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ABSTRACT

This paper describes a system for landing a vertical take-off and landing vehicle on a moving deck using
a monocular vision system and inertial measurement unit. Data from the vision system and IMU are
used to compute an estimate of relative deck position, and a touchdown trajectory generator based on
tau-guidance is used to compute a path to landing. A trajectory-following controller follows the landing
path. Computing relative deck state means that GPS is not required. To tests the system, landings to
both a stationary deck and a moving deck were done in an indoor flight facility using a hexacopter as
flight platform. Truth data was collected using a motion capture system. In all cases tested the vehicle
landed successfully.

NOTATION

bi position of ith deck feature in deck frame
g magnitude of gravitational acceleration
g gravity vector
k tau-guidance parameter
Qrot noise covariance for deck rotation
Qtrans noise covariance for deck translation
rd relative deck position
sc camera position in helicopter frame
si vector to ith deck feature in camera frame
t time
T total thrust
Th transformation from inertial frame to helicopter

body frame
xd deck position
xh helicopter position
xr deck relative state
zcam

i bearing measurement to ith deck feature
zimu acceleration measurements from inertial mea-

surement unit
φ deck relative roll angle (in helicopter frame)
ψ deck relative heading angle (in helicopter frame)
θ deck relative pitch angle (in helicopter frame)
ω helicopter body angular rate vector
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INTRODUCTION

The ability to conduct autonomous resupply and casualty
evacuation missions in all weather conditions will greatly
improve utility of autonomous rotorcraft. The ability to
take-off and land autonomously in high sea states is thus
a critical technology.

Experimental work of this nature has largely been con-
ducted in calm predictable environments. Some work has
been done with articulated landing pads to counter the
motion of the ship. However, this would add consider-
able cost to the ship and it would limit autonomous he-
licopters to ships equipped with the system during rough
seas. The ideal solution would allow the helicopter to
land autonomously on an uncooperative ship and would be
wholly contained within the helicopter.

Vision systems provide information rich measurements
with low weight and power consumption. They are capa-
ble of measuring bearings to features, rates of bearings, and
depth (when using multiple cameras). Vision systems are
also a passive sensor and therefore stealthy. Active sensors
such as LIDAR and millimeter wave radar provide accurate
depth information but at the cost of greater power consump-
tion and often greater weight.

Vision-based landings have been made on stationary sur-
faces (Refs. 9, 12) and pads with a known constant veloc-
ity (Ref. 13). The general problem of landing a helicopter
on a ship is considerably more difficult: the motion of the
ship is driven by pseudo random forcing forces and the air
wake of the ship can have significant impacts on the dynam-
ics of the helicopter. A tether based approach was detailed
in (Ref. 8) but this limits the system to ships with the cor-



Fig. 1. Problem schematic.

rect hardware. Another vision-based landing approach is
described in (Ref. 11) and (Ref. 10).

In earlier work we defined a ship-deck state estimator
that computed the state of the ship in the inertial frame
(Ref. 14). Here the estimator is re-cast so it estimates ship
motion in the helicopter frame. In this formulation, landing
can be defined as regulating the relative ship deck position
and velocity to zero. Further, in the absence of GPS, the
absolute position of the ship deck is unobservable, and es-
timators that attempt to compute an absolute ship deck po-
sition will be unable to do so. A landing system based on
relative deck state estimation is thus independent of GPS.

PROBLEM STATEMENT

Given a helicopter equipped with a monocular camera and
an inertial measurement unit (IMU), the problem at hand is
to enable landing on a ship deck (Figure 1).

The ship deck is undergoing unknown motion in the in-
ertial frame O. A camera fixed in at a known position and
orientation in the helicopter’s frame tracks features located
at known positions bi in the deck-fixed frame D. An in-
ertial measurement unit measures the helicopter’s acceler-
ation (and the gravity vector projected into the helicopter
frame) and angular rate. It is assumed that the helicopter is
equipped with an autopilot module that is capable of follow-
ing moderately high level commands (in the implementa-
tion discussed here, which uses a Y6 multi-rotor as demon-
stration vehicle, this means orientation and total thrust)

The approach taken here is to fuse vision and inertial
data to compute an estimate of relative deck state and to use
this estimate of deck relative state to compute a safe path to
touchdown. A major goal of this research was to develop
a system whose computational overhead is low enough that
all major components can run on a small single-board com-
puter such as an ODroid XU-4. A high level block diagram
is shown in Figure 2.

