speed is zero, or worse, downwards). In this case the glider must either have obtained enough

energy (i.e. speed and altitude) to cross the gap before arrival or it must find sufficiently strong thermals in
the gap to enable continued flight.

start

finish

10km gap in ridge

Figure 7. Altoona Gap. The flight follows the Bald
Eagle Ridge from Julian, PA to Altoona, PA. In the
simplified case described in the text, ridge height is
200m and it is approximately 60km to the gap. The
flight ends when the gap is crossed and the ridge is
reacquired.

An example known to glider pilots flying along
the Bald Eagle Ridge in Pennsylvania is the Al-
toona Gap,34 which spans approximately 10km.
The height of the ridge at each end of the gap is
approximately 400m above the valley floor. Fig-
ure 7 shows a satellite view. The flight originates at
a point approximately 60km NorthEast of Altoona
(from Ridge Soaring gliderport) and proceeds until
the gap is crossed. The average height of the Bald
Eagle between Ridge Soaring and the gap is some-
what lower, approximately 200m above the valley
floor.

For these simulations the terrain is modelled as a
200m high ridge 60km long followed by a 10km gap.
At the far side of the gap the ridge is again 200m
high, which determines the minimum altitude at the
end of the trajectory. The flight is discretized into
equal segments 1km in length and the wind field in
each segment on the ridge is

wx = 0
wz = −2 + 6.55h̃− 8.14h̃2

+0.325h̃3 + 8.13h̃4 − 4.88h̃5

Recall that z is positive down. In the gap wind
speed is zero.

In this case pure gliding flight is considered (i.e.
thrust is zero). Optimal trajectories were computed
for two aircraft: a small autonomous glider (prop-
erties given in Table 1, wing loading was 10 kg/m2)
and a modern high performance sailplane. For these simulations MatLab’s fmincon function was used to
compute solutions on a dual processor Intel Xeon 2.79GHz desktop computer.

Optimal trajectories are generated for two cost functions: minimum time to reach the far side of the gap
and maximum total energy at the far side of the gap. Results are tabulated in Table 2 and shown in Figure 8
and Figure 9.

Feasible constant speed trajectories do exist for both aircraft in the scenario considered here (this would
not be true for all scenarios). Flights at best L/D (the speed for which altitude loss over a given distance is
minimized) resulted in significant energy gain for both aircraft.

For both aircraft the minimum time trajectory showed significant improvement over the constant speed
case. While a constant speed somewhat faster than best L/D could be flown, constant speed trajectories will
quickly become infeasible (i.e. the gap will not be reached with sufficient altitude to permit safe crossing).
Clearly variable speed trajectories must be flown to optimize performance. Optimal trajectories and the
speed profile are shown in Figure 8. For aircraft the initial trajectory consists of a dive to fly as fast as
possible just above the ridge (in the region of maximum vertical wind speed), followed by a pull-up to trade
airspeed for altitude prior to crossing the gap. The small uav’s best L/D is significantly worse than the
high performance sailplane (32:1 vs. 50:1), hence it requires significantly more altitude to cross the gap
safely. This leads to a more aggressive pull-up maneuver prior to reaching the gap. Maximum speed is also
significantly lower: this is due to the uav’s generally much higher sink rate for a given airspeed. However,
the uav did slightly increase its total energy during the flight.

9 of 14

American Institute of Aeronautics and Astronautics Paper 2007-6737



Table 2. Optimal trajectory results. Values given for best L/D and sink rate are approximate.

vehicle best L/D minimum sink parameter constant speed minimum maximum
(at best L/D) time energy

EK/E0 1.72 0.99 1.822
sailplane 50:1 0.47 m/s ∆z 183m 5.7m 207m

(at 25 m/s) (at 21 m/s) ∆t 2800s 1727s 3421s
solution time n/a 30 s 11 s

EK/E0 1.69 1.06 1.91
small uav 32:1 0.2m/s ∆z 158m 12m 207m

(at 12 m/s) (at 9 m/s) ∆t 5836s 3604s 7625s
solution time n/a 27 s 23 s

The maximum energy trajectories showed approximately 5% improvement in energy gained over the
constant speed trajectories. This is almost entirely realized in the form of higher altitude at the end of the
flight, since the gap was crossed at best L/D for all the maximum energy flights. In this case the optimal
flight strategy consisted of a pull-up to trade some excess initial speed for altitude followed by constant speed
flight at approximately the minimum sink speed. Speed increased to best L/D to cross the gap. Since the
uav has significantly slower minimum sink speed it is not surprising it gained more altitude on the ridge,
but this advantage was lost while crossing the gap: both aircraft crossed the gap at their respective best
L/D and reached the far side at the same altitude. The larger gain in energy shown by the small uav is due
to the lower speed, which increases the relative importance of altitude in the total energy.

