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Abstract

This thesis describes the development of an adaptable control architecture that can
be used to automatically synthesize inner-loop controllers for new configurations
of modular aircraft. This will allow for new configurations to be flown without
the need for extensive flight testing to tune the controller gains for favorable
flying characteristics. This is achieved by breaking the aircraft geometry into
finite strips and calculating the forces and moments on each strip using 2D airfoil
approximations. The contributions of each finite strip are then summed to obtain
the approximate equations of motion for the aircraft. These equations are then
linearized about a cruise setpoint. This linearized dynamics model for the aircraft
is then used to synthesize inner-loop controllers for roll, pitch, and yaw. These
controllers can be implemented within an on-board autopilot system, therefore
enabling autonomous flight ’out of the box’. The performance of these controllers was
simulated and compared to controllers generated using an established vortex-lattice
code to determine the accuracy of the finite strip method.
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Chapter 1
Introduction

This thesis describes the development of a control architecture for reconfigurable
uninhabited air vehicles (UAVs). The intent was to develop a control architecture
that can automatically detect aircraft configuration and synthesize controllers.
This allows for a controller that can be quickly and easily adapted to new aircraft
configurations. This should then allow the aircraft to fly autonomously without the
need to tune the controller gains for each new configuration. This can be vital in
situations where time is not available for a full flight test regime to be run before a
mission.

1.1 Research Motivation
As additive manufacturing (commonly known as 3D Printing) becomes more
commonplace, with relatively low-cost (<$600 in 2017) printers widely available,
the use of AM in the manufacture of air vehicles is increasing[13][1][17]. This trend
will continue as prices drop, material properties improve, and build speed and
volume increases. The benefit of AM is the ability to create structures of extreme
complexity that would be impossible to manufacture using conventional methods.
This allows for new designs that can maximize strength and usable interior space,
while also minimizing weight. While most consumer 3D printers use plastic as the
building material, metals and composites are also available to be used with some
industrial printers. Several build methods are used by different printers depending
on the material used and the cost of the machine. The cheapest and most common
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Printer Cost Manufacturer Build Method Build Material Build Volume (mm)
Original Prusa i3 MK2[11] $699 Prusa Research FDM Plastic 250 x 210 x 200

Replicator Mini+[12] $1,299 MakerBot FDM Plastic 102 x 127 x 127
Makergear M2[11] $1,825 Makergear FDM Plastic 254 x 203 x 203
Fortus 900mc[21] $250,000 Stratasys FDM Plastic 914 x 610 x 914
EOS P 396[11] $250,000 EOS SLS Plastic, Metal 340 x 340 x 600
X Line 2000R[6] $1,600,000 Concept Laser SLM Metal 800 x 400 x 500

Table 1.1: Examples of commercially available 3D printers

build method for plastics is Fused Deposition Modeling (FDM), which involves
liquefying the plastic and extruding it onto a build platform to construct the desired
shape for each layer. A more expensive method used for plastics, metals, as well as
a variety of other materials is Selective Laser Sintering (SLS). This method involves
using a laser to melt and solidify the powdered source material in the desired shape
for each layer. A similar method to SLS called Selective Laser Melting (SLM) uses
a laser to completely melt metal powder such that is solidifies into a completely
solid homogeneous part [18]. A list of some examples of different types, sizes, and
prices of 3D printers is shown in Table 1.1.

One of the biggest drawbacks of current 3D printers is the limited build volume,
which restricts the maximum size of components that can be manufactured. What
this results in, with respect to 3D printing aircraft, is either limiting the overall
size of the printed vehicle, or breaking up the structure into smaller modules that
can then be assemble together into an aircraft.

Figure 1.1: Example of modular aircraft
configuration

The key advantage of AM is that
custom parts can be made on-site and
tailored to specific design requirements.
Within the context of UAVs, an opera-
tor could specify a mission (e.g. carry
a sensor payload of given size and mass
over a given distance and circle a loca-
tion for a given time) and have an air-
craft automatically generated that can
fly the mission. Critical design param-
eters include wing area, wing span, and

required power; constraints include payload size, weight, available power, required
endurance, and required range. This thesis considers on-demand additive manufac-
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turing of a UAV using a limited build volume 3D printer. In this context, the UAV
will consist of multiple 3D printed modules that are assembled to form the complete
vehicle. An example of a modular aircraft configuration is shown in Figure 1.1,
where C represents a common section that is universal for any configuration and
S represents a configuration specific section. These configuration specific sections
could contain a payload, batteries, sensors, or control surfaces. To successfully
design an AM aircraft, aircraft design has to be closely coupled to manufacturing
design. The manufacturing design ensures that the aircraft can be successfully built
using a given printer’s build volume and material constraints. The aircraft design
must then take these constraints and determine a viable configuration for the given
mission. The number of adjustable parameters available has the ability to pro-
duce a large quantity of aircraft configurations that meet the required constraints.
However, not all of these configurations will be viable, the majority will be either
aerodynamically unstable or have unfavorable handling characteristics. Designing
and testing a controller for each of the configurations to determine viability is not
practical. Thus a method is needed that can automatically determine aerodynamic
stability and controllability in-line with the design process, this thesis describes
such a method. The example aircraft used in this thesis were designed to be
manufactured on a Fortus 450mc, with the constraints of using ULTEM plastic
aiming to minimize the use of internal support material and a build volume of 16" x
14" x 16". A CAD model of an example aircraft is shown in Figure 1.2. The variable
design parameters for this family of aircraft are, the number of wing segments (3,
5, or 7), the number and location of motor assemblies (from one up to the total
number of wing segments), the number and location of tail assemblies (from two
up to the total number of wing segments), and the size and location of the payload.
These design parameters result in a large number of possible configurations that
would be impractical to work with. This motivates the desire to autogenerate
controllers to help eliminate non-viable configurations.
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Figure 1.2: CAD model of example UAV configuration

One of the potential uses of the technology and methods developed for this
project is for a front-line UAV that can be outfitted with various sensor packages and
perform various mission profiles. In the field access to engineers able to reconfigure
the aircraft for these differing mission profiles and air-frame geometries is limited
or non-existent. Therefore having a system that can determine aircraft geometry
for you as well as write the control laws that permit autonomous flight given the
specific mission and payload can be vital to mission success.

In order to successfully implement this system several technical challenges
related to the flight vehicle design need to be addressed. Aerodynamics, structures,
propulsion, and flight control are the key components of flight vehicle design and
must each be given equal attention. This thesis focuses on the flight control aspect,
specifically in the development of a control architecture that can automatically
synthesize controller gains for a given configuration. In this thesis the controller
synthesis problem is further constrained to focus on inner loop control, i.e., control
of roll, pitch, and yaw rates.

1.2 Control Law Synthesis for Modular Aircraft
In order to better understand the effect a change in the aircraft’s geometry will
have on the control law for that aircraft it is necessary to understand how the
controller works. Shown in Figure 1.3 is a block diagram representation of a system
with a feedback controller implemented . The plant G(s) represents the dynamics
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of the system, in this case the dynamics of the aircraft. The output of the plant is
fed back and compared to the commanded reference condition (e.g., pitch angle).
The difference between the output from the dynamics and the reference input is
the error for that particular variable. The error is the input to the controller K(S)
which has dynamics such that the output from the controller is the required control
input to the plant dynamics (e.g., elevator deflection) in order to bring the error to
zero.

Figure 1.3: Block diagram of system with controller

A controller is designed to work optimally with a specific plant model. Therefore
changes to the plant model require changes to the controller or else the system could
become unstable/uncontrollable. The addition of components to a modular aircraft
will in general cause significant changes to the aircraft’s dynamics. For example
if an additional wing segment is added there could be an effect on weathercock
and roll stability and may also affect higher level controls such as cruise speed. In
addition, the extra wing segment may alter other stability and control derivatives
enough to affect controller performance. While these changes won’t necessarily
affect the stability or controllability of the aircraft, they must be accounted for
when designing the controller to ensure optimal performance.

Classical control techniques such as PID control, which are still in use in a
wide array of manned and unmanned aircraft, including the Pixhawk autopilot
system used in this thesis, require reasonably accurate flight dynamics models to
function properly. The next step is to come up with a method to accurately model
aircraft dynamics that is easily adaptable to different module configurations. The
technique used in this thesis to determine this dynamic model for an arbitrary
aircraft configuration involves breaking the aerodynamic surfaces of the aircraft
into discrete strips. These strips are treated as 2D airfoils in order to calculate
their aerodynamic coefficients, i.e., lift, drag, and moment coefficients. Using the
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aerodynamic coefficients, the forces and moments for each strip are summed to get
the overall equations of motion (EoMs) for the aircraft. This method is henceforth
referred to as the ’strip model’.

1.3 Pixhawk Autopilot
The research in this thesis is done assuming the use of a Pixhawk autopilot system.
The Pixhawk is an open-source autopilot hardware module suitable for most mobile
robotics platforms, land, sea, or air. The hardware module, shown in Figure 1.4,
contains the main processor for the vehicle that the autopilot software is loaded to.
The hardware module also contains the basic required sensors, a 3D accelerometer,
gyroscope, magnetometer, and barometer, as well as connection ports for other
sensors that may be needed (e.g., GPS, airspeed, etc)[15]. There are two autopilot
software ’flight stacks’ that can be used with the Pixhawk, the ArduPilot[4] and
PX4[16] open-source autopilot flight stacks.

Figure 1.4: Pixhawk Hardware Mod-
ule[15]

This thesis uses the PX4 autopilot
software as the basis for the control ar-
chitecture development. The PX4 au-
topilot uses PI controllers for the inner-
loop angular rate controllers, which will
be the focus of the controller develop-
ment presented in Chapter 4. Figure 1.5
shows a block diagram schematic of the
pitch control loop used in the PX4 au-
topilot. The control scheme consists of
an inner PI controller around the pitch
rate with a pitch angle proportional con-
troller wrapped around it. The outer-
most loop shows an airspeed hold con-
troller, however this could change de-

pending upon the mode the autopilot is in. In airspeed or altitude hold mode the
respective controller is applied in the outer-loop, while for stabilized manual mode
the pilot’s input goes straight to the pitch angle command.
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Figure 1.5: PX4 Autopilot Pitch Control

1.4 Related Work
There are two main fields of research that relate to the work done in this thesis:
aerodynamic modeling of flight vehicles and control synthesis. The relevant aerody-
namic modeling background is mainly vortex lattice methods (used here to verify
the main approach) and blade element theory. In this thesis, controller synthesis
is done in a manner intended to be consistent with the control architecture on
a commercially available autopilot unit (the Pixhawk autopilot with PX4 flight
software).

1.4.1 Aerodynamic Modeling of Flight Vehicles

The method used to develop the strip model is very similar to blade element
theory, which is commonly used to predict the performance of propellers, fans,
or wind turbines. Blade element theory involves dividing a propeller blade into
discrete independent sections. 2D airfoil properties are then used to obtain a force
balance, which when coupled with a momentum balance yields a set of non-linear
coupled equations. These non-linear equations are solved by iteration to obtain
the contribution of that particular section. The components from each section are
then summed to obtain the overall thrust and torque provided by that propeller
blade[5]. A depiction of the blade discretization can be seen in Figure 1.6. An
illustration of the forces and velocities on an individual element can be seen in
Figure 1.7. V0 is the axial flow experienced by the propeller (aircraft forward speed
in most cases). V1 is the velocity due to the angular rotation of the propeller. θ
is the geometric pitch angle of the blade element and α is the effective angle of
attack seen by the blade element. While this method contains non-linearities that
require solving through iteration, the strip model described in Chapters 2 and 3 is
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linearized so that (assuming small perturbations) the forces and moments can be
resolved directly.

Figure 1.6: Blade Element Theory Discretization[5]

Figure 1.7: Blade Element Theory Elemental Forces[5]

Selig[19] discusses using a strip model based on blade element theory to model
wing aerodynamics within a real-time simulation. The method uses look-up tables
calculated with a nonlinear lifting-line code to get aerodynamic properties of each
discrete section. Combined with contributions from other surfaces the forces and
moments on the aircraft can be resolved in real time. This allows for an accurate
aerodynamic model of the aircraft even in highly nonlinear flight regimes.
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Typically blade element theory uses the vortex panel method to calculate the
performance of 2D airfoils. The commercial panel code used to predict airfoil
performance in this thesis was Xfoil[8]. The idea behind the vortex panel method
is to discretize the 2D airfoil into separate ’panels’ of length si. At the center of
each panel is a control point with a vortex of unknown strength γi. A depiction of
this vortex distribution is shown in Figure 1.8.