Given data from a monocular camera and IMU, the key
task is to compute an estimate of the relative ship deck state,
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Fig. 2. Block diagram of vision-based landing system.
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Fig. 3. Relevant coordinate frames.

i.e. to estimate

xr = [x y z φ θ ψ ẋ ẏ ż p q r]T (1)

COORDINATE FRAMES AND SYSTEM MODELS

Coordinate frames

Referring to Figure 3, the camera is located with known
orientation and position sc in the helicopter frame H. A vi-
sion processing system computes bearings si to each marker
located at known positions bi in the deck frame D. The po-
sition of the deck in the helicopter frame is denoted rd .

Deck Motion Model

This system described here tracks the position of the ship
deck relative to the helicopter, expressed in the helicopter
body frame. It uses measurements of helicopter acceler-
ation, angular rates, and attitude from an on-board IMU.
Defining the relative position of the deck as rd = xd − xh,
the velocity and acceleration of the deck relative to the he-
licopter (expressed in the inertial frame) are

drd

dt
=

dxd

dt
− dxh

dt
(2)

d2rd

dt2 =
d2xd

dt2 − d2xh

dt2 (3)



Expressed in the helicopter frame, relative deck motion
is

drd

dt
= ṙd +ω × rd (4)

where rd = [x y z]T (the position of the deck in the heli-
copter frame) and ω is the angular rate of the helicopter
body frame. Acceleration of the deck is

d2rd

dt2 = r̈d + ω̇ × rd +2ω × ṙd +ω ×ω × rd (5)

We are interested in the relative velocity and relative ac-
celeration of the deck:

ṙd =
drd

dt
−ω × rd (6)

r̈d =
d2rd

dt2 − ω̇ × rd −2ω × ṙd −ω ×ω × rd (7)

Substituting relative velocity and acceleration,

ṙd =
dxd

dt
− dxh

dt
−ω × rd (8)

r̈d =
d2xd

dt2 − d2xh

dt2 − ω̇ × rd −2ω × ṙd −ω ×ω × rd (9)

The helicopter’s IMU measures acceleration with re-
spect to the inertial frame (expressed in the body frame)
and the projection of gravity into the body frame:

d2xh

dt2 =

 u̇
v̇
ẇ

+ω ×

 u
v
w

= zimu −Thg (10)

where zimu is the measured acceleration and Th defines
the transformation from the inertial frame to the helicopter
frame. The deck’s relative acceleration is thus a function
of the deck’s acceleration in the inertial frame, the deck’s
relative position and velocity, the helicopter’s angular rate,
and the helicopter’s acceleration:

r̈d =
d2xd

dt2 − ω̇ ×rd −2ω × ṙd −ω ×ω ×rd − (zimu −Thg)
(11)

One must be careful here: the above equation has mixed
coordinate frames. The first term on the right hand side is
expressed in the inertial frame; the rest are in the helicopter
frame.

Here it is assumed that the deck moves at constant ve-
locity, perturbed by zero-mean Gaussian acceleration.

d2xd

dt2 = N (0,Qtrans) (12)

where xd = [xd yd zd ]
T (the position of the deck in the iner-

tial frame) and Qtrans defines the covariance of the Gaussian
noise term used to model deck translational acceleration.

A similar derivation is used for relative orientation.φ̇

θ̇

ψ̇

=

1 sinφ tanθ cosφ tanθ

0 cosφ −sinφ

0 sinφ

cosθ

cosφ

cosθ

(Tdωd −ω) (13)

where ṗ
q̇
ṙ

= N (0,Qrot) (14)

Here ωd defines angular rates of the deck in the inertial
frame; Td defines the transformation from helicopter frame
to deck frame, ω defines angular rotations of the helicopter
frame, and Qrot defines the covariance of the Gaussian noise
used to model deck rotational acceleration.

Note that this constant velocity deck motion model does
not accurately describe the complex dynamics of ship mo-
tion but with a large enough Gaussian noise term, the model
can capture the motion of a wide variety of ships. The at-
tractiveness of this model stems from its simplicity and non-
specificity: it is not dependent on a particular ship.