Referring back to Figure 5, we see that maximum energy for both the uav and sailplane occur at
maximum altitude when the wind profile decreases with the square of altitude (the polynomial wind field
used here approximates a 1/h2 wind field). It is therefore not surprising that the maximum energy trajectories
computed here consist of flight at low speed to gain maximum altitude followed by flight at best L/D to cross
the gap. Note that it is likely that there are cases where the maximum energy trajectory closely matches a
minimum time trajectory: this will depend on both the wind field and aircraft properties.

Recall the assumption of Section V that speed is generally constant during a trajectory segment (i.e.
changes in speed between segments occur over a short time interval). The largest change in speed observed for
both aircraft was approximately ∆va = 18m/s (this occurs at the beginning of the minimum time trajectories
as the aircraft dive to lose altitude and gain speed). The uav flew the next segment at approximately 29
m/s, resulting in a time-to-fly of approximately 34 seconds; the sailplane flew at approximately 42 m/s for
the next segment, resulting in a time-to-fly of approximately 24 seconds. For the uav considered here, the
specific drag force (D/m) in steady flight at 12m/s (the initial velocity) is 0.3 m/s2 and at 29 m/s (speed for
the next segment) is 1.27 m/s2. Both are significantly less than the acceleration due to gravity, hence the
time required to change speeds will be on the order of seconds, even for the large speed change demanded
at the beginning of the flight. The assumption of constant speed over a segment is therefore adequate even
for the short segments considered in this example.

VII. Conclusion

This paper has introduced a system to enable small uninhabited aerial vehicles to extract energy from
the atmosphere. The (LD)2 (long duration, long distance) flight which is enabled by autonomous energy
extraction has the potential to greatly improve the ability of small and micro uavs to fulfill current missions
and may permit these vehicles to perform tasks which are currently impossible due to range and endurance
limits.

A critical component of (LD)2 flight is trajectory planning to exploit atmospheric lift. This paper has
presented a methodology to generate these lift-exploiting trajectories. A point mass model for the aircraft
is used and the flight is spatially discretized. A polynomial wind field is assumed and both vertical and
horizontal wind components can be considered.

Optimal trajectories for a small autonomous glider (1m2 wing area, 10kg mass) were generated for gliding
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(a) small UAV
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(b) high-performance sailplane

Figure 8. Optimal trajectory for minimum time to goal (solid magenta). Blue arrows show the wind field,
terrain is shown as a green line. For comparison, the dashed magenta line shows the trajectory resulting from
constant airspeed (at best L/D for each wing loading). The lower figure in each pair shows the optimal speed
to fly in each segment, again with solid line showing speed to fly for the optimal trajectory and dashed line
showing the speed for best L/D.
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(a) small UAV
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(b) high-performance sailplane

Figure 9. Optimal trajectory for maximum energy at goal (solid magenta). Blue arrows show the wind field,
terrain is shown as a green line. For comparison, the dashed magenta line shows the trajectory resulting from
constant airspeed (at best L/D for each wing loading). The lower figure in each pair shows the optimal speed
to fly in each segment, again with solid line showing speed to fly for the optimal trajectory and dashed line
showing the speed for best L/D.
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flight along a 60km constant height ridge followed by a 10km gap crossing. The vertical component of wind
speed varied approximately inversely with altitude above the ridge and was zero in the gap. Both minimum
time and maximum final energy trajectories were considered, with the optimal minimum time trajectory
showing significant improvement over the constant speed trajectory and the maximum energy trajectory
also showing (somewhat smaller) improvement. For comparison, optimal trajectories were also computed for
a modern high performance sailplane.
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