Figure 1.8: Panel Method Vortex Distri-
bution[3, p. 285]

The point P is an arbitrary point at
which the contribution from each vortex
can be summed to get the total velocity
potential at that point. When P is at
a control point a boundary condition of
zero normal velocity is applied. When
that boundary condition is applied to
all control points around the airfoil it
creates a streamline along the surface
of the airfoil. The boundary condition
at each control point coupled with the

contributions of all other vortices on a given control point leads to a system of n
equations and n unknowns, where n is the number of panels and the unknowns
are the individual vortex strengths. This system of equations can then be solved
resulting in the values for the panel vortex strengths γi. The total lift on the airfoil
can then be found by

L′ = ρ∞V∞
n∑
i=1

γi si (1.1)

where L′ is the lift per unit span of the airfoil and ρ∞ and V∞ are the density and
velocity of the air stream[3, pp. 361-365].

The most common way to model aircraft aerodynamics is to use vortex lattice
method to create a linear dynamics model. The vortex lattice code used to obtain
the baseline aerodynamic models in this thesis was AVL[7]. Vortex lattice works
in a similar vein to the vortex panel method, except instead of panels around the
surface of an airfoil, the vortices are applied in horseshoe shaped sheets to the entire
surface of a given lifting surface. A similar boundary condition is also applied, in
that the normal component of the velocity induced by all the other vortices should
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be zero at any point on the lifting surface. A depiction of a lifting surface, covered
by this vortex sheet is shown in Figure 1.9. Once again a system of simultaneous
algebraic equations is obtained and can be solved to get the lift distribution over
the wing[3, pp. 457-462].

Figure 1.9: Vortex Lattice Vortex Distri-
bution[3, p. 458]

Park[14] shows the use of vortex lat-
tice method in determining the aero-
dynamic model of a small UAV. The
frequency response of this model is then
compared to flight test data. The re-
sults show that the vortex lattice linear
model roughly predicts aircraft perfor-
mance and can be fine-tuned with flight
test data.

Another method for simulating air-
craft aerodynamics is computational
fluid dynamics (CFD), which uses fi-
nite difference to solve the Navier-Stokes
equations in the flow-field surrounding
the aircraft. A detailed explanation of
the Navier-Stokes equations can be found in [3, pp. 908-911]. Since the finite
difference method requires iteratively solving the equations at every point in the
flow-field it is very computationally expensive. For this reason it is typically used
as a validation tool for aerodynamic models created by other means, rather than
to directly create a model. Murphy et al.[2] use CFD simulation and wind tunnel
data to create a linear aerodynamic model of an aircraft in an oscillatory roll by
estimating the unknown parameters using harmonic analysis and two-step linear
regression. In this case the CFD data was used to augment the wind tunnel data
for conditions that were not tested.

1.4.2 Controller Synthesis

There is currently not a lot of published research in the area of modular unmanned
aerial vehicles and developing control laws for them. There is a much more
significant amount of research being done on adaptive control systems for the
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purpose of reacting to control surface loss or airframe damage. That research is
primarily on a reactionary control system for adapting to changes in-flight rather
than being able to quickly adapt the control system to completely different aircraft
geometries in the field.

Forte et al.[10] studied a modular UAV system consisting of n number of
tail-sitting ducted-fan air vehicles configured arbitrarily. The foundations for the
calculations of the system’s equations of motion are very similar to those presented
in this thesis. They performed a force and moment balance on each air vehicle and
then using the individual component’s location and orientation respective to the
center of gravity of the formation, formed the dynamic model of the entire system.
They then used this dynamic model to construct a controller for the system that
stabilizes the vehicle about a set-point.

Zhang et al.[22] look at a different way to solve a similar problem as is presented
in this thesis. The seek to use immersion and invariance based estimation and
adaptive backstepping control to create a controller that requires no previous
knowledge of some of the aerodynamic properties of the aircraft. The immersion and
invariance estimator calculates an estimate of the unknown parameter using both a
partial estimate based off of a dynamics update law as well as a prescribed non-linear
function. The update law is chosen such that the estimation error dynamics have
an equilibrium at zero error, and the non-linear function is chosen such that the
dynamics are stable. The backstepping controller creates an intermediate control
law designed to render the closed-loop system stable to perturbation inputs and
estimator error. The result is a functional aircraft pitch controller that is stable
without knowing the longitudinal damping characteristics of the aircraft.

This work, while relevant to the topic discussed in this thesis, is not directly
applicable and therefore a new method needs to be created. Forte’s model is
for a set of individual UAVs connected together each with one control (thrust).
Since surfaces on a fixed wing aircraft can have multiple controls, or none at all,
while significantly affecting the vehicle’s dynamics, this method is not sufficient.
Zhang’s method is much more complex and computationally intense, therefore not
suitable for calculating controllers for numerous configurations. In addition, the
configurations can be vastly different and therefore attempting to estimate the
variable parameters around a baseline may not yield a valid result.
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1.5 Theoretical Background
The strip model uses several theoretical models in order to accurately predict
aerodynamic performance while also maintaining computational simplicity. Some of
these theories are extensions of, or incorporate some of the more fundamental theo-
ries of aerodynamics. The main theoretical models that serve as the foundational
basis of the strip model are the Prandtl lifting-line theory and small disturbance
theory.

1.5.1 Prandtl Lifting-Line Theory

Ludwig Prandtl’s lifting-line theory was the first practical theory used to predict
the lift generated by a finite wing. The theory supposes that a finite wing can
be replaced with a fixed bound vortex the same width as the span of the wing.
From the Kutta-Joukowski theorem this bound vortex will experience a lift per
unit span of L′ = ρ∞V∞Γ where Γ is the strength of the bound vortex. From
Helmholtz’s theorem this vortex filament cannot end within the fluid. To avoid
this the vortex filament continues as two infinite free vortices traveling downstream
from the wingtips. The bound vortex and the two free vortices are known as a
horseshoe vortex. A depiction of a horseshoe vortex is shown in Figure 1.10.

Figure 1.10: Finite Wing Modeled as a Horseshoe Vortex[3, p. 424]

This single horseshoe vortex unfortunately does not accurately represent a real
finite wing. The solution that Prandtl’s theory states, is to superimpose an infinite
number of these horseshoe vortices each with a differential strength of dΓ. A
depiction of the superposition of the horseshoe vortices is shown in Figure 1.11.
The strengths of these vortices can be integrated over the span of the wing to get
the vortex strength as a function of distance along the span. The lift distribution
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can be obtained by applying the Kutta-Joukowski theorem. This lift distribution
is integrated over the entire span to get the total lift produced by the wing[3, pp.
424-429].

Figure 1.11: Superposition of an Infinite Number of Horseshoe Vortices[3, p. 427]

The primary result from this theorem used in the creation of the strip model is
the relationship it derives between the infinite wing lift curve slope and the finite
wing lift curve slope. This relationship, for a wing with a general lift distribution, is

a = a0

1 + a0
π eAR

(1.2)

where a is the lift curve slope of the finite wing, a0 is the lift curve slope of the infinite
wing, AR is the aspect ratio of the finite wing, and e is the span efficiency[3, p. 443].
The span efficiency is a function of the wing planform shape. This relationship is
useful for the strip model because it allows the 2D airfoil aerodynamic data to be
modified to better reflect the actual aerodynamic performance of the 3D wing.

1.5.2 Small Disturbance Theory

Small disturbance theory is used primarily as a method for approximating non-linear
systems as linear. This is useful because linear systems are much easier to solve
and often have a closed-form solution. Non-linear systems, with the exceptions of a
few special cases, do not have closed-form solutions and must use computationally
expensive numerical methods to solve. Small perturbation theory states that any
set of non-linear functions can be approximated by a set of linear functions given
that the state variables are subject to small deviations from a steady flight reference
condition, and that the functions and their derivatives are continuous. The linear
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function is given by a Taylor Series expansion of the non-linear function evaluated at
a reference point. The expansion, ∆F (x) = F (x0) + dF

dx

∣∣∣∣
x0

∆x + dF 2

d2x

∣∣∣∣
x0

(∆x)2 + . . .

is then truncated to a first order approximation which, as long as the function and
its first derivative are continuous, is a valid linear approximation. The function
then becomes a simple first order equation based on the value of the function
at the reference point plus the disturbance value of the state variable multiplied
by the derivative of the function with respect to that variable evaluated at the
reference point. This method can also be expanded to functions dependent on
several variables by doing the Taylor Series approximation with respect to each
variable and then summing the resulting components to get the total change in the
function due to the disturbances in its state variables[9, pp. 109-110].

1.6 Potential Applications
The main potential application for this strip model would be to embed it in an
on-board flight computer that connects to microprocessors in each section. These
microprocessors would know if they have a control surface at their location, as well
as their relative location within the aircraft. The flight computer takes these data,
as well as preprogrammed knowledge of the geometry of the modular components,
and creates an input to the strip model of the current aircraft configuration. The
strip model is used to determine the controller gains necessary to autonomously
fly that configuration. These gains are written to a parameter file readable by the
autopilot and uploaded to the autopilot hardware. This will allow for ’plug-and-
play’ adaptability of the system. If a new type of mission is needed and requires a
different configuration, the required modules and surfaces are assembled, the flight
computer identifies the configuration change and writes new controller gains to the
autopilot, then the aircraft is ready to fly.

Another application would be in re-configuring the aircraft controller in case
of actuator failure or airframe damage. Sensors embedded in the control surfaces
and within the aerodynamic surfaces would send a signal to a central computer. A
failure of a control surface or the loss of an aerodynamic surface could would lead
the computer to run the strip model for all remaining/functioning surfaces and
rewrite the control laws to allow the aircraft to maintain control and land safely.

The simple and computationally inexpensive strip model would also be able to
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be embedded within configuration optimization software. This will allow for the
rejection of unstable cases without the need to run a vortex lattice simulation for
each configuration. This has the potential to drastically reduce the computation
time of the optimization software as well enable the use of more parameters in the
optimization. Examples of extra parameters that could be included are

• Wing dihedral/twist angles

• Tail configurations (e.g. V-Tail, H-Tail, T-Tail, etc.)

• Airfoil shape

• Control surface type

1.7 Reader’s Guide
The rest of this thesis is organized as follows

• Chapter 2 describes the problem and the fundamental concepts used to solve
it.

• Chapter 3 details the creation of the linear aerodynamics model for an
arbitrarily configured aircraft as well as the underlying assumptions used to
create this model. The chapter ends with the linearized equations of motion
of a generic aircraft in terms of its stability and control derivatives.

• Chapter 4 derives the control laws used for the aircraft as well as the equations
for the controller gains in terms of the stability and control derivatives.

• Chapter 5 shows the validation of the strip model with respect to the vortex
lattice method and shows the comparison of the controller response between
them.

• Chapter 6 discuses the overall results of this thesis as well as the conclusions
that can be drawn from them. The chapter also describes possible sources of
error and potential future work.
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Chapter 2
Problem Definition

The crux of the problem this thesis attempts to solve is how to get a closed-form
solution for an aircraft’s equations of motion that can be applied to a multitude
of aircraft configurations. A closed-form solution, dependent only upon known
parameters, allows the equations of motion to be determined instantly. With these
equations of motion, the stability and relative contollability of the aircraft become
known. In addition, the inner-loop controller gains necessary for autonomous flight
can be calculated. The method used to calculate the controller gains begins with
breaking the aircraft’s aerodynamic surfaces into individual sections. The main
wing is broken up into discrete sections and grouped together for the purpose of
finite wing corrections, and then all remaining aerodynamic surfaces are treated
as individual sections and put into another group. Each individual section is then
treated as a 2D airfoil, the forces and moments acting on each individual section
are calculated in terms of the section’s geometry, 2D aerodynamic coefficients,
location, as well as the velocity and angular rates of the global aircraft. These
equations of motion are calculated with respect to the section’s local coordinate
frame. Once these force and moment equations are obtained for an individual
section, a coordinate transform is used to obtain that section’s contribution to the
total forces and moments in the global aircraft coordinate frame.
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2.1 Coordinate Frames and Equations of Motion

Figure 2.1: Aircraft Body Frame

The aircraft’s body coordinate frame is
defined in the traditional sense, with the
origin at the center of gravity (CG), the
X-axis out the nose, Y-axis out the right
wing, and Z-axis down. A depiction
of the aircraft body frame is shown in
Figure 2.1. The body frame is defined
with respect to an inertial frame located
at an arbitrary point on the Earth’s
surface. Assuming a flat-earth model,
the X, Y, and Z axes of the inertial
frame are defined in the North, East,
and Down directions respectively. The location of the body frame is given by
a vector rE and its orientation is defined by the Euler angles ψE, θE, and φE.
Standard Euler angle definitions are used, such that

xb =


cθ cψ cθ sψ −sθ

−cφ sψ + sφ sθ cψ cφ cψ + sφ sθ sψ sφ cθ
sφ sψ + cφ sθ cψ −sφ cψ + cφ sθ sψ cφ cθ

xE (2.1)

where c(·) = cos(·) and s(·) = sin(·)[20, p. 26].

Figure 2.2: Section Coordinate Frame

The local coordinate frame of an ar-
bitrary section is defined with its origin
located mid-span at the quarter-chord
point. The X-axis is defined out the
leading edge of the section, the Y-axis
out the right edge of the section, and
the Z-axis out the bottom. The loca-
tion of the local coordinate frame with
respect to the body frame is given by
the location vector rbi . The orientation
of the local frame with respect to the
body frame is defined by the angles θi
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and φi which define the section’s orientation with respect to Ŷ b and X̂b respectively.
A depiction of an arbitrary section coordinate frame and its relation to the body
frame is shown in Figure 2.2.