Vision System

The vision system tracks a set of markers on the ship and
measures bearing and bearing rate (when markers are seen
in consecutive frames). A modified pinhole camera model
is used for bearing measurements (azimuth and depression
angles). For the ith marker

zcam
i =

arctan
(

f si,y
si,x

)
arctan

(
f si,z
si,x

)+nc (15)

where nc is zero mean Gaussian noise. The vector si
is from the focal point of the camera to the ith feature on
the ship deck expressed in the camera’s coordinate frame
(Figure 4).

Recall that the position of the marker in the deck coor-
dinate frame is assumed known. Hence

si = Tcam(rd +TT
d bi − sc) (16)

Here Tcam is the rotation from the helicopter frame to
the camera frame and Td is the rotation from the helicopter
frame to the deck frame. The vector bi defines the position
of the ith marker in the deck frame and the vector sc is the
position of the camera in the helicopter frame.

Bearing rates are found by taking the derivative of equa-
tion (15). The bearing rate for the ith marker is

żcam
i =

 si,x ṡi,y−ṡi,xsi,y

s2
i,x+s2

i,y
si,x ṡi,z−ṡi,xsi,z

s2
i,x+s2

i,z

+nv (17)



Fig. 4. Bearing measurement to the the ith feature.

where ṡi,x, ṡi,y, and ṡi,z are the components of the ve-
locity of the ith marker in the camera frame. It is assumed
that bearing rate measurements are corrupted by zero-mean
Gaussian noise nv.

The velocity of the ith marker in the camera frame is
found by taking the derivative of the equation (16).

ṡi = Tcam(ṙd +ω × rd −TT
d Ω

T si) (18)

where Ω is the skew symmetric matrix representing the
cross product of the difference between the helicopter body
rate and ship deck body rate in the helicopter frame, that is

Ω = (ωd +Tdω)× (19)

UNSCENTED KALMAN FILTER

Deck motion predictions, measurements from the IMU,
and measurements from the vision system are fused to-
gether using an unscented Kalman filter. UKFs are capa-
ble of estimating systems with highly nonlinear dynamics
and have been used in several vision based estimation prob-
lems (Refs. 1, 3).

The dynamics of the time update step of the UKF can be
written compactly as

ẋr = f (xr,zimu) (20)

Equation (11) and Equation (13) define deck motion in
the helicopter frame; Equation (12) and Equation (14) de-
fine deck acceleration in the inertial frame (which are driven
by zero-mean Gaussian noise). Since we are estimating
deck state in the helicopter frame, the motion model is not
affine in the process noise (which is acting on the deck in
the inertial frame).

In the hardware implementation used here, a fourth or-
der Runge Kutta integration is used to discretize the time
update equations.

The measurement update can be described compactly as

zvision =


zcam

1
żcam

1
zcam

2
żcam

2
...

 (21)

where zcam
i is given by Equation (15) and żcam

i is given by
Equation (17).

Note that the measurement update step assumes either:
(1) features are labeled, so that measurements can be prop-
erly associated; or (2) a method for data association has
been implemented. Here we have explicitly implemented
data association.

APPROACH TRAJECTORY GENERATION

Given an estimate of relative deck state, the vehicle must
now compute a safe, dynamically feasible trajectory to
touchdown.

Trajectories were generated using the ecologically in-
spired Tau theory (Ref. 4). Kendoul (Ref. 2) applied ap-
plied this theory to generate a biologically inspired TauPi-
lot. Tau theory has been successful in describing the landing
behaviors of hummingbirds (Ref. 6), pigeons (Ref. 5), and
bats (Ref. 7). Tau theory is based on the evidence that time
to contact is commonly used in the guidance of movement.
The strategy used by birds is to keep tau dot constant. So

τ̇ = k (22)

where τ is the ratio between the distance to the goal and
the velocity towards it. Solving this equality for position,
velocity, and acceleration yields

χ(t) = χ0

(
1+ k

χ̇0

χ
t
) 1

k
(23)

χ̇(t) = χ̇0

(
1+ k

χ̇0

χ
t
) 1−k

k
(24)

χ̈(t) = χ0
χ̇2

0
χ
(1− k)

(
1+ k

χ̇0

χ
t
) 1−2k

k
(25)

In the Tau-dot equations, trajectories begin with a pos-
itive velocity towards the destination. In many situations
there is no initial velocity. The solution proposed by tau
theory is to have the gap follow an intrinsically generated
guiding gap

χ

χ̇
= k

1
2

(
t −

T 2
g

t

)
(26)



Table 1. Touchdown characteristics with different
ranges of k.

k range touchdown χ̇ touchdown χ̈

0 < k < 0.5 0 0
.5 < k < 1.0 > 0 inf

1.0 = k χ̇0 0
1.0 < k inf inf

where Tg is the time elapsed while closing the distance.
This gap closing matched to the gap was based on the be-
havior of electricity through neurons (Ref. 4). Solving for
the trajectory gives

χ =
χ0

T
2
k

g

(
T 2

g − t2) 1
k (27)

χ̇(t) =−2
χ0

T
2
k

g

1
k

t
(
T 2

g − t2) 1−k
k (28)

χ̈(t) = 2
χ0

T
2
k

g

1
k

t
(

2− k
k

t2 −T 2
g

)(
T 2

g − t2) 1−2k
k (29)

where the value of k determines the trajectory’s charac-
teristics. For values of k less than zero there is no touch-
down, the distance grows larger and never touches down.
For k values between 0 and 0.5 the touchdown has zero ve-
locity and zero acceleration. Table 1 contains the different
touchdown possibilities as a function of k.

The trajectory generated to the deck was defined by three
separate trajectory’s, one in each axis of the deck’s refer-
ence frame. A value of k = 0.3 was used for each compo-
nent as this provided attractive touchdown properties.

TRAJECTORY FOLLOWING CONTROLLER

Trajectory following control uses a feed forward/feedback
approach, where the acceleration from the tau-guidance ap-
proach trajectory is used as a feed forward term and feed-
back is done using the sequence of velocities and posi-
tions from the tau-guidance trajectory. This is equivalent
to proportional-derivative control of position along the tra-
jectory combined with commanded acceleration. In effect,
the helicopter is connected to the desired trajectory by a vir-
tual spring that provides desired accelerations to the inner
loop controller (Figure 5).

The resulting commanded accelerations are

ẍcmd =
kx

m
(xtra j − x)+

bx

m
(ẋtra j − ẋ)+ ẍtra j (30)

ÿcmd =
ky

m
(ytra j − y)+

by

m
(ẏtra j − ẏ)+ ÿtra j (31)

z̈cmd =
kz

m
(ztra j − z)+

bz

m
(żtra j − ż)+ z̈tra j (32)

y 

x 

z 

Fig. 5. Schematic of trajectory following control show-
ing the “virtual spring.”

In the case of a multi-rotor (such as the 3DRobotics Y6
used here), these accelerations are achieved via pitch, roll,
and total thrust. The relation between attitude, throttle, and
acceleration is ẍ

ÿ
z̈

= TT
h

 0
0
−T
m

+g (33)

Note that z is positive down and the vehicle thrust vec-
tor is directed upwards in the vehicle’s body −z direction.
Commanded accelerations can thus be achieved (assuming
they are within the limits of vehicle actuation capabilities)
by solving  mẍcmd

mÿcmd
mg−mz̈cmd

=

−T sinθ cosφ

T sinφ

T cosθ cosφ

 (34)

Here we assume that the vehicle is near hover at all
times, hence pitch and roll angles are small. Commanded
thrust, roll, and pitch can then be solved in closed form:

Tcmd = m(g− z̈cmd) (35)

φcmd = m
ÿcmd

Tcmd
(36)

θcmd =−m
ẍcmd

Tcmd
(37)

These commands are then sent to the autopilot module.

TOUCHDOWN CONTROLLER

In the final portion of the flight, the desired position of the
vehicle switches from the state generated by the tau module
to a position 10 cm below the deck directly under the vehi-
cle. The same trajectory following controller was used for
the touchdown portion of the flight, though in this portion
there was no feedforward portion of the trajectory. This
change in the desired position allowed the vehicle to land
more softly than it would have with a motor kill at the end



of the trajectory. It also protected the vehicle from catching
landing gear on the deck if the vehicle arrived at the deck off
the center of the deck. This touchdown controller allowed
the vehicle to terminate flights on the level deck safest and
consistently. Note that Kendoul used a similar approach:
tau guidance was used to control an action gap to zero, and
a controller to regulate the gap to zero was activated when
the gap was adequately closed (Ref. 2).