The key equations of motion of an aircraft, assuming an XZ plane of symmetry
and a body frame aligned with the aircraft’s principle axes, are

X − mg sin θE = m (u̇ + Qw − Rv) (2.2)

Y + mg cos θE sinφE = m (v̇ + Ru − P w) (2.3)

Z + mg cos θE cosφE = m (ẇ + P v − Qu) (2.4)

L = IxṖ − (Iy − Iz)QR (2.5)

M = IyQ̇ − (Iz − Ix)RP (2.6)

N = IzṘ − (Ix − Iy)P Q (2.7)

These assumptions allow any terms including the products of inertia, Ixy, Ixz, and
Iyz, to be dropped[9, p. 101]. Here m is the mass of the aircraft, the I’s are the
moments of inertia, and g is the acceleration due to gravity. The components of
the aircraft’s velocity through the air are given by u, v, and w, and it’s angular
velocities by P , Q, and R All of these quantities are known for a given aircraft
in a given flight condition. Therefore the quantities of interest for characterizing
the motion of an aircraft are the aerodynamic forces and moments (X, Y , Z, L,
M , and N). The remainder of this chapter discusses the method used calculate
these forces and moments by discretizing the aircraft’s aerodynamic surfaces into
finite strips, calculating the forces and moments on each individual strip, and then
summing all contributions together to get the total forces and moments acting on
the aircraft.
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2.2 Forces and Moments on ith Section
Consider an arbitrary section as depicted in Figure 2.2. To calculate the aerody-
namic forces and moments acting on this section, first the relative wind acting on
the section must be determined. This relative wind vector (with components uii,
vii, and wii) is computed using the aircraft’s velocity components (ubb, vbb, and wbb),
angular rates

ωbb =


P

Q

R


as well as the location vector of the section

rbi =


rx,i

ry,i

rz,i


The local velocity vector in the aircraft body frame is given by


ubi

vbi

wbi

 =


ubb

vbb

wbb

 + ωbb × rbi =


ubb

vbb

wbb

+


rz,iQ− ry,iR

rx,iR − rz,iP

ry,iP − rx,iQ

 (2.8)

Using Equation 2.9 the local velocity vector for the section then is transformed
from the aircraft body coordinate frame to the local coordinate frame of the
individual section. This enables easier calculation of the aerodynamic forces on the
section since lift and drag are in local X̂ i and Ẑi directions which are not necessarily
the same as the global X̂b and Ẑb.


uii

vii

wii

 = Ti/b


ubi

vbi

wbi

 (2.9)

The transformation matrix Ti/b, used to transform a vector from the body frame
to the local coordinate frame of the ith section, is an Euler angle transformation
using only pitch and bank and is given by
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Ti/b =


cos θi 0 − sin θi

0 1 0
sin θi 0 cos θi




1 0 0
0 cosφi sinφi
0 − sinφi cosφi

 (2.10)

Here θi is the rotation of the ith segment about the body y-axis and φi is a rotation
about the segment’s resulting x-axis.

The section angle of attack and angle of sideslip in the local coordinate frame
are

αi = arctan(w
i
i

uii
) (2.11)

βi = arctan(v
i
i

uii
) (2.12)

Assuming small angles (which is appropriate because the airfoil is likely to stall
once the local angle of attack or angle of sideslip exceeds 10 to 15 degrees), angle
of attack and angle of sideslip can be written as

αi = wii
uii

(2.13)

βi = vii
uii

(2.14)

The forces and moments for the individual section in its local coordinate frame
are

F i
x,i = 1

2ρ(V i
i )2Si(CL,i sinαi − CD,i cosαi) (2.15)

F i
y,i = 0 (2.16)

F i
z,i = 1

2ρ(V i
i )2Si(−CD,i sinαi − CL,i cosαi) (2.17)

M i
x,i = 0 (2.18)
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M i
y,i = 1

2ρ(V i
i )2SiciCM,i (2.19)

M i
z,i = 0 (2.20)

Again, using small angle approximations, Equations 2.15 - 2.20 can be simplified to

F i
x,i = 1

2ρ(V i
i )2Si(CL,iαi − CD,i) (2.21)

F i
y,i = 0 (2.22)

F i
z,i = 1

2ρ(V i
i )2Si(−CD,iαi − CL,i) (2.23)

M i
x,i = 0 (2.24)

M i
y,i = 1

2ρ(V i
i )2SiciCM,i (2.25)

M i
z,i = 0 (2.26)

where,
V i
i =

√
(uii)2 + (vii)2 + (wii)2 (2.27)

Because different types of aerodynamic surfaces are modeled differently CL,i,
CD,i, CM,i, and αi will differ depending on which surface type is used for that
particular section (all-flying vs traditional). Details on the calculations of these
parameters, as well as descriptions of the different control surface types, are discussed
in Section 3.1.

21



2.3 Transformation of Forces to Global Coordinate
Frame
Now that all of the force and moment equations have been determined in the local
section coordinate frame they must be transformed to the aircraft body coordinate
frame. This transformation allows all of the forces and moments from each section
to be added together to obtain the general aircraft equations of motion. The
transformation involves taking the inverse of the transformation matrix used to
get the global velocities into the local frame. This is then multiplied by the force
vector to get the force vector in the global frame. The same inverse transformation
matrix is then multiplied by the moment vector in the local frame and added to
the cross product of the section’s position vector and the global force vector.

Tb/i = T−1
i/b (2.28)

Fb
i = Tb/i


F i
x,i

F i
y,i

F i
z,i

 (2.29)

Mb
i = Tb/i


M i

x,i

M i
y,i

M i
z,i

 + rbi × Fb
i (2.30)

The resulting individual force and moment equations in the global coordinate frame
for an arbitrary all-flying control surface with control deflection δi are,

F b
x,i = −1

2ρ Si (V
i
i )2

[
cos θi

(
CD0,i − (CL0,i + CLα,i (δi + αi)) (δi + αi)

)
+ sin θi

(
CL0,i + CLα,i (δi + αi) + CD0,i (δi + αi)

)]
(2.31)

F b
y,i = 1

2ρ Si (V
i
i )2 sinφi

[
− sin θi

(
CD0,i − (CL0,i + CLα,i (δi + αi)) (δi + αi)

)
+ cos θi

(
CL0,i + CLα,i (δi + αi) + CD0,i (δi + αi)

)]
(2.32)
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F b
z,i = 1

2ρ Si (V
i
i )2 cosφi

[
sin θi

(
CD0,i − (CL0,i + CLα,i (δi + αi)) (δi + αi)

)
− cos θi

(
CL0,i + CLα,i (δi + αi) + CD0,i (δi + αi)

)]
(2.33)

M b
x,i = ry,i F

b
z,i − rz,i F

b
y,i (2.34)

M b
y,i = −rx,i F b

z,i + rz,i F
b
x,i + 1

2ρ Si ci (V
i
i )2CM0,i cosφi (2.35)

M b
z,i = rx,i F

b
y,i − ry,i F

b
x,i + 1

2ρ Si ci (V
i
i )2CM0,i sinφi (2.36)

And for a segment with a traditional control surface with deflection δi,

F b
x,i = −1

2ρ Si (V
i
i )2

[
cos θi

(
CD0,i − (CL0,i + CLδ,iδi + CLα,iαi)αi

)
+ sin θi

(
CL0,i + CLδ,iδi + CLα,iαi + CD0,iαi

)]
(2.37)

F b
y,i = 1

2ρ Si (V
i
i )2 sinφi

[
− sin θi

(
CD0,i − (CL0,i + CLδ,iδi + CLα,iαi)αi

)
+ cos θi

(
CL0,i + CLδ,iδi + CLα,iαi + CD0,iαi

)]
(2.38)

F b
z,i = 1

2ρ Si (V
i
i )2 cosφi

[
sin θi

(
CD0,i − (CL0,i + CLδ,iδi + CLα,iαi)αi

)
− cos θi

(
CL0,i + CLδ,iδi + CLα,iαi + CD0,iαi

)]
(2.39)

M b
x,i = ry,i F

b
z,i − rz,i F

b
y,i (2.40)

23



M b
y,i = −rx,i F b

z,i + rz,i F
b
x,i + 1

2ρ Si ci (V
i
i )2 (CM0,i + CMδ,iδi) cosφi (2.41)

M b
z,i = rx,i F

b
y,i − ry,i F

b
x,i + 1

2ρ Si ci (V
i
i )2 (CM0,i + CMδ,iδi) sinφi (2.42)

Each section’s velocity components are

uii = cos θi(ubb + Qrz,i − Rry,i) − cosφi sin θi(wbb + P ry,i − Qrx,i)

+ sinφi sin θi(vbb − P rz,i + Rrx,i) (2.43)

vii = cosφi(vbb − P rz,i + Rrx,i) + sinφi(wbb + P ry,i − Qrx,i) (2.44)

wii = sin θi(ubb + Qrz,i − Rry,i) + cosφi cos θi(wbb + P ry,i − Qrx,i)

− sinφi cos θi(vbb − P rz,i + Rrx,i) (2.45)

Now that the force and moment equations of an arbitrary section, with respect
to the aircraft body frame, have been defined, the next step is to assemble all of
the components into the total force and moment equations for the entire aircraft.
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Chapter 3
Linearized Aerodynamic Model

The mathematical model used to characterize the behavior of the aircraft involves
setting up the force and moment equations to be of the form f = Dx + Uδ,
where f is a vector containing the aerodynamic forces and moments, D is the
stability derivative matrix, the state vector x contains the linear and angular
velocity components of the aircraft, U is the control derivative matrix, and the
control vector δ consists of the control surface deflection angles.

f =



X

Y

Z

L

M

N


(3.1)

x =



u

v

w

P

Q

R


(3.2)

δ =
[
δe δa δr

]T
(3.3)

In order to use a model of this form, the equations must be linear in order to
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have D and U be constant matrices. The first step to obtaining these linear EoMs
is to develop a set of equations for the aerodynamic coefficients in terms of the state
and control vector variables. Once a complete set of equations is formed that depend
only on the state and control variables they can be linearized. The linearization
method, based on small disturbance theory (discussed in Section 1.5.2), takes a
function(f(x, y, z, . . .)) and determines an equation for the ∆ of the function’s value
from the initial set-point point condition f0 = f(x0), where x0 = [x0, y0, z0, . . .] is
the value of the state vector at the initial set-point. The method involves taking
the partial derivative of the function with respect to each state variable, evaluating
that derivative at the initial set-point and then multiplying it by the disturbance
value of its respective state variable. All of these components are then summed to
yield the final form

∆f ≈ ∂f

∂x

∣∣∣∣x0
δx + ∂f

∂y

∣∣∣∣x0
δy + ∂f

∂z

∣∣∣∣x0
δz + . . . (3.4)

3.1 Aerodynamic Coefficients
Equations for the aerodynamic coefficients of an individual section will vary de-
pending on the section’s airfoil shape as well as what, if any, control surface type
it contains. Prior to using the strip model the viscous panel code Xfoil[8] is used
to obtain lift, drag, and moment coefficient data for each airfoil used. From these
data a set of linear equations is formed to calculate the value of the coefficients that
are dependent only upon state and control variables. Two types of control surfaces
are used with this model, an ’all-flying’ control surface in which the whole section
acts as the control surface, and a traditional control surface where the section has
a movable flap with a hinge at some location aft of the leading edge.

3.1.1 Total Coefficient Equations

Since the two control surface types have different methods of control surface
deflection their aerodynamic properties are calculated differently.

26



Figure 3.1: All-Flying Control Surface

An all-flying control surface(Figure 3.1) is a section in which the entire surface
rotates when a control surface deflection is commanded. This makes the calculations
for the airfoil simpler since the aerodynamic properties of the airfoil do not change
with control surface deflection. The control surface deflection is merely added to
the current section angle of attack to get a new effective angle of attack of the
section. the effective angle of attack is given by

αeff = αi + δi (3.5)

where δi is the control surface deflection for the segment. The aerodynamic
coefficient equations for this type of section are

CL,i = CL0,i + CLα,i αeff (3.6)

CD,i = CD0,i (3.7)

CM,i = CM0,i (3.8)

The assumption of a constant section drag coefficient means that this approach
cannot be used for performance calculations. However since the goal of this method
is to create an approximation for use in designing a controller, this simplifying
assumption was deemed appropriate.
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Figure 3.2: Traditional Control Surface

A traditional control surface(Figure 3.2) is one that has a flap with a hinge
located some percentage aft of the airfoil leading edge. This means that changing
the control surface deflection effectively changes the camber-line of the airfoil
changing its aerodynamic properties. The aerodynamic coefficient equations for
this control surface type are

CL,i = CL0,i + CLα,i αi + CLδ,i δi (3.9)

CD,i = CD0,i (3.10)

CM,i = CM0,i + CMδ,i δi (3.11)

Where CLδ,i is the derivative of ∆CL with respect to δ, and CMδ,i is the derivative
of ∆CM with respect to δ, the calculation of these values is explained in detail in
3.1.2.