HARDWARE IMPLEMENTATION AND TEST
RESULTS

Hardware Description

A 3DRobotics Y6 multi-copter was used for all flight tests
described here. It is equipped with a PixHawk autopilot
module (running the PX4 flightstack), an ODroid XU-3 sin-
gle board computer, and an mvBlueFox camera. A six de-
gree of freedom Stewart platform is used to model the mov-
ing ship deck (see Figure 6).

Figure 7 shows how information moves through the sys-
tem. The ODroid hosts all algorithms required for flight:
deck state estimation, vision processing, trajectory follow-
ing control, path planning, and high-level control. Robot
Operating System (ROS) version Indigo manages all pro-
cesses and messaging.

The PixHawk autopilot module includes rate gyros, ac-
celerometers, a magnetometer, and GPS module. It passes
inertial measurements to the ODroid via a serial port; a ROS
node parses inertial data and publishes it to the ROS net-
work.

A vision node obtains raw images from the camera and
publishes bearings and bearing rates. The estimator node
subscribes to both inertial and vision measurements, and
publishes the deck state estimate.

A trajectory generator node subscribes to the estimates
and uses tau-guidance to compute trajectories to touch-
down; it publishes the trajectory as a sequence of nominal
positions, velocities, and accelerations.

A trajectory following controller node subscribes to the
trajectory and to the deck state estimates; it sends com-
manded throttle, roll, and pitch commands to the autopilot.

Estimated states are also sent to a ground station via
wifi, where they can be monitored by a human supervi-
sor. Higher level commands (such as enabling autonomy)
are sent via the ground station to the PixHawk, which then
sends the command to the ODroid. We can thus enable and
disable autonomy, passing control between a human opera-
tor and the autonomy system carried on board the vehicle.

The locations of the lights on the deck can be seen in
table 3. The distance in position between the lights on the y
axis was 20.4 cm and the distance between the lights on the
x axis was 18 cm.

Table 2. Gains for trajectory following controller

x y z
k(·) 1.0 1.0 1.0
b(·) 2.0 2.0 2.0

Table 3. light locations in the deck frame (cm)

x y z
-12.8 0 0
5.2 0 0
0 10.2 0
0 -10.2 0

Test Process

Deck state estimates were sent to the ground station so
the validity of deck estimates could be verified before
each flight. If deck estimates were reasonable, the vehi-
cle entered autonomous mode. As the vehicle enters au-
tonomous mode, trajectories were generated in the taug
module. These trajectories were then tracked by the tra-
jectory following controller whose outputs, desired attitude
and throttle, were passed to the Pixhawk. Once the vehicle
had landed, manual control was resumed and the vehicle
was flown back above the deck. Once the vehicle was close
to the nominal starting position, the UKF was reset from the
ground station and the process was started again.

Stationary deck

Sixty four approaches to a stationary deck were conducted,
with approach paths shown in Figure 8 (subfigure (a) shows
a top-down view, subfigure (b) shows height vs. distance to
the deck). Note that “distance to deck” is computed with re-
spect to the center of gravity of the vehicle, which at the mo-
ment of touchdown is approximately 10 centimeters above
the deck. All approaches resulted in safe touchdown.

Error in the deck state estimate as a function of distance
to the deck is shown in Figure 9. Each run is shown as a grey
line; the average over all runs is shown as black dots. Note
that the error steadily decreases as the vehicle approaches
the deck.

The top plot of Figure 9 shows the 2-norm of the total
estimate error, where the units for position, attitude, veloc-
ity, and body rate are meters, radians, meters per second,
and radians per second respectively.

The middle plot shows the history of position error. Ini-
tial errors are large because of estimator initialization, but
estimates rapidly converge to centimeter-level accuracy.

The bottom plot shows the error in attitude estimates.
The worst-case attitude error is roughly fifteen degrees:
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Fig. 6. Small hex-copter used for hardware tests with Stewart platform landing pad in background. All vision
processing and state estimation are done on the single-board computer mounted on top of the vehicle; the camera
is mounted underneath. The Stewart platform is capable of six degree of freedom motion and can be programmed
to mimic arbitrary ship deck motion.

Fig. 7. How information migrates through the system. The Pixhawk, Odroid, and Camera are carried on the hex-
copter pictured in figure 6. The ground station is used to verify the estimates from the UKF and to reset the system
between runs.
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Fig. 8. The paths taken to the deck in the horizontal plane (a) and the height above the deck against the distance to
the deck in the horizontal plane.

even with this large attitude error the vehicle still landed
safely. Note that the angle error tends to shrink during the
initial approach, and then begins to grow during the final
phase of the approach. This is most likely due to imperfect
camera calibration: as the distance to the deck gets small,
features tend to appear at the edges of the field of view,
where calibration errors have a large effect. Further, it is
more likely that a feature will leave the field of view when
the deck is close, reducing the information that can be ob-
tained from the vision system.

Figure 10 shows position estimates, error, two sigma
bounds, truth, and the autonomy flag over seven consecu-
tive runs (with a run consisting of hover, estimate initializa-
tion, hand-over to autonomy, approach, landing, and man-
ual repositioning to hover). The hand-over to autonomy is
shown by the autonomy indicator going high. Note that es-
timate error remains generally within the 2σ bounds once
the estimator is initialized, and the rapid approach to the
deck once autonomy is enabled. A complete sequence takes
approximately 20 seconds to complete.

Figure 11 shows position estimate error and the com-
puted covariance of the estimate error as a function of dis-
tance for a single representative run. The initial error and
covariance is large due to estimate initialization, but rapidly
approaches centimeter levels as the vehicle approaches the
deck. Further, the estimate error stays generally within 2σ

bounds. Close examination of the 2σ plot shows a saw-
tooth pattern that corresponds to the vision updates.

Moving deck

A total of eight approaches to a moving deck were per-
formed. Figure 12 shows a sample of deck motion about
the mean deck state. As a reference scale, the hexacopter is
approximately 30 centimeters across. All eight approaches
resulted in safe touchdown.

Deck motion in these tests was fairly slow, with roll and
pitch having a period of approximately 20 seconds, and
surge and sway having a period of approximately 17 sec-
onds. A single approach is flown in about 8 seconds from
the moment of autonomy activation.

Figure 13 shows error in deck state estimates for all eight
runs (as a grey line for each run) and the average over all
runs (as black dots). Qualitatively, there is very little dif-
ference between the moving deck cases and the stationary
deck cases. Position error begins at approximately thirty
centimeters and rapidly converges to centimeter level accu-
racy at touchdown; angle errors begin large and converge
rapidly to touchdown.

Figure 14 shows the deck true relative position, esti-
mated relative position, true error, and estimated error ver-
sus time for a representative run. The autonomy flag is high
when autonomy is enabled. Note that error in estimated po-
sition remains generally within 2σ bounds and converges
rapidly to zero. Touchdown occurs at approximately 133
seconds, and the vehicle is manually flown back to an ini-
tial hover position.

Similar behavior is shown for attitude estimates in Fig-
ure 15. Errors remain within 2σ bounds and remain below
five degrees.
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here requires minimal setup between flights which allows for rapid testing and verification.
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Fig. 12. The movement of the deck about its mean posi-
tion and attitude.

CONCLUSION

This paper has presented a method for autonomous landing
on a moving deck using a monocular vision system and an
inertial measurement unit carried on the aircraft. A sigma-
point Kalman filter computes an estimate of relative deck
state and uses tau-guidance to compute a path to touch-
down. A path-following controller follows this trajectory
to touchdown. This approach is independent of GPS and
uses only sensing carried aboard the vehicle.

Hardware tests were conducted in an indoor flight fa-
cility, with a motion capture system providing truth data.
Sixty four touchdowns to a stationary deck showed that the
deck state estimator remains well-behaved (i.e. the error in
deck state estimate is well described by the estimated co-
variance) and all flights resulted in safe touchdown. Eight
flights to a moving deck (motion was not known a priori to
the estimator) were conducted: all resulted in well-behaved
state estimates and safe touchdown.

Future work will consist of expanding the envelope of
deck motion.
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