3.1.2 Linearized Airfoil Data

Due to the small relative angles of attack each individual airfoil section will
experience, it is possible to characterize the lift, drag, and moment coefficients of
each section as a linear function of angle of attack and control surface deflection. If
a more accurate model is needed or the airfoil behaves in a non-linear fashion it is
possible to redo the analysis with either a symbolic equation in terms of α and δi,
or a lookup table and numerical derivation.

The method for determining the linear equations involved running Xfoil for
each airfoil profile over a range of α’s at an assumed operating Reynolds number.
A linear data fit was used to get the characterizing equation for each coefficient.
For the example aircraft used to develop this model, two different airfoils were used.
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The PSU-94-097 airfoil was used for all main wing sections, while the NACA-63A010
symmetric airfoil was used for all tail sections. Any airfoil can be used within a
model provided that the surface profile is known and can be input into Xfoil.

For the main wing an assumed operating Reynolds number of 400,000 was used.
This corresponds to a wing with a chord of .4064 m traveling at 15 m/s at standard
sea-level. Xfoil was run for α’s ranging from -10° to 10°. The lift, drag, and moment
coefficient vs α plots are shown in Figures 3.3a, 3.3b, and 3.3d respectively.

(a) CL vs α (b) CD vs α

(c) CL vs CD (d) CM vs α

Figure 3.3: PSU-94-097 Airfoil

Since this model focuses on linearizing about a trimmed cruise condition the
expected effective angle of attack on any given surface should be small. This allows
the drag and moment coefficients to approximated as constant, with their respective
values being equal to the average of the values for α = −5° to 5°. The value of
the lift coefficient at α = 0 was taken to be CL0 and the slope of the data fit from
α = −5° to 5° to be CLα . The resulting aerodynamic coefficients for the PSU-94-097
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airfoil are given in Table 3.1.

PSU-94-097

CL0 0.4904

CLα(per deg) 0.1131

CD0 0.00815

CM0 -0.1083

Table 3.1: Aerodynamic Coefficients for PSU-94-097 Airfoil

For the tails an assumed operating Reynolds number of 125,000 was used. This
corresponds to a wing with a chord of .127 m traveling at 15 m/s at standard
sea-level. Xfoil was run for α’s ranging from -10° to 10°, however the cases above
7.5° and below −7.5° failed to converge. The lift, drag, and moment coefficient vs
α plots are shown in Figures 3.4a, 3.4b, and 3.4d respectively.
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(a) CL vs α (b) CD vs α

(c) CL vs CD (d) CM vs α

Figure 3.4: NACA-63A010 Airfoil

Similar to the PSU airfoil, CD0 is assumed to be constant and equal to the
average value over the α range of −4° to 4°, The bounds for the average are
determined by finding the area on the plot that is approximately constant. Since
the airfoil is symmetric the moment coefficient behaves symmetrically and averages
to 0. This is deemed acceptable since the change in the moment coefficient is small.
In addition from Thin Airfoil Theory the moment coefficient about the 1

4 chord
point is 0 for a symmetric airfoil, so the assumption has some basis in theory. Since
it is a symmetric airfoil CL0 = 0 and CLα is obtained from the slope of the CL vs
α curve. The resulting aerodynamic coefficients for the NACA-63A010 airfoil are
given in Table 3.2.
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NACA-63A010

CL0 0.00

CLα(per deg) 0.1122

CD0 0.01268

CM0 0.00

Table 3.2: Aerodynamic Coefficients for NACA-63A010 Airfoil

The method for determining the effects of control surface deflection involved
running Xfoil for the airfoil profile that would use a traditional flap style control
surface. The Xfoil runs were done using the same assumed operating Reynolds
number as for the regular coefficients, using an α sweep for varying flap deflections.
For the control surface modifier calculations the NACA-63A010 airfoil was used
with a hinge location of 70% chord aft of the leading edge. The Reynolds number
used was the same as for the airfoil with no flap. The airfoil was analyzed in Xfoil
with flap deflections of -10°, -5°, 0°, 5°, and 10°, Xfoil’s convention had a positive
deflection downward. For each flap deflection a sweep of α’s was performed until
Xfoil no longer converged. The lift, drag, and moment coefficient vs α plots can be
seen in Figures 3.5a, 3.5b, and 3.5d respectively.
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(a) CL vs α (b) CD vs α

(c) CL vs CD (d) CM vs α

Figure 3.5: NACA-63A010 with various flap deflection angles

As seen in Figure 3.5a the lift curve is shifted up for increasing flap angles, and
shifted down for decreasing angles. This means that the lift coefficient increases/de-
creases linearly with control surface deflection. To calculate this relationship the
difference between the lift coefficient at a given flap deflection and 0 flap deflection
was taken and then plotted vs flap deflection angle. This was done for a variety
of α’s to ensure the linear relationship was not dependent upon α. As shown in
Figure 3.6a the relationship is indeed linear and not heavily dependent on α. The
average of all of the slopes becomes CLδ which for this airfoil is 0.04668(per degree).

Figure 3.5b shows that for small angles of attack CD remains relatively constant
except for high control surface deflection angles. Since the drag is relatively low
this is seen as negligible.

Figure 3.5d shows a similar relationship as the lift albeit a negative linear
relationship rather than a positive one. Since the average value of CM is 0, only
the average values for each deflection angle need to be plotted. As shown in Figure
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3.6b the relationship is inversely linear, the slope of this line becomes CMδ
which

for this airfoil is -0.0069(per degree).

(a) ∆CL vs δ for various α’s (b) Avg CM vs δ

Figure 3.6: NACA-63A010 with Control Surface Deflections

It is important to note that these calculations are done assuming trailing edge
down is a positive control surface deflection, depending on the application for the
specific section that may not be the case depending on how a specific section’s local
coordinate frame is defined as well as what type of control surface it has (aileron,
elevator, or rudder).

3.1.3 Corrections for 3D Aerodynamic Effects

Since the aerodynamic coefficients calculated in Section 3.1.2 are determined using
2D Xfoil data, modifications are necessary to better approximate for the losses on a
3D surface due to downwash and tip effects. The effect of downwash was applied to
every surface in the form of a modifier to the lift curve slope (CLα) of the section
airfoil. This modifier, derived from lifting line theory (as discussed in Section 1.5.1),
is a = a0

1+ a0
π ARe

[3, p. 443], where a is the modified lift curve slope, a0 is the 2D lift
curve slope obtained from Xfoil, AR is the aspect ratio, and e is the span efficiency
factor. The aspect ratio ( b2

S
) is that of the entire contiguous lifting surface that

the section is a part of, for instance when doing the calculation for a section of the
main wing the aspect ratio for the entire wing is used.

Tip effects are modeled by approximating the lift distribution of the wing as
trapezoidal. This trapezoidal lift distribution enforces the condition of zero lift
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at the wingtips and approximates the lift for the outboard sections as linear. To
do this the main wing calculations are done separately from those for the rest of
the aerodynamic surfaces. Then for the outboard sections of the wing CL0 as well
as the already modified CLα are divided by 2. This gives a value for the lift on
these sections as being the average of the lift on the inboard side of the section (full
lift) and the lift at the wingtip (zero). This approximation works well enough for
this application while maintaining simplicity of the model. If future applications
find that this approximation is no longer adequate an elliptic distribution modifier
could be added across the whole wing surface.

3.2 Linearization of Section EoMs
The linearization for this application is done about a desired steady state flight
condition. This flight condition is a steady, wings-level, constant altitude, constant
lift cruise condition. In essence a fixed forward velocity and angle of attack,
as well as a fixed elevator deflection required to maintain equilibrium, all other
states/controls are zero. The set-point state and control vectors are

x0 =



u0

v0

w0

P0

Q0

R0


=



u0

0
w0

0
0
0


(3.12)

δ0 =
[
δe,0 δa,0 δr,0

]T
=
[
δe,0 0 0

]T
(3.13)

where, u0 and w0 are determined from the aircraft’s forward velocity and angle
of attack. The relationships are, u0 = V cosα and w0 = V sinα. The aircraft’s
trimmed Euler angles can be derived using the assumption of wings-level, constant
altitude flight. φE0 is zero from the wings-level assumption, ψE0 is arbitrarily defined
and for simplification is set to zero, and θE0 is equal to α due to the flight path
angle being zero through the constant altitude assumption.

The linearized force and moment equations for an individual section are
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∆Fx,i = ∂Fx,i
∂u

∣∣∣∣x0
δu + ∂Fx,i

∂v

∣∣∣∣x0
δv + ∂Fx,i

∂w

∣∣∣∣x0
δw + ∂Fx,i

∂P

∣∣∣∣x0
δP

+ ∂Fx,i
∂Q

∣∣∣∣x0
δQ + ∂Fx,i

∂R

∣∣∣∣x0
δR + ∂Fx,i

∂δi

∣∣∣∣
δ0
δδi (3.14)

∆Fy,i = ∂Fy,i
∂u

∣∣∣∣x0
δu + ∂Fy,i

∂v

∣∣∣∣x0
δv + ∂Fy,i

∂w

∣∣∣∣x0
δw + ∂Fy,i

∂P

∣∣∣∣x0
δP

+ ∂Fy,i
∂Q

∣∣∣∣x0
δQ + ∂Fy,i

∂R

∣∣∣∣x0
δR + ∂Fy,i

∂δi

∣∣∣∣
δ0
δδi (3.15)

∆Fz,i = ∂Fz,i
∂u

∣∣∣∣x0
δu + ∂Fz,i

∂v

∣∣∣∣x0
δv + ∂Fz,i

∂w

∣∣∣∣x0
δw + ∂Fz,i

∂P

∣∣∣∣x0
δP

+ ∂Fz,i
∂Q

∣∣∣∣x0
δQ + ∂Fz,i

∂R

∣∣∣∣x0
δR + ∂Fz,i

∂δi

∣∣∣∣
δ0
δδi (3.16)

∆Mx,i = ∂Mx,i

∂u

∣∣∣∣x0
δu + ∂Mx,i

∂v

∣∣∣∣x0
δv + ∂Mx,i

∂w

∣∣∣∣x0
δw + ∂Mx,i

∂P

∣∣∣∣x0
δP

+ ∂Mx,i

∂Q

∣∣∣∣x0
δQ + ∂Mx,i

∂R

∣∣∣∣x0
δR + ∂Mx,i

∂δi

∣∣∣∣
δ0
δδi (3.17)

∆My,i = ∂My,i

∂u

∣∣∣∣x0
δu + ∂My,i

∂v

∣∣∣∣x0
δv + ∂My,i

∂w

∣∣∣∣x0
δw + ∂My,i

∂P

∣∣∣∣x0
δP

+ ∂My,i

∂Q

∣∣∣∣x0
δQ + ∂My,i

∂R

∣∣∣∣x0
δR + ∂My,i

∂δi

∣∣∣∣
δ0
δδi (3.18)

∆Mz,i = ∂Mz,i

∂u

∣∣∣∣x0
δu + ∂Mz,i

∂v

∣∣∣∣x0
δv + ∂Mz,i

∂w

∣∣∣∣x0
δw + ∂Mz,i

∂P

∣∣∣∣x0
δP

+ ∂Mz,i

∂Q

∣∣∣∣x0
δQ + ∂Mz,i

∂R

∣∣∣∣x0
δR + ∂Mz,i

∂δi

∣∣∣∣
δ0
δδi (3.19)
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These linearized equations for a single section can be put into the same matrix
form as described in the beginning of the chapter.



∆Fx,i
∆Fy,i
∆Fz,i
∆Mx,i

∆My,i

∆Mz,i


= Di



δu

δv

δw

δP

δQ

δR


+ Ui δδi (3.20)

where,

Di =



∂Fx,i
∂u

∂Fx,i
∂v

∂Fx,i
∂w

∂Fx,i
∂P

∂Fx,i
∂Q

∂Fx,i
∂R

∂Fy,i
∂u

∂Fy,i
∂v

∂Fy,i
∂w

∂Fy,i
∂P

∂Fy,i
∂Q

∂Fy,i
∂R

∂Fz,i
∂u

∂Fz,i
∂v

∂Fz,i
∂w

∂Fz,i
∂P

∂Fz,i
∂Q

∂Fz,i
∂R

∂Mx,i

∂u

∂Mx,i

∂v

∂Mx,i

∂w

∂Mx,i

∂P

∂Mx,i

∂Q

∂Mx,i

∂R
∂My,i

∂u

∂My,i

∂v

∂My,i

∂w

∂My,i

∂P

∂My,i

∂Q

∂My,i

∂R
∂Mz,i

∂u

∂Mz,i

∂v

∂Mz,i

∂w

∂Mz,i

∂P

∂Mz,i

∂Q

∂Mz,i

∂R


(3.21)

and,

Ui =



∂Fx,i
∂δi
∂Fy,i
∂δi
∂Fz,i
∂δi
∂Mx,i

∂δi
∂My,i

∂δi
∂Mz,i

∂δi


(3.22)

The equations of the individual elements of the D and U matrices for an
arbitrary section can be found in Appendix A with the elements for an all-flying
control surface found in A.1 and those for a traditional control surface in A.2. The
equations in the appendix come from completing the partial derivatives of the
equations developed in Chapter 2 and then substituting in the set-point conditions.
This yields equations entirely in terms of known variables for each section. The D
and U matrices for a given segment can then easily be calculated by plugging in
the geometry, location, and orientation information for that particular section as
well as the global environmental variables and set-point conditions.
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3.3 Stability and Control Derivatives
The key advantage to having the force and moment equations in the linear form
∆f = Dδx + Uδδ is that it enables the creation of the linear equations of motion
of the aircraft. These linear equations of motion are often expressed in terms of
the ’stability and control derivatives’ of the aircraft. In addition to their use in
the modeling of the aircraft’s dynamics, a few key stability and control derivatives
give insight into the stability and controllability of the aircraft just from the sign
and magnitude of their values. This allows determining the viability of a design
without the need to actually simulate the aircraft’s response. In order to calculate
these stability and control derivatives, first the section Di and Ui matrices must be
combined to get a global aircraft D and U matrix. The columns of the U matrix
must then be combined with the columns of like control surface types (i.e. aileron,
elevator, or rudder). The components of the D and U matrices are then used
to calculate the dimensional stability and control derivatives. These dimensional
derivatives are then nondimensionalized to produce standardized values that can
be compared to the output of vortex lattice codes as well as be used to determine
aircraft static stability and control.

3.3.1 Assembly of Section Equations of Motion

Once the Di and Ui matrices for each individual section are calculated, they can
be summed to get the D and U matrices of the global aircraft.



∆Xb

∆Y b

∆Zb

∆Lb

∆M b

∆N b


=
∑

Di



δu

δv

δw

δP

δQ

δR


+
[
U1 U2 · · · Un

]

δ1

δ2
...
δn

 (3.23)

where n is the number of sections with control surfaces. The Ui matrices are
appended to one another rather than summing their individual elements in order
to be able to organize them by control surface type. The U matrix columns for
sections that contain the same type of control surface are combined so that the
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final equations take the form


∆Xb

∆Y b

∆Zb

∆Lb

∆M b

∆N b


=
∑

Di



δu

δv

δw

δP

δQ

δR


+
[
Ue Ua Ur

] 
δe

δa

δr

 (3.24)

If a section acts as more than one control surface (e.g. elevon, ruddervator, etc.)
then the column for that section can be split into longitudinal and lateral parts.
The longitudinal elements (Fx, Fz, and My) are added to the elevator column.
While the lateral elements (Fy, Mx, and Mz) are added to either the aileron or
rudder column depending on what is appropriate for that control surface. This split
assumes that the longitudinal/lateral coupling of the aircraft is negligible, which
for most conventional aircraft configurations is a valid assumption.

3.3.2 Linear Equations of Motion and Nondimensional Deriva-
tives

The components of the global D and U matrices are the dimensional stability and
control derivatives of the entire aircraft. These dimensional derivatives are used
to form linear equations for the aerodynamic forces and moments as functions of
the disturbance state and control variables. Assuming the longitudinal and lateral
coupling derivatives are negligible, the final linear force and moment equations are

∆X = Xuδu + Xwδw + XQδQ + Xδeδδe (3.25)

∆Y = Yvδv + YP δP + YRδR + Yδaδδa + Yδrδδr (3.26)

∆Z = Zuδu + Zwδw + ZQδQ + Zδeδδe (3.27)

∆L = Lvδv + LP δP + LRδR + Lδaδδa + Lδrδδr (3.28)

∆M = Muδu + Mwδw + MQδQ + Mδeδδe (3.29)

∆N = Nvδv + NP δP + NRδR + Nδaδδa + Nδrδδr (3.30)
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The capital letters with the subscripts represent the dimensional derivatives, with
the capital letter representing the force/moment and the subscript representing the
variable the derivative was taken with respect to.

Now that we have linear equations for the aerodynamic forces and moments we
return to the generalized equations of motion for an aircraft given by Equations 2.2 -
2.7 from Section 2.1. Plugging in the ∆ force and moment equations in terms of the
stability and control derivatives and the disturbance inputs, as well as eliminating
the steady-state reference forces and moments, results in linear equations of motion
for disturbance linear and angular accelerations of the aircraft.

δu̇ = ∆X
m

− g∆θ cos θ0 − w0δQ (3.31)

δv̇ = ∆Y
m

+ g∆φ cos θ0 − u0δR + w0δP (3.32)

δẇ = ∆Z
m

− g∆θ sin θ0 + u0δQ (3.33)

δṖ = ∆L
Ix

(3.34)

δQ̇ = ∆M
Iy

(3.35)

δṘ = ∆N
Iz

(3.36)

Since the disturbance inputs by definition are assumed small, the cross-coupling
terms involving the multiplication of two inputs are assumed to be negligible.
Additionally small angle approximations are used for the disturbance pitch and
bank angles(∆θ and ∆φ) and the reference value of the pitch angle(θ0) is the
trimmed angle of attack of the aircraft(assuming no wind).

For the purposes of comparing the relative stability and controllability of the
aircraft to other aircraft, as well as comparing results to vortex lattice code results,
it is necessary to generalize these derivatives by nondimensionalizing them. The
formulas used to nondimensionalize the derivatives are shown in Tables 3.3 and
3.4 [9, pp. 118,207] and are based on Buckingham’s π theorem. The values
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Cx Cz Cm

u Xu
1
2ρu0S

Zu
1
2ρu0S

Mu
1
2ρu0c̄S

α Xw
1
2ρu0S

Zw
1
2ρu0S

Mw
1
2ρu0c̄S

Q Xq
1
4ρu0c̄S

Zq
1
4ρu0c̄S

Mq
1
4ρu0c̄2S

δe
Xδe

1
2ρu

2
0S

Zδe
1
2ρu

2
0S

Mδe
1
2ρu

2
0Sc̄

Table 3.3: Longitudinal Dimensionless Derivatives

Cy Cl Cn

β Yv
1
2ρu0S

Lv
1
2ρu0bS

Nv
1
2ρu0bS

P Yp
1
4ρu0bS

Lp
1
4ρu0b2S

Np
1
4ρu0b2S

R Yr
1
4ρu0bS

Lr
1
4ρu0b2S

Nr
1
4ρu0b2S

δa
Yδa

1
2ρu

2
0S

Lδa
1
2ρu

2
0Sb

Nδa
1
2ρu

2
0Sb

δr
Yδr

1
2ρu

2
0S

Lδr
1
2ρu

2
0Sb

Nδr
1
2ρu

2
0Sb

Table 3.4: Lateral Dimensionless Derivatives

used to nondimensionalize the derivatives are the aircraft’s wing area (S), mean
aerodynamic chord (c̄), wing span (b), trimmed forward velocity (u0), and air
density (ρ).

These nondimensional stability and control derivatives show the aircraft’s static
stability, as well as allow for determination of relative stability margin and control
surface effectiveness to other known aircraft. The static stability of the aircraft is
determined based on the sign of certain stability derivatives. For example Cmα ,
describes the change in the aircraft’s pitching moment for a given disturbance in
α, this is commonly referred to as ’pitch stiffness’. An increase in α represents an
increase in the aircraft’s pitch angle, as such Cmα must be negative to ensure that
an increased pitch angle causes a negative pitching moment to counteract it. Cnβ ,
describes the change in the aircraft’s yawing moment for a given disturbance in
β. However, since a positive sideslip angle is conventionally defined as a negative
rotation about the aircraft’s z-axis a positive yawing moment is needed to correct
it. As a result Cnβ , also known as ’weathercock stability’, must be positive to
be statically stable. The relative stability margin and control effectiveness of an
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aircraft can be inferred by comparing its nondimensional derivative values to those
of an aircraft with known stability and control effectiveness.

The key stability derivatives that will be used to model the angular rate dynamics
of the aircraft are, Clp , Clδa , Cmq , Cmδe , Cnr , and Cnδr . Clp and Clδa describe the
effect a disturbance in roll rate and aileron deflection has on the rolling moment.
Cmq and Cmδe describe the effect a disturbance in pitch rate and elevator deflection
has on the pitching moment. Cnr and Cnδr describe the effect a disturbance in yaw
rate and rudder deflection has on the yawing moment.
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Chapter 4
Control Law Derivation

The stability and control derivatives calculated in Chapter 3 can now be used
to calculate controller gains to be used with an attitude controller on board the
aircraft. This chapter begins with a brief discussion of the control architecture
used in this thesis. The control architecture used as a model for the calculations of
the controller gains and the subsequent simulation of the aircraft’s dynamics, is
the fixed wing attitude controller included in the PX4 open-source autopilot stack,
briefly discussed in Section 1.3. The goal is to input a desired damping ratio and
natural frequency for the roll, pitch, and yaw rate inner control loops and output
the controller gains required to fly the aircraft autonomously, without the need to
further tune the gains. This is critical for modular aircraft since taking the time to
re-tune the controller gains every time the aircraft’s configuration is changed may
not be feasible.

4.1 Controller Description
The fixed wing attitude controller included in the PX4 autopilot consists of PI
controller loops around the roll, pitch, and yaw rates, as well as a proportional gain
between the angle error and rate command for roll and pitch. This proportional
gain is the inverse of a time-constant defined in the PX4 autopilot parameters,
its purpose is to impose a latency between the commanded input and achieved
set-point in order to protect control surface actuators from wearing out. For the
purpose of these simulations the time-constant for both pitch and roll was set to
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the PX4 autopilot default value of 0.5 seconds. There is also a direct feed-forward
gain between the rate command and control surface deflection for all three rates,
however this term is set to zero since the trimmed angular rates equal zero due
to the steady, level flight trim condition. A block diagram representation of the
controller is shown in Figure 4.1. This depiction is of generic form and applies to
the roll and pitch dynamics. The yaw controller is of the same design except it does
not include the angle controller, instead starting from a commanded rate set-point.
The angle and rate feed-forward controllers are just proportional gains while the
rate contoller is a PI controller of the form KPI(s) = KP + KI

s
. KP and KI are

the rate proportional and integral gains respectively, they will be different for each
controller and are calculated using the stability and control derivatives as well as
desired controller performance criteria.

Figure 4.1: Controller Block Diagram

4.2 Controller Gain Calculation
Calculating the proportional and integral gains for the three rate PI controllers
begins with the linearized moment equations for the aircraft. Since the inner-loop
controller focuses on the angular rate dynamics, the terms relating to the angles (α
and β) are dropped. Any errors caused by this omission can be corrected through
the outer-loop proportional gain on the flight angles. In addition, the steady state
terms live within the trim setting and any errors in calculating the trim setting
will be handled by the integral term in the controller. Lastly, the coupling between
roll and yaw dynamics (induced by the off-diagonal terms in the moment of inertia
matrix) is ignored. The three simplified linear moment equations are
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L = Ix Ṗ = 1
2ρV

2
∞S b(ClpP + Clδaδa) (4.1)

M = Iy Q̇ = 1
2ρV

2
∞S c(CmqQ + Cmδeδe) (4.2)

N = Iz Ṙ = 1
2ρV

2
∞S b(CnrR + Cnδr δr) (4.3)

These equations are then transformed into transfer functions of the form G(s) =
Rate(s)

Control(s) by taking the Laplace transform of the equations and then separating
terms. The resulting open loop transfer functions are

Groll(s) = P (s)
δa(s)

=
axClδa

s − axClp
(4.4)

Gpitch(s) = Q(s)
δe(s)

=
ayCmδe

s − ayCmq
(4.5)

Gyaw(s) = R(s)
δr(s)

=
azCnδr

s − azCnr
(4.6)

where, ax =
1
2ρV

2
∞S b

Ix
, ay =

1
2ρV

2
∞S c

Iy
, and az =

1
2ρV

2
∞S b

Iz
. Since ax, ay, and az are

positive definite, a stable aircraft requires that Clp , Cmq , and Cnr are negative.
The expression for the closed loop transfer function of a system with feedback

control, as shown in Figure 1.3, is given by

GCL(s) = K(s)GOL(s)
1 +K(s)GOL(s) (4.7)

where, GOL(s) is the open loop transfer function and K(s) is the controller transfer
function. For a PI controller the controller transfer function is given by KPI(s) =
KP + KI

s
, where KP is the proportional gain and KI is the integral gain. The

denominator of the closed loop transfer function is the characteristic equation of
the system. Since the roots of the characteristic equation determine the behavior
of the system the numerator can be ignored for the purpose of calculating the gains
necessary to achieve the desired performance. The characteristic equations of the
closed loop transfer functions for roll, pitch, and yaw are
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1 + KPIp Groll = s2 + (KPpaxClδa − axClp)s + KIpaxClδa (4.8)

1 + KPIq Gpitch = s2 + (KPqayCmδe − ayCmq)s + KIqayCmδe (4.9)

1 + KPIr Gyaw = s2 + (KPraxCnδr − azCnr)s + KIrazCnδr (4.10)

In order to get a stable second-order system with damping ratio ξ and natural
frequency ωn the characteristic equation should take the form of s2 + 2ξωn s + ω2

n.
Since Equations 4.8 - 4.10 are already in this form, matching coefficients and solving
for KP and KI yields the required controller gains to achieve a given damping ratio
and natural frequency. The resulting equations for the controller gains in terms of
stability and control derivatives are

KPp = 2ξωn + axClp
axClδa

(4.11)

KIp = ω2
n

axClδa
(4.12)

KPq = 2ξωn + ayCmq
ayCmδe

(4.13)

KIq = ω2
n

ayCmδe
(4.14)

KPr = 2ξωn + azCnr
azCnδr

(4.15)

KIr = ω2
n

azCnδr
(4.16)

The design parameters of ωn and ξ are chosen to achieve maximum performance
while maintaining a realistically controllable system. For the purposes of this thesis
a critically damped system with a damping ratio of 1 was assumed to ensure no
oscillation. The natural frequency chosen is slightly more arbitrary, as a higher
natural frequency will improve the response time of the system at the expense of
increased control surface deflection. Too high of a control surface deflection will
either stall the control surface or reach the physical limit of rotation. Figure 4.2
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shows a simulation of the elevator response for a range of natural frequencies. The
responses are to a commanded pitch angle of 10°. From the simulated results a
natural frequency of 4 Hz was chosen as a good design point as there are diminishing
returns in the settling time of the system for higher frequencies coupled with an
increase in maximum control surface deflection. This method can be used to obtain
natural frequencies for all controllers such that they meet performance criteria
within the control surface deflection limits. As can be seen in Figures 4.3 and 4.4,
a similar relationship between control surface response and natural frequency exists
for the aileron and rudder.

Figure 4.2: Elevator deflection for a range of ωn

Figure 4.3: Aileron deflection for a range of ωn
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Figure 4.4: Rudder deflection for a range of ωn
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Chapter 5
Verification via Vortex Lattice
Methods

The validity of the linearized aircraft model is checked by comparing the calculated
stability and control derivatives to those calculated using a vortex lattice code for
the same aircraft model. In this case the validation was done using Athena Vortex
Lattice (AVL)[7].

5.1 AVL Aircraft Model Setup
In order to model the aircraft as similar as possible in AVL only lifting surfaces
are included in the model. Therefore any fuselage, nacelle, or pods are ignored.
While this may not model the aircraft as closely as it can, it can model the same
surfaces as the strip model and therefore allow direct comparison of the methods.
Non-lifting surfaces can be included in the strip model as long as force and moment
data as functions of local velocity components are available. The airfoil section
point files for each surface were included in the AVL model and the lift curve slopes
were adjusted to match the values obtained from Xfoil. These inclusions were made
in order to try and match the airfoil performance as best as possible between the
models. All sections use cosine spacing both chordwise and spanwise, as this allows
for more detail to be captured at the leading and trailing edges of the surfaces as
well as at the tips of surfaces. This comes at the disadvantage of computational cost
since there will be extra vortices placed at section tips even if they are connected
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to another section and don’t require extra fidelity at that location. The number of
vortices used both spanwise and chordwise depends on the size of the section and
may need to be adjusted to get the best combination of computation speed and
model accuracy. Another note about the creation of the AVL model is that the
coordinate system origin is centered at the leading edge of the main wing rather
than the center of gravity (CG) of the aircraft. This enables the user to specify the
location of the CG so that it can be easily moved to reflect aircraft design changes.

5.2 Model Validation Tests
The flight conditions used for both the AVL model and strip model were identical in
order to minimize sources of error. The flight conditions used for the tests described
in Sections 5.2.1 - 5.2.3 were an airspeed of 15 m

s
and air density of 1.225 kg

m3 . The
CG location for each case was set to the same value of 0.070 m aft of the main
wing leading edge. This is not necessarily representative of where the actual CG
would be located on any of these aircraft, but was done for simplicity in creating
the strip model. In addition, these tests are to compare the strip model to AVL and
not to test the capabilities of a particular design. So as long as both methods are
modeling the same aircraft geometry under the same flight conditions, the tests are
valid. The AVL model was set up to run a longitudinally trimmed flight condition,
this involved setting the angle of attack to achieve a desired aircraft CL of 0.6 and
commanding the elevator deflection angle to drive the pitching moment to zero.
This results in a trimmed angle of attack and elevator deflection that are then used
for the baseline flight condition of the strip model.

Since the strip model’s primary function is calculating the PI controller gains
for the inner, angular rate control loops, we need only focus on the derivatives that
govern the linear moment dynamics as used in calculating the controller gains(See
Section 4.2, Equations 4.1, 4.2, and 4.3). These key derivatives are Clp , Clδa , Cmq ,
Cmδe , Cnr , and Cnδr . If the strip model is able to calculate these key derivatives
to within an acceptable level of error compared to the AVL derivatives, then the
model can be considered accurate for the purpose of calculating the inner-loop
controller gains.
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5.2.1 3 Wing Segments, 2 Tails

The first test case involves an aircraft with three 16" x 16" wing segments, two
horizontal all-flying tails, and four vertical fins on either side of the horizontal tails.
The vertical fins on the right side of each horizontal tail have conventional rudders
with the hinge located at 70% of the chord. The geometry plot of the AVL model
is shown in Figure 5.1. The model shows the geometric layout of the aircraft as
well as the locations of vortex distributions. The trimmed α and δe for this test
case are 7.29° and −9.5°, respectively.

Figure 5.1: 3 Wing Segment, 2 Tail AVL Model

The comparison of the stability and control derivatives calculated by AVL and
the strip model for this test case can be seen in Table 5.1. One of the main shortfalls
of the strip method is its reliance on lifting-line theory, which is not valid for small
aspect ratios (< 4). Since the vertical tails have a small aspect ratio (≈ 1) it can be
inferred that the strip model will not accurately predict their behavior. In addition
for this particular case, the trailing vortices of the wingtips will interact with the
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outermost vertical tails. This effect is captured in the AVL model, but not in the
strip model. This can be seen with the rudder control derivative, which differs by
more than 100%. Since the key derivatives have small relative errors, the strip model
can be considered valid for this configuration. The only concern is Cnδr since it has
a large error, however since the magnitude is small it is acceptable. It is important
to note that the strip model predicts the rudder power to be approximately twice
the value that AVL predicts. A possible cause to this is the difference in how
AVL handles control surface deflections. The strip model uses viscous Xfoil data
for various flap deflections to predict the changes in aerodynamic properties of a
surface due to a control surface deflection. AVL documentation does not mention
how control surfaces are handled, however given that AVL only uses the airfoil
profile data to construct a camber line it is safe to assume that it modifies this
camber line, using an user-defined flap hinge location, to simulate the effect of a
control surface. This difference coupled with the inaccuracy of the strip model with
low aspect ratio surfaces, as well as the absence of the trailing vortex effect, are
likely the cause of the large error in the rudder control derivative.

Derivative AVL Strip Model % Difference
Clp -0.3319 -0.3805 14.7
Clδa -0.0029 -0.0030 3.7
Cmq -4.8200 -4.2151 12.6
Cmδe -0.0175 -0.0181 3.2
Cnr -0.2780 -0.2990 7.6
Cnδr -0.0012 -0.0025 104.8

Table 5.1: Key Stability and Control Derivative Comparison for 3 Segment, 2 Tail
Configuration

5.2.2 5 Wing Segments, 2 Tails

The second test case is for the same configuration as the first, only with one more
wing segment added on each side of the main wing. The geometry plot of the AVL
model is shown in Figure 5.2. The trimmed α and δe for this test case are 5.0° and
−14.0° respectively.
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Figure 5.2: 5 Wing Segment, 2 Tail AVL Model

The results for this test case, shown in Table 5.2, are similar to the first case.
The small aspect ratio of the vertical fins as well as the small rudder control surface
area, leads to larger errors in the derivatives with contributions from these surfaces.
Again for the purpose of calculating the controller gains these errors are within
acceptable margins and as such the strip model is valid for this case. An interesting
thing to note is that the error in Cnr for this case dropped significantly as compared
to the first case. This is likely due to the vertical tails no longer having the influence
of the wingtip vortices due to the extended wing span.
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Derivative AVL Strip Model % Difference
Clp -0.4040 -0.4345 7.5
Clδa -0.00107 -0.00106 0.8
Cmq -3.3621 -2.4861 26.1
Cmδe -0.0106 -0.0107 0.8
Cnr -0.0609 -0.0615 1.0
Cnδr -0.00043 -0.00088 102.0

Table 5.2: Key Stability and Control Derivative Comparison for 5 Segment, 2 Tail
Configuration

5.2.3 5 Wing Segments, V-Tail

The third test case involves the same five segment wing as case two, however the
two all-flying horizontal tails and four vertical fins have been replaced with a v-tail.
The v-tail contains traditional control surfaces with hinges at 70% chord that act
as ruddervators. Ailerons have been added to the two wing segments on either side
of the center section with hinges also at 70% chord. The AVL geometry plot for
this test case can be seen in Figure 5.3. The trimmed α and δe for this test case
are 4.76° and −9.41° respectively.
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Figure 5.3: 5 Wing Segment, V Tail AVL Model

The comparative results for test case three can be found in Table 5.3. As can be
seen from the results, since the amount of rudder area increased the rudder control
derivative error decreased. Since there are no longer vertical tail surfaces, the
stability derivatives dependent on them did not improve in accuracy. The necessary
derivatives to simulate the rate dynamics are all within acceptable margins and
therefore this test case shows the model to be valid for this purpose.
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Derivative AVL Strip Model % Difference
Clp -0.4007 -0.4260 6.3
Clδa -0.0029 -0.0036 22.6
Cmq -6.9729 -5.6870 18.4
Cmδe -0.0175 -0.0156 11.3
Cnr -0.0546 -0.0670 22.8
Cnδr -0.0014 -0.0017 21.0

Table 5.3: Key Stability and Control Derivative Comparison for 5 Segment, V Tail
Configuration

5.3 Comparative Simulation of Controller Response
In order to test the performance of the controller calculated by the strip model, it
will be compared to the performance of a controller calculated using AVL’s stability
and control derivatives. This comparison is done for each of the three test cases
described in Section 5.2. In order to compare just the controller performance the
simulations will use the aircraft’s dynamics models with AVL stability and control
derivatives for both controllers. Since the vortex lattice method is a more accurate
model of aircraft aerodynamic properties its results will be taken to be the model
of how the actual aircraft will respond in flight. As for the simulation conditions,
the baseline will be the longitudinal trim condition with V∞ of 15 m

s
and ρ of 1.225

kg
m3 . The geometry parameters as well as the trim values for α and δe for each
test case are shown in Table 5.4. In this case since the goal is just to validate
against the AVL model and not necessarily predict real aircraft behavior, a rough
approximation for the moments of inertia was used. In each case, each surface
was modeled as a solid plastic airfoil, this creates an aircraft with much higher
moments of inertia than are realistic. However since the same ones are used for
both controllers it will not effect the result. This will affect the aircraft simulation
model however, the closer the moments of inertia get to the actual value for an
aircraft the more accurate that simulation becomes in predicting aircraft response.

A Simulink block diagram of each of the controllers as they are implemented in
the autopilot are shown in Figures 5.4 - 5.6. Each of these models also includes a
linear model of the aircraft’s dynamics for the purpose of simulating aircraft response
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to the control inputs and gain approximate knowledge of how the controller will
perform in flight. Since the roll and pitch controllers have an outer loop controlling
the attitude angles, the control inputs for them are a step input of 10° of commanded
attitude angle change from the baseline trim condition. The yaw rate loop’s control
input is a commanded yaw rate pulse of 0.175 rad

s
with a pulse width of 0.2 seconds.

Figure 5.4: Simulink Model of the Roll Rate Controller

Figure 5.5: Simulink Model of the Pitch Rate Controller
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Figure 5.6: Simulink Model of the Yaw Rate Controller

The Simulink block diagrams of each linear aircraft dynamics model are shown
in Figures 5.7 - 5.9. The linear aircraft dynamics are based on Equations 4.1, 4.2,
and 4.3. Since these simulations are done with respect to a single axis of motion
at a time, it can be assumed that the components with respect to other axes are
negligible.

Figure 5.7: Simulink Model of the Linear Aircraft Roll Dynamics
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Figure 5.8: Simulink Model of the Linear Aircraft Pitch Dynamics

Figure 5.9: Simulink Model of the Linear Aircraft Yaw Dynamics

The geometric parameters as well as the α and δe values required to trim the
aircraft for the three test cases are shown in Table 5.4. The trim values are obtained
from AVL using the method described in Section 5.2.
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Test Case 3 Wing Seg, 2 Tails 5 Wing Seg, 2 Tails 5 Wing Seg, V-Tail
S (m2) 0.4956 0.8258 0.8258
c (m) 0.4064 0.4064 0.4064
b (m) 1.2192 2.0320 2.0320

Ix (kg ·m2) 1.97 8.24 8.09
Iy (kg ·m2) 1.25 1.42 1.72
Iz (kg ·m2) 3.21 9.64 9.75
αtrim (°) 7.29 5.00 4.76
δe,trim (°) -9.55 -14.01 -9.41

Table 5.4: Test Case Geometry and Trim Conditions

The design parameters used to calculate the controller gains for all cases were
ωn = 4 Hz and ξ = 1. Making the system critically damped (ξ = 1) removes
oscillations in the system response. The natural frequency of 4 Hz was more
arbitrarily chosen as a value that yielded adequate performance in all cases, as
previously discussed in Section 4.2. These simulations are only a comparison of
the strip model controller’s performance relative to the AVL baseline, and do not
attempt to find an optimal controller.

Since the basis for both of these models is small disturbance theory with a
baseline trimmed condition, it is important to note that all resulting values from
the simulations are ∆’s from that respective case’s trimmed values.

5.3.1 Test Case 1

The first test case is the three wing segment, two all-flying tail configuration. The
controller gains calculated for this test case for both the strip model controller and
the AVL controller are shown in Table 5.5. The gains for both sets of controllers
are very similar except for the yaw rate controllers which is due to the large relative
error from the rudder control derivatives as described in Section 5.2.1.
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Strip Model Controller AVL Controller
KPp -1.022 -1.073
KIp -2.226 -2.310
KPq -0.293 -0.294
KIq -0.697 -0.718
KPr -2.112 -4.321
KIr -4.396 -8.971

Table 5.5: Test Case 1 PI Controller Gains

The results from the simulations for Case 1 are shown in Figures 5.10 - 5.13.
Each figure shows the response of its particular variable for systems with both the
strip model controller and the AVL controller. As can be seen from the results
the only responses that don’t line up completely are the yaw rate response and
the rudder deflection response as was expected. However the yaw rate response,
which is the more important of the two since it is a directly controlled variable,
only shows a slightly more lagged response. The behavior shown for the yaw rate
is still stable and would not have a profound effect on overall aircraft performance.

(a) Roll Rate Response (b) Roll Angle Response

Figure 5.10: Case 1 Roll Response
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(a) Pitch Rate Response (b) Pitch Angle Response

Figure 5.11: Case 1 Pitch Response

Figure 5.12: Yaw Rate Response
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(a) Aileron Response (b) Elevator Response

(c) Rudder Response

Figure 5.13: Case 1 Control Surface Response

5.3.2 Test Case 2

The second test case is the five wing segment, two all-flying tail configuration. The
controller gains calculated for this test case for both the strip model controller and
the AVL controller are shown in Table 5.6. Again the gains for roll and pitch are
nearly identical and the gains for yaw differ similarly to Case 1. This again can be
traced back to the rudder control derivative issue.
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Strip Model Controller AVL Controller
KPp -4.211 -4.202
KIp -9.391 -9.297
KPq -0.346 -0.330
KIq -0.803 -0.809
KPr -6.575 -13.37
KIr -13.32 -27.07

Table 5.6: Test Case 2 PI Controller Gains

The results from the simulations for Case 2 are shown in Figures 5.14 - 5.17.
Similar to the first case, there is very little error in the roll and pitch dynamics.
There is still some error in the yaw dynamics, however not as much as the first
case. This is most likely due to the increase in z-axis moment of inertia of this
aircraft configuration while maintaining the same rudder surface area. Even though
AVL predicts the rudders to be half as effective as the strip model does, for this
configuration they are both so under-powered that the effect on the dynamics is
negligible. This can be seen when comparing Figures 5.13c and 5.17c. In Figure
5.13c the response of the rudder for the AVL controller hits the lower saturation
limit while the strip model controller response does not. In Figure 5.17c the
responses of both controllers hit the saturation limit showing that there was not
enough rudder control authority to get to the commanded yaw rate in either case.

(a) Roll Rate Response (b) Roll Angle Response

Figure 5.14: Case 2 Roll Response
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(a) Pitch Rate Response (b) Pitch Angle Response

Figure 5.15: Case 2 Pitch Response

Figure 5.16: Case 2 Yaw Rate Response
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(a) Aileron Response (b) Elevator Response

(c) Rudder Response

Figure 5.17: Case 2 Control Surface Response

5.3.3 Test Case 3

The third test case is the five wing segment, v-tail configuration. The controller
gains calculated for this test case for both the strip model controller and the
AVL controller are shown in Table 5.7. In this case the relative error for the yaw
controller gains is much smaller than in the previous two cases. This is primarily
due to the reduction in the rudder control derivative error discussed in Section
5.2.3.
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Strip Model Controller AVL Controller
KPp -1.250 -1.541
KIp -2.781 -3.407
KPq -0.189 -0.150
KIq -0.551 -0.489
KPr -3.326 -4.024
KIr -6.744 -8.139

Table 5.7: Test Case 3 PI Controller Gains

The results from the simulations for Case 3 are shown in Figures 5.18 - 5.21.
Since the stability and control derivatives and subsequently the controller gains
with respect to yaw contain much less error in this case than the two previous cases
the yaw responses of both controllers should in turn be much more closely aligned.
As can be seen in Figures 5.20 and 5.21c the responses are much more similar and
have about the same amount of error as the roll and pitch responses. It should be
noted that in 5.21c both responses again hit the saturation limit, suggesting not
enough rudder authority to meet the rate set point. Again since this is primarily a
comparative test to compare the strip model to AVL this is not a concern.

(a) Roll Rate Response (b) Roll Angle Response

Figure 5.18: Case 3 Roll Response
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(a) Pitch Rate Response (b) Pitch Angle Response

Figure 5.19: Case 3 Pitch Response

Figure 5.20: Case 3 Yaw Rate Response
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(a) Aileron Response (b) Elevator Response

(c) Rudder Response

Figure 5.21: Case 3 Control Surface Response
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Chapter 6
Conclusions

The main purpose of this thesis was to develop a method in which controller gains
compatible with the PX4 autopilot software could be quickly determined with
minimal computational expense for a modular uninhabited air vehicle. Being able
to quickly and easily calculate the necessary gains needed to autonomously fly any
given configuration of a modular vehicle is essential in maintaining flexibility and
responsiveness in the field.

The controller gains were calculated assuming a PI controller and a linear plant
model for the roll, pitch, and yaw angular rates. The linear plant models used the
applicable stability and control derivatives for the roll, pitch, and yaw moment
dynamics. These stability and control derivatives were derived from linearizing
the equations of motion of the aircraft about a steady, longitudinally trimmed
flight condition. The most common way of determining the stability and control
derivatives for a given aircraft accurately is to use the numerical vortex lattice
method to simulate the aircraft’s aerodynamic properties. The vortex lattice
method is computationally expensive and requires creating a new model for each
aircraft configuration. The method used to simplify the calculations of the stability
and control derivatives was to break the aircraft’s aerodynamic surfaces up into
discrete section. The forces and moments acting on each individual section are
calculated using a 2D approximation which is then modified using lifting-line theory
to account for 3D effects. These section equations of motion are then linearized
with respect to the desired trim condition and then summed about the aircraft’s
center of gravity. This results in the dimensional stability and control derivatives
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for the aircraft, which are then non-dimensionalized to be used in the calculation
of the controller gains or to model the aircraft for simulation.

6.1 Results
The goal for testing of the strip model was to show that it can quickly and accurately
produce similar results to vortex lattice code for the purpose of calculating controller
gains for autonomous flight. The specific vortex lattice code used for the comparison
was AVL[7]. The time to run an AVL case for a single configuration is on the
order of a minute, which does not include the time needed to generate the model.
The strip model, on the other hand, calculates the stability and control derivatives
and the required inner-loop controller gains nearly instantaneously. When posed
with the possibility of hundred’s of individual configurations, the strip model is the
preferred method.

Three test cases were used to test the fidelity of the strip model against AVL.
The first, incorporated three wing sections, two all-flying horizontal tails, and four
vertical tails. The second, had five wing sections and the same tail setup as the
first case. The last test case had five wing sections and a v-tail.

Two comparisons were made between the strip model and the AVL model. The
first was a comparison of the stability and control derivatives calculated using the
two models. The second was a comparison of the simulated response of the aircraft
to a disturbance with each respective controller implemented. The simulation
results are the more important of the two, as they directly compare the actual
response of controllers designed using each model. It is still important to look at
the error in the derivatives themselves in the context of explaining the discrepancies
in the simulation results. However, the ultimate goal was to show that a controller
designed with the strip model behaves the same as one designed using AVL. This
allows for the use of the strip model in calculating autopilot controller gains quickly
as aircraft configurations are changed in the field, or when determining viability of
a large set of configurations.

The results of the simulations, which can be seen in Chapter 5, show that for
all three cases the roll and pitch response show little to no relative error between
the strip model controller and the AVL controller. The yaw rate response shows
more relative error, particularly with the first case. However, since the rudders
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are undersized for this case and yaw control is secondary to roll and pitch in
autonomous flight, the controller designed with the strip model can be seen as a
suitable controller to use for these configurations. In addition, since the three test
cases contained a variety of different surface types and control configurations, this
model should be accurate for most ’typical’ aircraft configurations. Exceptions to
this are discussed in Section 6.2.

6.2 Sources of Error
The discrepancy in the yaw performance as discussed earlier is caused by the strip
model calculating the rudder control derivatives to be approximately two times
the value of the derivatives calculated by AVL. The reason for this discrepancy
is unknown. One likely cause is the low aspect ratio of the vertical tails, which
pushes the limits of the lifting-line theory approximations used in calculating the
forces and moments of the surfaces. Another possible cause is the difference in
how the effect of a control surface is handled in the strip model vs AVL. The strip
model uses a viscous panel method simulation at the operating Reynolds number
for various control surface deflection angles. This creates a model of the effect of
control surface deflection on the lift and moment coefficients of the airfoil. It is
unknown how AVL calculates control surface effects but it likely has to do with
a modification of the camber line, or perhaps a generic modification to the airfoil
properties that is used on all control surfaces. For normally sized control surfaces
in normal application this difference is negligible, as can be seen with case 3 where
the ailerons and ruddervators have similar control derivative predictions across
both models. However with the combination of low surface aspect ratio and small
control surface size these errors cascade to create the large difference seen.

In addition to errors noted in the simulated cases, this model will most likely
lose accuracy with certain aircraft configurations. For instance the strip model
only looks at lifting surfaces, so any fuselage, nacelle, or pod is not modeled
aerodynamically. For most cases these terms would be negligible, however for a
large circular fuselage the drag due to side-slip would have a significant influence
on the Cyβ and Cnβ derivatives. It is possible to include the effects of non-lifting
surfaces if equations for the aerodynamic forces and moments in terms of local
velocities can be determined. Another effect that is not modeled is any one surface’s
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effect on any surfaces downstream. For configurations where surfaces are far apart
or elevated above upstream surfaces this effect will be negligible. If surfaces are
tightly grouped together the model will most likely lose accuracy. While dihedral
and twist can be modeled in the strip model, sweep can not. So this model can only
be used for straight-winged aircraft. It would be possible to include z-axis rotation
of strips in the model, however further testing would be required to determine if
that alone can accurately model the effects of sweep.

Neither AVL nor the strip model are accurate when it comes to the drag
calculations. To simplify the model, and knowing the drag would be inaccurate
regardless, induced drag is not included in the strip model. The only drag effect in
the strip model is the viscous profile drag calculated by Xfoil. AVL calculates the
induced drag, but has no method for determining profile drag. For the calculation
of the controller gains the contributions from the drag are negligible compared to
those of the lift and moment. If an accurate aerodynamic model is desired for use
in a flight simulator another method should be used to approximate the drag.

6.3 Future Work
Areas for future improvements to this model include, using a more comprehensive
aerodynamic model in simulation, validating results with flight tests. The model can
also be embedded into optimization software that can determine optimal aircraft
configurations for a given mission profile. The stability and control derivatives
calculated by the strip model can be used to model the aircraft in a commercial
flight simulator such as X-Plane or Flight Gear. This will allow hardware-in-the-
loop simulations to get a better understanding of controller performance before
flight tests. However, as mentioned previously the drag calculations in the strip
model are inaccurate. Thus, a more accurate drag model will need to be used in
order to more effectively model the aircraft in a flight simulator. The ultimate goal
is inclusion of the strip model in a ’self-identifying’ modular UAV. This aircraft
could potentially use section microprocessors, as well as an on-board central flight
computer, to determine its own configuration. With knowledge of the configuration
the flight computer can run the strip model to determine its required controller
gains. Once these gains are determined, they can be uploaded to the autopilot
software enabling autonomous flight with minimal user input.
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Appendix A
B and D Matrix Components

This Appendix contains all of the equations for the individual elements of the D
and U matrices for both a traditional surface as well as an "All-Flying" surface.
The elements described below belong to the equation:



∆F i
x

∆F i
y

∆F i
z

∆M i
x

∆M i
y

∆M i
z


= 1

2ρSi





Di
11 Di

12 Di
13 Di

14 Di
15 Di

16

Di
21 Di

22 Di
23 Di

24 Di
25 Di

26

Di
31 Di

32 Di
33 Di

34 Di
35 Di

36

Di
41 Di

42 Di
43 Di

44 Di
45 Di

46

Di
51 Di

52 Di
53 Di

54 Di
55 Di

56

Di
61 Di

62 Di
63 Di

64 Di
65 Di

66





δui

δvi

δwi

δPi

δQi

δRi


+



U i
1

U i
2

U i
3

U i
4

U i
5

U i
6


δi



A.1 Section with "All-Flying" Control Surface

wi = u0 sin θi + w0 cosφi cos θi (A.1)

ui = u0 cos θi − w0 cosφi sin θi (A.2)

V 2
0 = u2

0 + w2
0 (A.3)

αi = δ0 + wi
ui

(A.4)

A = CL0,i + αi (CD0,i + CLα,i) (A.5)

B = CD0,i − αi (CL0,i + CLα,i αi) (A.6)
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C = 2CLα,iwi + (CL0,i + 2CLα,i δ0)ui (A.7)

E = B cos θi + A sin θi (A.8)

F = A cos θi − B sin θi (A.9)

G = ry,i cosφi + rz,i sinφi (A.10)

H = ry,iw0 cosφi − rx,i u0 sinφi (A.11)

I = rz,i u0 − rx,iw0 (A.12)

J = rx,i u0 + rz,iw0 (A.13)

K = C sin θi
u3
i

+ (CD0,i + CLα,i)
cos θi
u2
i

(A.14)

L = C cos θi
u3
i

− (CD0,i + CLα,i)
sin θi
u2
i

(A.15)

A.1.1 D Matrix Components

D11 = − (2u0E + w0 cosφi V 2
0 L) (A.16)

D12 = −u0 sinφi V 2
0 L (A.17)

D13 = − (2w0E − u0 cosφi V 2
0 L) (A.18)

D14 = − (2 ry,iw0E − u0GV
2

0 L) (A.19)

D15 = − (2 I E + J cosφi V 2
0 L) (A.20)

D16 = 2 ry,i u0E + H V 2
0 L (A.21)

D21 = sinφi (2u0 F − w0 cosφi V 2
0 K) (A.22)

D22 = −u0 sinφ2
i V

2
0 K (A.23)

D23 = sinφi (2w0 F + u0 cosφi V 2
0 K) (A.24)

D24 = sinφi (2 ry,iw0 F + u0GV
2

0 K) (A.25)

D25 = sinφi (2 I F − J cosφi V 2
0 K) (A.26)

D26 = − sinφi (2 ry,i u0 F − H V 2
0 K) (A.27)

D31 = − cosφi (2u0 F − w0 cosφi V 2
0 K) (A.28)

D32 = u0 cosφi sinφi V 2
0 K (A.29)

D33 = − cosφi (2w0 F + u0 cosφi V 2
0 K) (A.30)

D34 = − cosφi (2 ry,iw0 F + u0GV
2

0 K) (A.31)
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D35 = − cosφi (2 I F − J cosφi V 2
0 K) (A.32)

D36 = cosφi (2 ry,i u0 F − H V 2
0 K) (A.33)

D41 = −G (2u0 F − w0 cosφi V 2
0 K) (A.34)

D42 = V 2
0 u0 sinφiGK (A.35)

D43 = −G (2w0 F + u0 cosφi V 2
0 K) (A.36)

D44 = −G (2w0 ry,i F + u0GV
2

0 K) (A.37)

D45 = −G (2 I F − cosφi V 2
0 J K) (A.38)

D46 = G (2u0 ry,i F − V 2
0 HK) (A.39)

D51 = 2 ci u0 cosφiCM0,i + rx,i cosφi (2u0 F − w0 cosφi V 2
0 K)

− rz,i (2u0E + w0 cosφi V 2
0 L)

(A.40)

D52 = −V 2
0 u0 sinφi (rx,i cosφiK + rz,i L) (A.41)

D53 = 2 ciw0 cosφiCM0,i + rx,i cosφi (2w0 F + u0 cosφi V 2
0 K)

− rz,i (2w0E − u0 cosφi V 2
0 L)

(A.42)

D54 = 2 ci ry,iw0 cosφiCM0,i + rx,i cosφi (2w0 ry,i F + u0GV
2

0 K)

− rz,i (2w0 ry,iE − u0GV
2

0 L)
(A.43)

D55 = 2 ci I cosφiCM0,i + rx,i cosφi (2 I F − J cosφi V 2
0 K)

− rz,i (2 I E + J cosφi V 2
0 L)

(A.44)

D56 = − 2 ci ry,i u0 cosφiCM0,i − rx,i cosφi (2u0 ry,i F − H V 2
0 K)

+ rz,i (2u0 ry,iE + H V 2
0 L)

(A.45)

D61 = 2 ci u0 sinφiCM0,i + rx,i sinφi (2u0 F − w0 cosφi V 2
0 K)

+ ry,i (2u0E + w0 cosφi V 2
0 L)

(A.46)

D62 = −V 2
0 u0 sinφi (rx,i sinφiK − ry,i L) (A.47)

D63 = 2 ciw0 sinφiCM0,i + rx,i sinφi (2w0 F + u0 cosφi V 2
0 K)

+ ry,i (2w0E − u0 cosφi V 2
0 L)

(A.48)

D64 = 2 ci ry,iw0 sinφiCM0,i + rx,i sinφi (2w0 ry,i F + u0GV
2

0 K)

+ ry,i (2w0 ry,iE − u0GV
2

0 L)
(A.49)

D65 = 2 ci I sinφiCM0,i + rx,i sinφi (2 I F − J cosφi V 2
0 K)

+ ry,i (2 I E + J cosφi V 2
0 L)

(A.50)

76



D66 = − 2 ci ry,i u0 sinφiCM0,i − rx,i sinφi (2u0 ry,i F − H V 2
0 K)

− ry,i (2u0 ry,iE + H V 2
0 L)

(A.51)

A.1.2 U Matrix Components

U1 = V 2
0 Lu

2
i (A.52)

U2 = V 2
0 sinφiK u2

i (A.53)

U3 = −V 2
0 cosφiK u2

i (A.54)

U4 = −V 2
0 GK u2

i (A.55)

U5 = V 2
0 (rz,i L + rx,i cosφiK)u2

i (A.56)

U6 = V 2
0 (rx,i sinφiK − ry,i L)u2

i (A.57)

A.2 Section with Traditional Control Surface

wi = u0 sin θi + w0 cosφi cos θi (A.58)

ui = u0 cos θi − w0 cosφi sin θi (A.59)

V 2
0 = u2

0 + w2
0 (A.60)

αi = wi
ui

(A.61)

A = CL0,i + CLδ,i δ0 + αi (CD0,i + CLα,i) (A.62)

B = CD0,i − αi (CL0,i + CLα,i αi + CLδ,i δ0) (A.63)

C = 2CLα,iwi + (CL0,i + CLδ,i δ0)ui (A.64)

E = B cos θi + A sin θi (A.65)

F = A cos θi − B sin θi (A.66)

G = ry,i cosφi + rz,i sinφi (A.67)

H = ry,iw0 cosφi − rx,i u0 sinφi (A.68)

I = rz,i u0 − rx,iw0 (A.69)

J = rx,i u0 + rz,iw0 (A.70)

K = C sin θi
u3
i

+ (CD0,i + CLα,i)
cos θi
u2
i

(A.71)
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L = C cos θi
u3
i

− (CD0,i + CLα,i)
sin θi
u2
i

(A.72)

A.2.1 D Matrix Components

D11 = − (2u0E + w0 cosφi V 2
0 L) (A.73)

D12 = −u0 sinφi V 2
0 L (A.74)

D13 = − (2w0E − u0 cosφi V 2
0 L) (A.75)

D14 = − (2 ry,iw0E − u0GV
2

0 L) (A.76)

D15 = − (2 I E + J cosφi V 2
0 L) (A.77)

D16 = 2 ry,i u0E + H V 2
0 L (A.78)

D21 = sinφi (2u0 F − w0 cosφi V 2
0 K) (A.79)

D22 = −u0 sinφ2
i V

2
0 K (A.80)

D23 = sinφi (2w0 F + u0 cosφi V 2
0 K) (A.81)

D24 = sinφi (2 ry,iw0 F + u0GV
2

0 K) (A.82)

D25 = sinφi (2 I F − J cosφi V 2
0 K) (A.83)

D26 = − sinφi (2 ry,i u0 F − H V 2
0 K) (A.84)

D31 = − cosφi (2u0 F − w0 cosφi V 2
0 K) (A.85)

D32 = u0 cosφi sinφi V 2
0 K (A.86)

D33 = − cosφi (2w0 F + u0 cosφi V 2
0 K) (A.87)

D34 = − cosφi (2 ry,iw0 F + u0GV
2

0 K) (A.88)

D35 = − cosφi (2 I F − J cosφi V 2
0 K) (A.89)

D36 = cosφi (2 ry,i u0 F − H V 2
0 K) (A.90)

D41 = −G (2u0 F − w0 cosφi V 2
0 K) (A.91)

D42 = V 2
0 u0 sinφiGK (A.92)

D43 = −G (2w0 F + u0 cosφi V 2
0 K) (A.93)

D44 = −G (2w0 ry,i F + u0GV
2

0 K) (A.94)

D45 = −G (2 I F − cosφi V 2
0 J K) (A.95)

D46 = G (2u0 ry,i F − V 2
0 HK) (A.96)
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D51 = 2 ci u0 cosφi (CM0,i + CMδ,i δ0)

+ rx,i cosφi (2u0 F − w0 cosφi V 2
0 K)

− rz,i (2u0E + w0 cosφi V 2
0 L)

(A.97)

D52 = −V 2
0 u0 sinφi (rx,i cosφiK + rz,i L) (A.98)

D53 = 2 ciw0 cosφi (CM0,i + CMδ,i δ0)

+ rx,i cosφi (2w0 F + u0 cosφi V 2
0 K)

− rz,i (2w0E − u0 cosφi V 2
0 L)

(A.99)

D54 = 2 ci ry,iw0 cosφi (CM0,i + CMδ,i δ0)

+ rx,i cosφi (2w0 ry,i F + u0GV
2

0 K)

− rz,i (2w0 ry,iE − u0GV
2

0 L)

(A.100)

D55 = 2 ci I cosφi (CM0,i + CMδ,i δ0)

+ rx,i cosφi (2 I F − J cosφi V 2
0 K)

− rz,i (2 I E + J cosφi V 2
0 L)

(A.101)

D56 = − 2 ci ry,i u0 cosφi (CM0,i + CMδ,i δ0)

− rx,i cosφi (2u0 ry,i F − H V 2
0 K)

+ rz,i (2u0 ry,iE + H V 2
0 L)

(A.102)

D61 = 2 ci u0 sinφi (CM0,i + CMδ,i δ0)

+ rx,i sinφi (2u0 F − w0 cosφi V 2
0 K)

+ ry,i (2u0E + w0 cosφi V 2
0 L)

(A.103)

D62 = −V 2
0 u0 sinφi (rx,i sinφiK − ry,i L) (A.104)

D63 = 2 ciw0 sinφi (CM0,i + CMδ,i δ0)

+ rx,i sinφi (2w0 F + u0 cosφi V 2
0 K)

+ ry,i (2w0E − u0 cosφi V 2
0 L)

(A.105)

D64 = 2 ci ry,iw0 sinφi (CM0,i + CMδ,i δ0)

+ rx,i sinφi (2w0 ry,i F + u0GV
2

0 K)

+ ry,i (2w0 ry,iE − u0GV
2

0 L)

(A.106)

D65 = 2 ci I sinφi (CM0,i + CMδ,i δ0)

+ rx,i sinφi (2 I F − J cosφi V 2
0 K)

+ ry,i (2 I E + J cosφi V 2
0 L)

(A.107)
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D66 = − 2 ci ry,i u0 sinφi (CM0,i + CMδ,i δ0)

− rx,i sinφi (2u0 ry,i F − H V 2
0 K)

− ry,i (2u0 ry,iE + H V 2
0 L)

(A.108)

A.2.2 U Matrix Components

U1 = w0 cosφi V 2
0 CLδ,i

ui
(A.109)

U2 = u0 sinφi V 2
0 CLδ,i

ui
(A.110)

U3 = −u0 cosφi V 2
0 CLδ,i

ui
(A.111)

U4 = −u0 V
2

0 GCLδ,i
ui

(A.112)

U5 = cosφi V 2
0

(
CLδ,iC

ui
+ CMδ,i ci

)
(A.113)

U6 = V 2
0

(
CMδ,i ci sinφi − CLδ,iH

ui

)
(A.114)
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